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Abstract

Point processes are popular models of neural spiking behavior as they provide a
statistical distribution over temporal sequences of spikes and help to reveal the
complexities underlying a series of recorded action potentials. However, the most
common neural point process models, the Poisson process and the gamma renewal
process, do not capture interactions and correlations that are critical to modeling
populations of neurons. We develop a novel model based on a determinantal point
process over latent embeddings of neurons that effectively captures and helps vi-
sualize complex inhibitory and competitive interaction. We show that this model
is a natural extension of the popular generalized linear model to sets of interacting
neurons. The model is extended to incorporate gain control or divisive normaliza-
tion, and the modulation of neural spiking based on periodic phenomena. Applied
to neural spike recordings from the rat hippocampus, we see that the model cap-
tures inhibitory relationships, a dichotomy of classes of neurons, and a periodic
modulation by the theta rhythm known to be present in the data.

1 Introduction
Statistical models of neural spike recordings have greatly facilitated the study of both intra-neuron
spiking behavior and the interaction between populations of neurons. Although these models are
often not mechanistic by design, the analysis of their parameters fit to physiological data can help
elucidate the underlying biological structure and causes behind neural activity. Point processes in
particular are popular for modeling neural spiking behavior as they provide statistical distributions
over temporal sequences of spikes and help to reveal the complexities underlying a series of noisy
measured action potentials (see, e.g., Brown (2005)). Significant effort has been focused on address-
ing the inadequacies of the standard homogenous Poisson process to model the highly non-stationary
stimulus-dependent spiking behavior of neurons. The generalized linear model (GLM) is a widely
accepted extension for which the instantaneous spiking probability can be conditioned on spiking
history or some external covariate. These models in general, however, do not incorporate the known
complex instantaneous interactions between pairs or sets of neurons. Pillow et al. (2008) demon-
strated how the incorporation of simple pairwise connections into the GLM can capture correlated
spiking activity and result in a superior model of physiological data. Indeed, Schneidman et al.
(2006) observe that even weak pairwise correlations are sufficient to explain much of the collective
behavior of neural populations. In this paper, we develop a point process over spikes from col-
lections of neurons that explicitly models anti-correlation to capture the inhibitive and competitive
relationships known to exist between neurons throughout the brain.
∗Research was performed while at the University of Toronto.
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Although the incorporation of pairwise inhibition in statistical models is challenging, we demon-
strate how complex nonlinear pairwise inhibition between neurons can be modeled explicitly and
tractably using a determinantal point process (DPP). As a starting point, we show how a collection
of independent Poisson processes, which is easily extended to a collection of GLMs, can be jointly
modeled in the context of a DPP. This is naturally extended to include dependencies between the in-
dividual processes and the resulting model is particularly well suited to capturing anti-correlation or
inhibition. The Poisson spike rate of each neuron is used to model individual spiking behavior, while
pairwise inhibition is introduced to model competition between neurons. The reader familiar with
Markov random fields can consider the output of each generalized linear model in our approach to
be analogous to a unary potential while the DPP captures pairwise interaction. Although inhibitory,
negative pairwise potentials render the use of Markov random fields intractable in general; in con-
trast, the DPP provides a more tractable and elegant model of pairwise inhibition. Given neural
spiking data from a collection of neurons and corresponding stimuli, we learn a latent embedding
of neurons such that nearby neurons in the latent space inhibit one another as enforced by a DPP
over the kernel between latent embeddings. Not only does this overcome a modeling shortcoming of
standard point processes applied to spiking data but it provides an interpretable model for studying
the inhibitive and competitive properties of sets of neurons. We demonstrate how divisive normal-
ization is easily incorporated into our model and a learned periodic modulation of individual neuron
spiking is added to model the influence on individual neurons of periodic phenomena such as theta
or gamma rhythms.

