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Abstract
The process of learning good features for ma-
chine learning applications can be very compu-
tationally expensive and may prove difficult in
cases where little data is available. A prototyp-
ical example of this is the one-shot learning set-
ting, in which we must correctly make predic-
tions given only a single example of each new
class. In this paper, we explore a method for
learning siamese neural networks which employ
a unique structure to naturally rank similarity be-
tween inputs. Once a network has been tuned,
we can then capitalize on powerful discrimina-
tive features to generalize the predictive power of
the network not just to new data, but to entirely
new classes from unknown distributions. Using a
convolutional architecture, we are able to achieve
strong results which exceed those of other deep
learning models with near state-of-the-art perfor-
mance on one-shot classification tasks.

1. Introduction
Humans exhibit a strong ability to acquire and recognize
new patterns. In particular, we observe that when presented
with stimuli, people seem to be able to understand new
concepts quickly and then recognize variations on these
concepts in future percepts (Lake et al., 2011). Machine
learning has been successfully used to achieve state-of-
the-art performance in a variety of applications such as
web search, spam detection, caption generation, and speech
and image recognition. However, these algorithms often
break down when forced to make predictions about data for
which little supervised information is available. We desire
to generalize to these unfamiliar categories without neces-
sitating extensive retraining which may be either expensive
or impossible due to limited data or in an online prediction
setting, such as web retrieval.

One particularly interesting task is classification under the
restriction that we may only observe a single example of
each possible class before making a prediction about a test

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Figure 1. Example of a 20-way one-shot classification task using
the Omniglot dataset. The lone test image is shown above the grid
of 20 images representing the possible unseen classes that we can
choose for the test image. These 20 images are our only known
examples of each of those classes.

instance. This is called one-shot learning and it is the pri-
mary focus of our model presented in this work (Fei-Fei
et al., 2006; Lake et al., 2011). This should be distinguished
from zero-shot learning, in which the model cannot look
at any examples from the target classes (Palatucci et al.,
2009).

One-shot learning can be directly addressed by develop-
ing domain-specific features or inference procedures which
possess highly discriminative properties for the target task.
As a result, systems which incorporate these methods tend
to excel at similar instances but fail to offer robust solutions
that may be applied to other types of problems. In this pa-
per, we present a novel approach which limits assumptions
on the structure of the inputs while automatically acquir-
ing features which enable the model to generalize success-
fully from few examples. We build upon the deep learn-
ing framework, which uses many layers of non-linearities
to capture invariances to transformation in the input space,
usually by leveraging a model with many parameters and
then using a large amount of data to prevent overfitting
(Bengio, 2009; Hinton et al., 2006). These features are
very powerful because we are able to learn them without
imposing strong priors, although the cost of the learning
algorithm itself may be considerable.
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Figure 2. Our general strategy. 1) Train a model to discriminate
between a collection of same/different pairs. 2) Generalize to
evaluate new categories based on learned feature mappings for
verification.

2. Approach
In general, we learn image representations via a supervised
metric-based approach with siamese neural networks, then
reuse that network’s features for one-shot learning without
any retraining.

In our experiments, we restrict our attention to character
recognition, although the basic approach can be replicated
for almost any modality (Figure 2). For this domain, we
employ large siamese convolutional neural networks which
a) are capable of learning generic image features useful
for making predictions about unknown class distributions
even when very few examples from these new distribu-
tions are available; b) are easily trained using standard
optimization techniques on pairs sampled from the source
data; and c) provide a competitive approach that does not
rely upon domain-specific knowledge by instead exploiting
deep learning techniques.

To develop a model for one-shot image classification, we
aim to first learn a neural network that can discriminate
between the class-identity of image pairs, which is the
standard verification task for image recognition. We hy-
pothesize that networks which do well at at verification
should generalize to one-shot classification. The verifica-
tion model learns to identify input pairs according to the
probability that they belong to the same class or differ-
ent classes. This model can then be used to evaluate new
images, exactly one per novel class, in a pairwise manner
against the test image. The pairing with the highest score
according to the verification network is then awarded the
highest probability for the one-shot task. If the features
learned by the verification model are sufficient to confirm
or deny the identity of characters from one set of alpha-

bets, then they ought to be sufficient for other alphabets,
provided that the model has been exposed to a variety of
alphabets to encourage variance amongst the learned fea-
tures.

