
A. AUTOENCODER RECONSTRUCTION DETAILS

Convolutional autoencoders were trained on 96 × 96 images.

The convolutional network architecture consists of 3 convolu-

tional layers, each with a filter size of 5 and a stride of 2. This

means the input is reduced from (96,96) to (48,48), then to

(24,24), and finally to (12,12). The first layer has 128 filters,

the second 256, and the final 512. All layers have ReLU acti-

vations, except the bottleneck and output, which are tanh. The

deconvolutional layers mirror the convolutional layers and are

implemented as convolutional layers that are preceded by an

upsampling step that creates a layer with 2 times the dimen-

sions of the input layer by repeating the values of the input.

To explore the role of the capacity of the convolutional layer,

we built models with bottlenecks of both 128 and 512 units.

However, we report only results for the 128-unit network as

qualitative performance of the 512-unit network was quite

similar.

We train our convolutional autoencoders on the 100,000

images in STL-10 referred to as the “unlabeled” set, and of the

remaining data, we formed a hold-out set of 10,400 images,

which was used to determine when to stop training. Other

than early stopping, no regularization was used during train-

ing. We used the “Adam” optimizer [31].

B. CLASSIFICATION DETAILS

For the classification experiments, we resized the Extended

Yale B [23] images to 48 × 48 and split the data randomly

into a training, validation, and test set in a 60%-20%-20%

ratio. We trained convolutional autoencoders with the same

architecture described in Section A except here we used a

32-unit bottleneck with ReLU activations and batch normal-

ization [32] on all layers except the output layer of the de-

coder. Batch sizes of 32 and Adam [31] with a learning rate

of 0.001 were used to train the networks. After training each

of the autoencoders to convergence on the training set, we

extracted bottleneck representations for the training and vali-

dation sets. We trained a SVM with a linear kernel to predict

identity and SVR with RBF kernels to predict azimuth and

elevation. Hyperparameters of the SVMs were selected via

three-fold cross-validation on the training plus validation set.

For azimuth and elevation prediction, we use SVR with RBF

kernels and use grid search to select C ∈ {1, 10, 100, 1000}.

For identity classification, we use SVM with a linear kernel

and select C ∈ {0.01, 0.1, 1, 10, 100, 1000, 10000}. The grid

search was performed via three-fold cross-validation on the

training plus validation set.

C. IMAGE SUPER-RESOLUTION DETAILS

For the super-resolution experiments, all input images are

converted from RGB to YCbCr color space and only Y chan-

nel is used for training and testing. To generate the training

and testing data, we use bicubic method to perform down-

sampling. For visualizing color images, we first upsample

the Cb and Cr channels using bicubic, merge the result of Y

channel and then convert it back to RGB color space. The

above procedure is the same as SRCNN [24] which is the

common practice in single image super-resolution literature.

Moreover, we use stochastic gradient descent (SGD) with

momentum for optimization. The learning rate is fixed to

0.001 and momentum is 0.9. We did not use any weight

decay since the model is fairly simple and we did not observe

any overfitting. For training the MS-SSIM loss, we use 5

scales and downsample the image with ratio 2 for each one.

Fig. 3 provides close-up visual illustrations.



Bicubic SRCNN + MSE SRCNN + MAE SRCNN + MS-SSIM

Fig. 3. Visual comparisons on super-resolution at a magnification factor of 4. MS-SSIM not only improves resolution but also

removes artifacts, e.g., the ringing effect in the bottom row, and enhances contrast, e.g., the fabric in the third row.