The model is empirically validated in Section 4, first on three simulated examples to show the in-
fluence of its various components and then using spike recordings from a collection of neurons in
the hippocampus of an awake behaving rat. We show that the model learns a latent embedding of
neurons that is consistent with the previously observed inhibitory relationship between interneurons
and pyramidal cells. The inferred periodic component of approximately 4 Hz is precisely the fre-
quency of the theta rhythm observed in these data and its learned influence on individual neurons is
again consistent with the dichotomy of neurons.

2 Background
2.1 Generalized Linear Models for Neuron Spiking

A standard starting point for modeling single neuron spiking data is the homogenous Poisson pro-
cess, for which the instantaneous probability of spiking is determined by a scalar rate or intensity
parameter. The generalized linear model (Brillinger, 1988; Chornoboy et al., 1988; Paninski, 2004;
Truccolo et al., 2005) is a framework that extends this to allow inhomogeneity by conditioning the
spike rate on a time varying external input or stimulus. Specifically, in the GLM the rate parameter
results from applying a nonlinear warping (such as the exponential function) to a linear weighting
of the inputs. Paninski (2004) showed that one can analyze recorded spike data by finding the max-
imum likelihood estimate of the parameters of the GLM, and thereby study the dependence of the
spiking on external input. Truccolo et al. (2005) extended this to analyze the dependence of a neu-
ron’s spiking behavior on its past spiking history, ensemble activity and stimuli. Pillow et al. (2008)
demonstrated that the model of individual neuron spiking activity was significantly improved by
including coupling filters from other neurons with correlated spiking activity in the GLM. Although
it is prevalent in the literature, there are fundamental limitations to the GLM’s ability to model real
neural spiking patterns. The GLM can not model the joint probability of multiple neurons spiking
simultaneously and thus lacks a direct dependence between the spiking of multiple neurons. Instead,
the coupled GLM relies on an assumption that pairs of neurons are conditionally independent given
the previous time step. However, empirical evidence, from for example neural recordings from the
rat hippocampus (Harris et al., 2003), suggests that one can better predict the spiking of an individ-
ual neuron by taking into account the simultaneous spiking of other neurons. In the following, we
show how to express multiple GLMs as a determinantal point process, enabling complex inhibitory
interactions between neurons. This new model enables a rich set of interactions between neurons
and enables them to be embedded in an easily-visualized latent space.

2.2 Determinantal Point Processes

The determinantal point process is an elegant distribution over configurations of points in space that
tractably models repulsive interactions. Many natural phenomena are DPP distributed including
fermions in quantum mechanics and the eigenvalues of random matrices. For an in-depth survey,
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see Hough et al. (2006); see Kulesza and Taskar (2012) for an overview of their development within
machine learning. A point process provides a distribution over subsets of a space S. A determi-
nantal point process models the probability density (or mass function, as appropriate) for a subset
of points, S ⊆ S as being proportional to the determinant of a corresponding positive semi-definite
gram matrix KS , i.e., p(S) ∝ |KS |. In the L-ensemble construction that we limit ourselves to here,
this gram matrix arises from the application of a positive semi-definite kernel function to the set S.
Kernel functions typically capture a notion of similarity and so the determinant is maximized when
the similarity between points, represented as the entries in KS is minimized. As the joint probability
is higher when the points in S are distant from one another, this encourages repulsion or inhibition
between points. Intuitively, if one point i is observed, then another point j with high similarity, as
captured by a large entry [KS ]ij of KS , will become less likely to be observed under the model. It
is important to clarify here that KS can be any positive semi-definite matrix over some set of in-
puts corresponding to the points in the set, but it is not the empirical covariance between the points
themselves. Conversely, KS encodes a measure of anti-correlation between points in the process.
Therefore, we refer hereafter to KS as the kernel or gram matrix.

3 Methods
3.1 Modeling inter-Neuron Inhibition with Determinantal Point Processes

We are interested in modelling the spikes on N neurons during an interval of time T . We will
assume that time has been discretized into T bins of duration δ. In our formulation here, we assume
that all interaction across time occurs due to the GLM and that the determinantal point process
only modulates the inter-neuron inhibition within a single time slice. This corresponds to a Poisson
assumption for the marginal of each neuron taken by itself.