3. Related Work
Overall, research into one-shot learning algorithms is fairly
immature and has received limited attention by the machine
learning community. There are nevertheless a few key lines
of work which precede this paper.

The seminal work towards one-shot learning dates back to
the early 2000’s with work by Li Fei-Fei et al. The au-
thors developed a variational Bayesian framework for one-
shot image classification using the premise that previously
learned classes can be leveraged to help forecast future
ones when very few examples are available from a given
class (Fe-Fei et al., 2003; Fei-Fei et al., 2006). More re-
cently, Lake et al. approached the problem of one-shot
learning from the point of view of cognitive science, ad-
dressing one-shot learning for character recognition with
a method called Hierarchical Bayesian Program Learning
(HBPL) (2013). In a series of several papers, the authors
modeled the process of drawing characters generatively to
decompose the image into small pieces (Lake et al., 2011;
2012). The goal of HBPL is to determine a structural ex-
planation for the observed pixels. However, inference un-
der HBPL is difficult since the joint parameter space is very
large, leading to an intractable integration problem.

Some researchers have considered other modalities or
transfer learning approaches. Lake et al. have some very
recent work which uses a generative Hierarchical Hid-
den Markov model for speech primitives combined with
a Bayesian inference procedure to recognize new words by
unknown speakers (2014). Maas and Kemp have some of
the only published work using Bayesian networks to pre-
dict attributes for Ellis Island passenger data (2009). Wu
and Dennis address one-shot learning in the context of path
planning algorithms for robotic actuation (2012). Lim fo-
cuses on how to “borrow” examples from other classes in
the training set by adapting a measure of how much each
category should be weighted by each training exemplar in
the loss function (2012). This idea can be useful for data
sets where very few examples exist for some classes, pro-
viding a flexible and continuous means of incorporating
inter-class information into the model.

4. Deep Siamese Networks for Image
Verification

Siamese nets were first introduced in the early 1990s by
Bromley and LeCun to solve signature verification as an
image matching problem (Bromley et al., 1993). A siamese
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Figure 3. A simple 2 hidden layer siamese network for binary
classification with logistic prediction p. The structure of the net-
work is replicated across the top and bottom sections to form twin
networks, with shared weight matrices at each layer.

neural network consists of twin networks which accept dis-
tinct inputs but are joined by an energy function at the top.
This function computes some metric between the highest-
level feature representation on each side (Figure 3). The
parameters between the twin networks are tied. Weight ty-
ing guarantees that two extremely similar images could not
possibly be mapped by their respective networks to very
different locations in feature space because each network
computes the same function. Also, the network is symmet-
ric, so that whenever we present two distinct images to the
twin networks, the top conjoining layer will compute the
same metric as if we were to we present the same two im-
ages but to the opposite twins.

In LeCun et al., the authors used a contrastive energy func-
tion which contained dual terms to decrease the energy of
like pairs and increase the energy of unlike pairs (2005).
However, in this paper we use the weighted L1 distance
between the twin feature vectors h1 and h2 combined with
a sigmoid activation, which maps onto the interval [0, 1].
Thus a cross-entropy objective is a natural choice for train-
ing the network. Note that in LeCun et al., they directly
learned the similarity metric, which was implictly defined
by the energy loss, whereas we fix the metric as specified
above, following the approach in Facebook’s DeepFace pa-
per (Taigman et al., 2014).

Our best-performing models use multiple convolutional
layers before the fully-connected layers and top-level
energy function. Convolutional neural networks have
achieved exceptional results in many large-scale computer
vision applications, particularly in image recognition tasks
(Bengio, 2009; Krizhevsky et al., 2012; Simonyan & Zis-
serman, 2014; Srivastava, 2013).