In our formulation, we associate each neuron, n, with a D-dimensional latent vector yn ∈ RD and
take our space to be the set of these vectors, i.e., S = {y1,y2, · · · ,yN}. At a high level, we use an
L-ensemble determinantal point process to model which neurons spike in time t via a subset St ⊂ S:

Pr(St | {yn}Nn=1) =
|KSt

|
|KS + IN |

. (1)

Here the entries of the matrix KS arise from a kernel function kθ(·, ·) applied to the values {yn}Nn=1
so that [KS ]n,n′ = kθ(yn,yn′). The kernel function, governed by hyperparameters θ, measures the
degree of dependence between two neurons as a function of their latent vectors. In our empirical
analysis we choose a kernel function that measures this dependence based on the Euclidean distance
between latent vectors such that neurons that are closer in the latent space will inhibit each other
more. In the remainder of this section, we will expand this to add stimulus dependence.

As the determinant of a diagonal matrix is simply the product of the diagonal entries, when KS

is diagonal the DPP has the property that it is simply the joint probability of N independent (dis-
cretized) Poisson processes. Thus in the case of independent neurons with Poisson spiking we can
write KS as a diagonal matrix where the diagonal entries are the individual Poisson intensity param-
eters, KS = diag(λ1, λ2, · · · , λN ). Through conditioning the diagonal elements on some external
input, this elegant property allows us to express the joint probability of N independent GLMs in
the context of the DPP. This is the starting point of our model, which we will combine with a full
covariance matrix over the latent variables to include interaction between neurons.

Following Zou and Adams (2012), we express the marginal preference for a neuron firing over
others, thus including the neuron in the subset S, with a “prior kernel” that modulates the covariance.
Assuming that kθ(y,y) = 1, this kernel has the form

[KS ]n,n′ = kθ(yn,yn′)δ
√
λn
√
λn′ , (2)

where n, n′ ∈ S and λn is the intensity measure of the Poisson process for the individual spiking
behavior of neuron n. We can use these intensities to modulate the DPP with a GLM by allowing
the λn to depend on a weighted time-varying stimulus. We denote the stimulus at time t by a
vector xt ∈ RK and neuron-specific weights as wn ∈ RK , leading to instantaneous rates:

λ(t)n = exp{xT
t wn}. (3)

This leads to a stimulus dependent kernel for the DPP L-ensemble:

[K
(t)
S ]n,n′ = kθ(yn,yn′) δ exp

{
1

2
xT
t (wn + wn′)

}
. (4)
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It is convenient to denote the diagonal matrix Π(t) = diag(

√
λ
(t)
1 ,

√
λ
(t)
2 , · · · ,

√
λ
(t)
N ), as well as

the St-restricted submatrix Π
(t)
St

, where St indexes the rows of Π corresponding to the subset of
neurons that spiked at time t. We can now write the joint probability of the spike history as

Pr({St}Tt=1 | {wn,yn}Nn=1, {xt}Tt=1, θ) =

T∏
t=1

|δΠ(t)
St

KSt
Π

(t)
St
|

|δΠ(t)
S KSΠ

(t)
S + IN |

. (5)

The generalized linear model now modulates the marginal rates, while the determinantal point pro-
cess induces inhibition. This is similar to unary versus pairwise potentials in a Markov random field.
Note also that as the influence of the DPP goes to zero, KS tends toward the identity matrix and
the probability of neuron n firing becomes (for δ � 1) δλ(t)n , which recovers the basic GLM. The
latent embeddings yn and weights wn can now be learned so that the appropriate balance is found
between stimulus dependence and inhibition due to, e.g., overlapping receptive fields.

3.2 Learning

We learn the model parameters {wn,yn}Nn=1 from data by maximizing the likelihood in Equation 5.
This optimization is performed using stochastic gradient descent on mini-batches of time slices.
The computational complexity of learning the model is asymptotically dominated by the cost of
computing the determinants in the likelihood, which are O(N3) in this model. This was not a
limiting factor in this work, as we model a population of 31 neurons. Fitting this model for 31
neurons in Section 4.3 with approximately eighty thousand time bins requires approximately three
hours using a single core of a typical desktop computer. The cubic scaling of determinants in this
model will not be a realistic limiting factor until it is possible to simultaneously record from tens of
thousands of neurons simultaneously. Nevertheless, at these extremes there are promising methods
for scaling the DPP using low rank approximations of KS (Affandi et al., 2013) or expressing them
in the dual representation when using a linear covariance (Kulesza and Taskar, 2011).

3.3 Gain and Contrast Normalization

There is increasing evidence that neural responses are normalized or scaled by a common factor such
as the summed activations across a pool of neurons (Carandini and Heeger, 2012). Many compu-
tational models of neural activity include divisive normalization as an important component (Wain-
wright et al., 2002). Such normalization can be captured in our model through scaling the individual
neuron spiking rates by a stimulus-dependent multiplicative constant νt > 0:

Pr(St | {wn,yn}Nn=1,xt, θ, νt) =
|νtδΠ(t)

St
KSt

Π
(t)
St
|

|νtδΠ(t)
S KSΠ

(t)
S + IN |

, (6)

where νt = exp{xT
t wν}. We learn these parameters wν jointly with the other model parameters.

3.4 Modeling the Influence of Periodic Phenomena

Neuronal spiking is known to be heavily influenced by periodic phenomena. For example, in our
empirical analysis in Section 4.3 we apply the model to the spiking of neurons in the hippocampus
of behaving rats. Csicsvari et al. (1999) observe that the theta rhythm plays a significant role in
determining the spiking behavior of the neurons in these data, with neurons spiking in phase with
the 4 Hz periodic signal. Thus, the firing patterns of neurons that fire in phase can be expected to
be highly correlated while those which fire out of phase will be strongly anti-correlated. In order to
incorporate the dependence on a periodic signal into our model, we add to λ(t)n a periodic term that
modulates the individual neuron spiking rates with a frequency f , a phase ϕ, and a neuron-specific
amplitude or scaling factor ρn,

λ(t)n = exp
{
xT
t wn + ρn sin(f t+ ϕ)

}
(7)

where t is the time at which the spikes occurred. Note that if desired one can easily manipulate
Equation 7 to have each of the neurons modulated by an individual frequency, ai, and offset bi.
Alternatively, we can create a mixture of J periodic components, modeling for example the influence
of the theta and gamma rhythms, by adding a sum over components,

λ(t)n = exp

xT
t wn +

J∑
j=1

ρjn sin(fj t+ ϕj)

 (8)
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(a) Sliding Bar
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Figure 1: Results of the simulated moving bar experiment (1a) compared to independent spiking behavior (1b).
Note that in 1a the model puts neighboring neurons within the unit length scale while it puts others at least one
length scale apart. 1c demonstrates the weights, wν , of the gain component learned if up to 5x random gain is
added to the stimulus at retina locations 6-12.

4 Experiments
In this section we present an empirical analysis of the model developed in this paper. We first
evaluate the model on a set of simulated experiments to examine its ability to capture inhibition in
the latent variables while learning the stimulus weights and gain normalization. We then train the
model on recorded rat hippocampal data and evaluate its ability to capture the properties of groups of
interacting neurons. In all experiments we compute KS with the Matérn 5/2 kernel (see Rasmussen
and Williams (2006) for an overview) with a fixed unit length scale (which determines the overall
scaling of the latent space).