Several factors make convolutional networks especially ap-
pealing. Local connectivity can greatly reduce the num-
ber of parameters in the model, which inherently provides
some form of built-in regularization, although convolu-
tional layers are computationally more expensive than stan-
dard nonlinearities. Also, the convolution operation used in
these networks has a direct filtering interpretation, where
each feature map is convolved against input features to
identify patterns as groupings of pixels. Thus, the outputs
of each convolutional layer correspond to important spa-
tial features in the original input space and offer some ro-
bustness to simple. Finally, very fast CUDA libraries are
now available in order to build large convolutional net-
works without an unacceptable amount of training time
(Mnih, 2009; Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2014).

We now detail both the structure of the siamese nets and the
specifics of the learning algorithm used in our experiments.

4.1. Model

Our standard model is a siamese convolutional neural net-
work with L layers each with Nl units, where h1,l repre-
sents the hidden vector in layer l for the first twin, and h2,l

denotes the same for the second twin. We use exclusively
rectified linear (ReLU) units in the first L − 2 layers and
sigmoidal units in the remaining layers.

The model consists of a sequence of convolutional layers,
each of which uses a single channel with filters of varying
size and a fixed stride of 1. The number of convolutional
filters is specified as a multiple of 16 to optimize perfor-
mance. The network applies a ReLU activation function
to the output feature maps, optionally followed by max-
pooling with a filter size and stride of 2. Thus the kth filter
map in each layer takes the following form:

a
(k)
1,m = max-pool(max(0,W

(k)
l−1,l ? h1,(l−1) + bl), 2)

a
(k)
2,m = max-pool(max(0,W

(k)
l−1,l ? h2,(l−1) + bl), 2)

where Wl−1,l is the 3-dimensional tensor representing the
feature maps for layer l and we have taken ? to be the
valid convolutional operation corresponding to returning
only those output units which were the result of complete
overlap between each convolutional filter and the input fea-
ture maps.

The units in the final convolutional layer are flattened into
a single vector. This convolutional layer is followed by
a fully-connected layer, and then one more layer com-
puting the induced distance metric between each siamese
twin, which is given to a single sigmoidal output unit.
More precisely, the prediction vector is given as p =

σ(
∑

j αj |h(j)
1,L−1 − h

(j)
2,L−1|), where σ is the sigmoidal
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Figure 4. Best convolutional architecture selected for verification task. Siamese twin is not depicted, but joins immediately after the
4096 unit fully-connected layer where the L1 component-wise distance between vectors is computed.

activation function. This final layer induces a metric on
the learned feature space of the (L − 1)th hidden layer
and scores the similarity between the two feature vec-
tors. The αj are additional parameters that are learned
by the model during training, weighting the importance
of the component-wise distance. This defines a final Lth
fully-connected layer for the network which joins the two
siamese twins.

We depict one example above (Figure 4), which shows the
largest version of our model that we considered. This net-
work also gave the best result for any network on the veri-
fication task.

4.2. Learning

Loss function. Let M represent the minibatch size, where
i indexes the ith minibatch. Now let y(x

(i)
1 , x

(i)
2 ) be a

length-M vector which contains the labels for the mini-
batch, where we assume y(x

(i)
1 , x

(i)
2 ) = 1 whenever x1 and

x2 are from the same character class and y(x
(i)
1 , x

(i)
2 ) = 0

otherwise. We impose a regularized cross-entropy objec-
tive on our binary classifier of the following form:

L(x
(i)
1 , x

(i)
2 ) = y(x

(i)
1 , x

(i)
2 ) logp(x

(i)
1 , x

(i)
2 )+

(1− y(x
(i)
1 , x

(i)
2 )) log (1− p(x

(i)
1 , x

(i)
2 )) + λT |w|2

Optimization. This objective is combined with standard
backpropagation algorithm, where the gradient is additive
across the twin networks due to the tied weights. We fix
a minibatch size of 128 with learning rate ηj , momentum
µj , and L2 regularization weights λj defined layer-wise, so
that our update rule at epoch T is as follows:

w
(T )
kj (x

(i)
1 , x

(i)
2 ) = w

(T )
kj + ∆w

(T )
kj (x

(i)
1 , x

(i)
2 ) + 2λj |wkj |

∆w
(T )
kj (x

(i)
1 , x

(i)
2 ) = −ηj∇w(T )

kj + µj∆w
(T−1)
kj

where ∇wkj is the partial derivative with respect to the
weight between the jth neuron in some layer and the kth
neuron in the successive layer.