4.1 Simulated Moving Bar

We first consider an example simulated problem where twelve neurons are configured in order along
a one dimensional retinotopic map and evaluate the ability of the DPP to learn latent representations
that reflect their inhibitive properties. Each neuron has a receptive field of a single pixel and the
neurons are stimulated by a three pixel wide moving bar. The bar is slid one pixel at each time step
from the first to last neuron, and this is repeated twenty times. Of the three neighboring neurons
exposed to the bar, all receive high spike intensity but due to neural inhibition, only the middle one
spikes. A small amount of random background stimulus is added as well, causing some neurons to
spike without being stimulated by the moving bar. We train the DPP specified above on the resulting
spike trains, using the stimulus of each neuron as the Poisson intensity measure and visualize the
one-dimensional latent representation, y, for each neuron. This is compared to the case where all
neurons receive random stimulus and spike randomly and independently when the stimulus is above
a threshold. The resulting learned latent values for the neurons are displayed in Figure 1. We see
in Figure 1a that the DPP prefers neighboring neurons to be close in the latent space, because they
compete when the moving bar stimulates them. To demonstrate the effect of the gain and contrast
normalization we now add random gain of up to 5x to the stimulus only at retina locations 6-12 and
retrain the model while learning the gain component. In Figure 1c we see that the model learns to
use the gain component to normalize these inputs.

4.2 Digits Data

Now we use a second simulated experiment to examine the ability of the model to capture structure
encoding inhibitory interactions in the latent representation while learning the stimulus dependent
probability of spiking from data. This experiment includes thirty simulated neurons, each with a
two dimensional latent representation, i.e., N = 30, yn ∈ R2. The stimuli are 16×16 images of
handwritten digits from the MNIST data set, presented sequentially, one per “time slice”. In the
data, each of the thirty neurons is specialized to one digit class, with three neurons per digit. When
a digit is presented, two neurons fire among the three: one that fires with probability one, and one
of the remaining two fires with uniform probability. Thus, we expect three neurons to have strong
probability of firing when the stimulus contains their preferred digit; however, one of the neurons
does not spike due to competition with another neuron. We expect the model to learn this inhibition
by moving the neurons close together in the latent space. Examining the learned stimulus weights
and latent embeddings, shown in Figures 2a and 2b respectively, we see that this is indeed the
case. This scenario highlights a major shortcoming of the coupled GLM. For each of the inhibitory
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(a) Stimulus Weights (b) 2D Latent Embedding

Figure 2: Results of the digits experiment. A visualization of the neuron specific weights wn (2a) and latent
embedding (2b) learned by the DPP. In (2b) each blue number indicates the position of the neuron that always
fires for that specific digit, and the red and green numbers indicate the neurons that respond to that digit but
inhibit each other. We observe in (2b) that inhibitory pairs of neurons, the red and green pairs, are placed
extremely close to each other in the DPP’s learned latent space while neurons that spike simultaneously (the blue
and either red or green) are distant. This scenario emphasizes the benefit of having an inhibitory dependence
between neurons. The coupled GLM can not model this scenario well because both neurons of the inhibitory
pair receive strong stimulus but there is no indication from past spiking behavior which neuron will spike.

0 5 10 15 20 25 30
Neuron Index

0

5

10

15

20

25

30 0.0

0.5

1.0

(a) Kernel Matrix, KS

0 5 10 15 20 25 30
Neuron Index

0

5

10

15

20

S
tim

ul
us

 In
de

x

(b) Stimulus Weights, wn

0

5

10

15

20

S
tim

ul
us

 In
de

x

(c) wν

0 1 2 3 4

0

1

2

3

4Lo
ca

tio
n 

G
rid

O
rie

nt
at

io
ns

(d) wn=3

Figure 3: Visualizations of the parameters learned by the DPP on the Hippocampal data. Figure 3a shows a
visualization of the kernel matrix KS . Dark colored entries of KS indicate a strong pairwise inhibition while
lighter ones indicate no inhibition. The low frequency neurons, pyramidal cells, are strongly anti-correlated
which is consistent with the notion that they are inhibited by a common source such as an interneuron. Figure 3b
shows the (normalized) weights, wn learned from the stimulus feature vectors, which consist of concatenated
location and orientation bins, to each neuron’s Poisson spike rate λ(t)

n . An interesting observation is that the
two highest frequency neurons, interneurons, have little dependence on any particular stimulus and are strongly
anti-correlated with a large group of low frequency pyramidal cells. 3c shows the weights, wν to the gain
control, ν, and 3d shows a visualization of the stimulus weights for a single neuron n = 3 organized by
location and orientation bins. In 3a and 3b the neurons are ordered by their firing rates. In 3d we see that the
neuron is stimulated heavily by a specific location and orientation.

pairs of neurons, both will simultaneously receive strong stimulus but the conditional independence
assumption will not hold; past spiking behavior can not indicate that only one can spike.

4.3 Hippocampus Data

As a final experiment, we empirically evaluate the proposed model on multichannel recordings from
layer CA1 of the right dorsal hippocampus of awake behaving rats (Mizuseki et al., 2009; Csicsvari
et al., 1999). The data consist of spikes recorded from 31 neurons across four shanks during open
field tasks as well as the syncronized positions of two LEDs on the rat’s head. The extracted positions
and orientations of the rat’s head are binned into twenty-five discrete location and twelve orientation
bins which are input to the model as the stimuli. Approximately twenty seven minutes of spike
recording data was divided into time slices of 20ms. The data are hypothesized to consist of spiking
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(a) Latent embedding of neurons
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(b) Latent embedding of neurons (zoomed)

Figure 4: A visualization of the two dimensional latent embeddings, yn, learned for each neuron. Figure 4b
shows 4a zoomed in on the middle of the figure. Each dot indicates the latent value of a neuron. The color
of the dots represents the empirical spiking rate of the neuron, the number indicates the depth of the neuron
according to its position along the shank - from 0 (shallow) to 7 (deep) - and the letter denotes which of four
distinct shanks the neurons spiking was read from. We observe that the higher frequency interneurons are
placed distant from each other but in a configuration such that they inhibit the low frequency pyramidal cells.
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(b) Two component mixture (c) (Csicsvari et al., 1999)
Figure 5: A visualization of the periodic component learned by our model. In 5a, the neurons share a single
learned periodic frequency and offset but each learn an individual scaling factor ρn and 5b shows the average
influence of the two component mixture on the high and low spike rate neurons. In 5c we provide a reproduction
from (Csicsvari et al., 1999) for comparison. In 5a the neurons are colored by firing rate from light (high) to
dark (low). Note that the model learns a frequency that is consistent with the approximately 4 Hz theta rhythm
and there is a dichotomy in the learned amplitudes, ρ, that is consistent with the influence of the theta rhythm
on pyramidal cells and interneurons.

originating from two classes of neurons, pyramidal cells and interneurons (Csicsvari et al., 1999),
which are largely separable by their firing rates. Csicsvari et al. (1999) found that interneurons fire
at a rate of 14 ± 1.43 Hz and pyramidal cells at 1.4 ± 0.01 Hz. Interneurons are known to inhibit
pyramidal cells, so we expect interesting inhibitory interactions and anti-correlated spiking between
the pyramidal cells. In our qualitative analysis we visualize the the data by the firing rates of the
neurons to see if the model learns this dichotomy.

Figures 3, 4 and 5a show visualizations of the parameters learned by the model with a single periodic
component according to Equation 7. Figure 3 shows the kernel matrix KS corresponding to the
latent embeddings in Figure 4 and the stimulus and gain control weights learned by the model. In
Figure 4 we see the two dimensional embeddings, yn, learned for each neuron by the same model.
In Figure 5 we see the periodic components learned for individual neurons on the hippocampal
data according to Equation 7 when the frequency term f and offset ϕ are shared across neurons.
However, the scaling terms ρn are learned for each neuron, so the neurons can each determine the
influence of the periodic component on their spiking behavior. Although the parameters are all
randomly initialized at the start of learning, the single frequency signal learned is of approximately
4 Hz which is consistent with the theta rhyhtm that Mizuseki et al. (2009) empirically observed in
these data. In Figures 5a and 5b we see that each neuron’s amplitude component depends strongly