Weight initialization. We initialized all network weights
in the convolutional layers from a normal distribution with
zero-mean and a standard deviation of 10−2. Biases were
also initialized from a normal distribution, but with mean
0.5 and standard deviation 10−2. In the fully-connected
layers, the biases were initialized in the same way as the
convolutional layers, but the weights were drawn from a
much wider normal distribution with zero-mean and stan-
dard deviation 2× 10−1.

Learning schedule. Although we allowed for a different
learning rate for each layer, learning rates were decayed
uniformly across the network by 1 percent per epoch, so
that η(T )

j = 0.99η
(T−1)
j . We found that by annealing the

learning rate, the network was able to converge to local
minima more easily without getting stuck in the error sur-
face. We fixed momentum to start at 0.5 in every layer,
increasing linearly each epoch until reaching the value µj ,
the individual momentum term for the jth layer.

We trained each network for a maximum of 200 epochs, but
monitored one-shot validation error on a set of 320 one-
shot learning tasks generated randomly from the alphabets
and drawers in the validation set. When the validation error
did not decrease for 20 epochs, we stopped and used the
parameters of the model at the best epoch according to the
one-shot validation error. If the validation error continued
to decrease for the entire learning schedule, we saved the
final state of the model generated by this procedure.

Hyperparameter optimization. We used the beta ver-
sion of Whetlab, a Bayesian optimization framework, to
perform hyperparameter selection. For learning sched-
ule and regularization hyperparameters, we set the layer-
wise learning rate ηj ∈ [10−4, 10−1], layer-wise momen-
tum µj ∈ [0, 1], and layer-wise L2 regularization penalty
λj ∈ [0, 0.1]. For network hyperparameters, we let the size
of convolutional filters vary from 3x3 to 20x20, while the
number of convolutional filters in each layer varied from
16 to 256 using multiples of 16. Fully-connected layers
ranged from 128 to 4096 units, also in multiples of 16. We
set the optimizer to maximize one-shot validation set accu-
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Figure 5. A sample of random affine distortions generated for a
single character in the Omniglot data set.

racy. The score assigned to a single Whetlab iteration was
the highest value of this metric found during any epoch.

Affine distortions. In addition, we augmented the train-
ing set with small affine distortions (Figure 5). For each
image pair x1, x2, we generate a pair of affine transfor-
mations T1, T2 to yield x′1 = T1(x1), x′2 = T2(x2),
where T1, T2 are determined stochastically by a multi-
dimensional uniform distribution. So for an arbitrary trans-
form T , we have T = (θ, ρx, ρy, sx, sy, tx, tx), with θ ∈
[−10.0, 10.0], ρx, ρy ∈ [−0.3, 0.3], sx, sy ∈ [0.8, 1.2], and
tx, ty ∈ [−2, 2]. Each of these components of the transfor-
mation is included with probability 0.5.

5. Experiments
We trained our model on a subset of the Omniglot data set,
which we first describe. We then provide details with re-
spect to verification and one-shot performance.

5.1. The Omniglot Dataset

The Omniglot data set was collected by Brenden Lake and
his collaborators at MIT via Amazon’s Mechanical Turk to
produce a standard benchmark for learning from few exam-
ples in the handwritten character recognition domain (Lake
et al., 2011).1 Omniglot contains examples from 50 alpha-
bets ranging from well-established international languages
like Latin and Korean to lesser known local dialects. It also
includes some fictitious character sets such as Aurek-Besh
and Klingon (Figure 6).