7



Model Valid Log Likelihood Train Log Likelihood

Only Latent −3.79 −3.68
Only Stimulus −3.17 −3.29
Stimulus + Periodic + Latent −3.07 −2.91
Stimulus + Gain + Periodic −3.04 −2.92
Stimulus + Gain −2.95 −2.84
Stimulus + Periodic + Gain + Latent −2.74 −2.63
Stimulus + 2×Periodic + Gain + Latent −2.07 −1.96

Table 1: Model log likelihood on the held out validation set and training set for various combinations of
components. We found the algorithm to be extremely stable. Each model configuration was run 5 times with
different random initializations and the variance of the results was within 10−8.

on the neuron’s firing rate. This is also consistent with the observations of Csicsvari et al. (1999)
that interneurons and pyramidal cells are modulated by the theta rhythm at different amplitudes. We
find a strong similarity between the periodic influence learned by our two component model (5b) to
that in the reproduced figure (5c) from Csicsvari et al. (1999).

In Table 1 we present the log likelihood of the training data and withheld validation data under
variants of our model after learning the model parameters. The validation data consists of the last
full minute of recording which is 3,000 consecutive 20ms time slices. We see that the likelihood of
the validation data under our model increases as each additional component is added. Interestingly,
adding a second component to the periodic mixture greatly increases the model log likelihood.

Finally, we conduct a leave-one-neuron out prediction experiment on the validation data to compare
the proposed model to the coupled GLM. A spike is predicted if it increases the likelihood under
the model and the accuracy is averaged over all neurons and time slices in the validation set. We
compare GLMs with the periodic component, gain, stimulus and coupling filters to our DPP with the
latent component. The models did not differ significantly in the correct prediction of when neurons
would not spike - i.e. both were 99% correct. However, the DPP predicted 21% of spikes correctly
while the GLM predicted only 5.5% correctly. This may be counterintuitive, as one may not expect a
model for inhibitory interactions to improve prediction of when spikes do occur. However, the GLM
predicts almost no spikes (483 spikes of a possible 92,969), possibly due to its inability to capture
higher order inhibitory structure. As an example scenario, in a one-of-N neuron firing case the GLM
may prefer to predict that nothing fires (rather than incorrectly predict multiple spikes) whereas the
DPP can actually condition on the behavior of the other neurons to determine which neuron fired.

5 Conclusion
In this paper we presented a novel model for neural spiking data from populations of neurons that is
designed to capture the inhibitory interactions between neurons. The model is empirically validated
on simulated experiments and rat hippocampal neural spike recordings. In analysis of the model
parameters fit to the hippocampus data, we see that it indeed learns known structure and interac-
tions between neurons. The model is able to accurately capture the known interaction between a
dichotomy of neurons and the learned frequency component reflects the true modulation of these
neurons by the theta rhythm.

There are numerous possible extensions that would be interesting to explore. A defining feature of
the DPP is an ability to model inhibitory relationships in a neural population; excitatory connections
between neurons are modeled as through the lack of inhibition. Excitatory relationships could be
modeled by incorporating an additional process, such as a Gaussian process, but integrating the
two processes would require some care. Also, a limitation of the current approach is that time
slices are modeled independently. Thus, neurons are not influenced by their own or others’ spiking
history. The DPP could be extended to include not only spikes from the current time slice but also
neighboring time slices. This will present computational challenges, however, as the DPP scales with
respect to the number of spikes. Finally, we see from Table 1 that the gain modulation and periodic
component are essential to model the hippocampal data. An interesting alternative to the periodic
modulation of individual neuron spiking probabilities would be to have the latent representation
of neurons itself be modulated by a periodic component. This would thus change the inhibitory
relationships to be a function of the theta rhythm, for example, rather than static in time.
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