The number of letters in each alphabet varies considerably
from about 15 to upwards of 40 characters. All charac-
ters across these alphabets are produced a single time by
each of 20 drawers Lake split the data into a 40 alpha-
bet background set and a 10 alphabet evaluation set. We
preserve these two terms in order to distinguish from the
normal training, validation, and test sets that can be gener-

1The complete data set can be obtained from Brenden Lake by
request (brenden@cs.nyu.edu). Each character in Omniglot
is a 105x105 binary-valued image which was drawn by hand on
an online canvas. The stroke trajectories were collected alongside
the composite images, so it is possible to incorporate temporal
and structural information into models trained on Omniglot.

Figure 6. The Omniglot dataset contains a variety of different im-
ages from alphabets across the world.

ated from the background set in order to tune models for
verification. The background set is used for developing a
model by learning hyperparameters and feature mappings.
Conversely, the evaluation set is used only to measure the
one-shot classification performance.

5.2. Verification

To train our verification network, we put together three dif-
ferent data set sizes with 30,000, 90,000, and 150,000 train-
ing examples by sampling random same and different pairs.
We set aside sixty percent of the total data for training: 30
alphabets out of 50 and 12 drawers out of 20.

We fixed a uniform number of training examples per alpha-
bet so that each alphabet receives equal representation dur-
ing optimization, although this is not guaranteed to the in-
dividual character classes within each alphabet. By adding
affine distortions, we also produced an additional copy of
the data set corresponding to the augmented version of each
of these sizes. We added eight transforms for each train-
ing example, so the corresponding data sets have 270,000,
810,000, and 1,350,000 effective examples.

To monitor performance during training, we used two
strategies. First, we created a validation set for verification
with 10,000 example pairs taken from 10 alphabets and 4
additional drawers. We reserved the last 10 alphabets and
4 drawers for testing, where we constrained these to be the

Table 1. Accuracy on Omniglot verification task (siamese convo-
lutional neural net)

Method Test

30k training
no distortions 90.61

affine distortions x8 91.90
90k training

no distortions 91.54
affine distortions x8 93.15

150k training
no distortions 91.63

affine distortions x8 93.42
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Figure 7. Examples of first-layer convolutional filters learned by
the siamese network. Notice filters adapt different roles: some
look for very small point-wise features whereas others function
like larger-scale edge detectors.

same ones used in Lake et al. (Lake et al., 2013). Our
other strategy leveraged the same alphabets and drawers
to generate a set of 320 one-shot recognition trials for the
validation set which mimic the target task on the evaluation
set. In practice, this second method of determining when to
stop was at least as effective as the validation error for the
verification task so we used it as our termination criterion.

In the table below (Table 1), we list the final verification
results for each of the six possible training sets, where the
listed test accuracy is reported at the best validation check-
point and threshold. We report results across six different
training runs, varying the training set size and toggling dis-
tortions.

In Figure 7, we have extracted the first 32 filters from both
of our top two performing networks on the verification task,
which were trained on the 90k and 150k data sets with
affine distortions and the architecture shown in Figure 3.
While there is some co-adaptation between filters, it is easy
to see that some of the filters have assumed different roles
with respect to the original input space.

5.3. One-shot Learning

Once we have optimized a siamese network to master the
verification task, we are ready to demonstrate the discrimi-
native potential of our learned features at one-shot learning.
Suppose we are given a test image x, some column vector
which we wish to classify into one of C categories. We
are also given some other images {xc}Cc=1, a set of col-
umn vectors representing examples of each of those C cat-
egories. We can now query the network using x,xc as our
input for a range of c = 1, . . . , C.2 Then predict the class
corresponding to the maximum similarity.

C∗ = argmaxcp(c)

2This can be processed efficiently by appending C copies of
x into a single matrix X and stacking xT

c in rows to form another
matrix XC so that we can perform just one feedforward pass with
minibatch size C using input X,XC .

Table 2. Comparing best one-shot accuracy from each type of
network against baselines.

Method Test

Humans 95.5
Hierarchical Bayesian Program Learning 95.2

Affine model 81.8
Hierarchical Deep 65.2

Deep Boltzmann Machine 62.0
Simple Stroke 35.2

1-Nearest Neighbor 21.7
Siamese Neural Net 58.3

Convolutional Siamese Net 92.0

To empirically evaluate one-shot learning performance,
Lake developed a 20-way within-alphabet classification
task in which an alphabet is first chosen from among those
reserved for the evaluation set, along with twenty charac-
ters taken uniformly at random. Two of the twenty drawers
are also selected from among the pool of evaluation draw-
ers. These two drawers then produce a sample of the twenty
characters. Each one of the characters produced by the first
drawer are denoted as test images and individually com-
pared against all twenty characters from the second drawer,
with the goal of predicting the class corresponding to the
test image from among all of the second drawer’s charac-
ters. An individual example of a one-shot learning trial is
depicted in Figure 7. This process is repeated twice for
all alphabets, so that there are 40 one-shot learning trials
for each of the ten evaluation alphabets. This constitutes a
total of 400 one-shot learning trials, from which the classi-
fication accuracy is calculated.

The one-shot results are given in Table 2. We borrow
the baseline results from (Lake et al., 2013) for compari-
son to our method. We also include results from a non-
convolutional siamese network with two fully-connected
layers.

At 92 percent our convolutional method is stronger than
any model except HBPL itself. which is only slightly be-
hind human error rates. While HBPL exhibits stronger re-
sults overall, our top-performing convolutional network did
not include any extra prior knowledge about characters or
strokes such as generative information about the drawing
process. This is the primary advantage of our model.

5.4. MNIST One-shot Trial

The Omniglot data set contains a small handful of samples
for every possible class of letter; for this reason, the original
authors refer to it as a sort of “MNIST transpose”, where
the number of classes far exceeds the number of training
instances (Lake et al., 2013). We thought it would be in-
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Table 3. Results from MNIST 10-versus-1 one-shot classification
task.

Method Test

1-Nearest Neighbor 26.5
Convolutional Siamese Net 70.3

teresting to monitor how well a model trained on Omniglot
can generalize to MNIST, where we treat the 10 digits in
MNIST as an alphabet and then evaluate a 10-way one-
shot classification task. We followed a similar procedure
to Omniglot, generating 400 one-shot trials on the MNIST
test set, but excluding any fine tuning on the training set.
All 28x28 images were upsampled to 35x35, then given to
a reduced version of our model trained on 35x35 images
from Omniglot which were downsampled by a factor of
3. We also evaluated the nearest-neighbor baseline on this
task.

Table 3 shows the results from this experiment. The near-
est neighbor baseline provides similar performance to Om-
niglot, while the performance of the convolutional network
drops by a more significant amount. However, we are still
able to achieve reasonable generalization from the features
learned on Ominglot without training at all on MNIST.

6. Conclusions
We have presented a strategy for performing one-shot clas-
sification by first learning deep convolutional siamese neu-
ral networks for verification. We outlined new results
comparing the performance of our networks to an exist-
ing state-of-the-art classifier developed for the Omniglot
data set. Our networks outperform all available baselines
by a significant margin and come close to the best num-
bers achieved by the previous authors. We have argued that
the strong performance of these networks on this task indi-
cate not only that human-level accuracy is possible with our
metric learning approach, but that this approach should ex-
tend to one-shot learning tasks in other domains, especially
for image classification.

In this paper, we only considered training for the verifica-
tion task by processing image pairs and their distortions
using a global affine transform. We have been experi-
menting with an extended algorithm that exploits the data
about the individual stroke trajectories to produce final
computed distortions (Figure 8). By imposing local affine
transformations on the strokes and overlaying them into
a composite image, we are hopeful that we can learn
features which are better adapted to the variations that are
commonly seen in new examples.

Figure 8. Two sets of stroke distortions for different characters
from Omniglot. Columns depict characters sampled from differ-
ent drawers. Row 1: original images. Row 2: global affine trans-
forms. Row 3: affine transforms on strokes. Row 4: global affine
transforms layered on top of stroke transforms. Notice how stroke
distortions can add noise and affect the spatial relations between
individual strokes.

References
Bengio, Yoshua. Learning deep architectures for ai. Foun-

dations and Trends in Machine Learning, 2(1):1–127,
2009.

Bromley, Jane, Bentz, James W, Bottou, Léon, Guyon,
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