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Abstract
Semi-supervised learning, which uses unlabeled
data to help learn a discriminative model, is espe-
cially important for structured output problems,
as considerably more effort is needed to label its
multi-dimensional outputs versus standard single
output problems. We propose a new max-margin
framework for semi-supervised structured output
learning, that allows the use of powerful discrete
optimization algorithms and high order regular-
izers defined directly on model predictions for
the unlabeled examples. We show that our frame-
work is closely related to Posterior Regulariza-
tion, and the two frameworks optimize special
cases of the same objective. The new framework
is instantiated on two image segmentation tasks,
using both a graph regularizer and a cardinality
regularizer. Experiments also demonstrate that
this framework can utilize unlabeled data from a
different source than the labeled data to signifi-
cantly improve performance while saving label-
ing effort.

1. Introduction
Structured prediction is the problem of predicting a multi-
dimensional output from input, where the structure of the
output has to be considered when making predictions. Typ-
ical examples of structured prediction include sequence la-
beling problems in NLP, where the output is a 1-D chain
of labels, and semantic image segmentation from computer
vision, where the output is a (grid) graph of pixel labels.
Due to the complexity of the outputs, obtaining labels for
structured prediction problems requires considerably more
effort than for standard classification or regression tasks.
As a result, while large classification datasets, such as Im-
ageNet, contain millions of labeled examples, the largest
publicly available image segmentation datasets, e.g., PAS-
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CAL VOC, have only a few thousand examples with com-
plete labels. At the same time, large amounts of unlabeled
data are typically very easy to obtain.

This combination of difficulty to obtain labeled examples
for structured prediction problems, with abundant unla-
beled data makes semi-supervised learning (SSL) espe-
cially worth exploring. However, SSL is challenging for
structured prediction because the complex high dimen-
sional output space makes a lot of operations intractable.
A dominant approach to SSL is to use unlabeled data
to regularize the model by ensuring that its predictions
on unlabeled data are consistent with some prior beliefs.
For example, entropy regularization (Lee et al., 2006) and
low density separation (Zien et al., 2007) regularize the
model so that it makes confident predictions on unlabeled
data. Graph-based methods (Altun et al., 2006; Subra-
manya et al., 2010), on the other hand, regularize the model
to make smooth predictions for unlabeled data on a graph.

Recently, posterior regularization (PR) (Ganchev et al.,
2010) has been introduced as a general framework to in-
corporate prior constraints about predictions into structured
prediction models. A version of it has also been applied to
graph-based SSL for sequence labeling (He et al., 2013).
In PR, constraints are specified as regularizers on poste-
rior distributions, and a decomposition technique is used to
make the optimization tractable for structured outputs.

In this paper, we propose a new max-margin framework
for semi-supervised structured output learning, that allows
regularizers to be defined directly on the predictions of the
model for unlabeled data, instead of using the posterior dis-
tribution as a proxy. This makes it possible to specify a
range of regularizers that are not easy to define on distri-
butions, including those involving loss functions and cardi-
nality of outputs. One advantage of a max-margin frame-
work is that at test time we typically only want to pro-
duce the most likely output, which is generally easier than
marginal inference in probabilistic frameworks. For exam-
ple, in image segmentation, MAP inference can be done
efficiently on graphs with submodular pairwise potentials
using powerful discrete optimization techniques like graph
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cuts, which is key to the success of many segmentation
methods. However, marginal inference is intractable due to
the extremely loopy structure of the graph. Therefore while
most of the previous work on SSL studied sequences, our
new framework is especially suitable for structured outputs
beyond 1-D sequences.

In this paper we also explore the relationship between our
method and PR. We show that the two approaches are actu-
ally very closely related: our framework and PR optimize
two special cases of the same objective function for some
general settings. This connection opens a range of new pos-
sibilities of designing and analyzing frameworks for incor-
porating prior constraints into the model.

We then demonstrate the new framework with an applica-
tion to graph-based SSL for image segmentation. In graph-
based SSL, an important issue is to choose a proper similar-
ity metric in the output space. We utilize the loss function,
which offers a natural similarity metric in the output space,
as the metric in our formulation.

The rest of the paper is organized as follows. Section 2
briefly discusses related work. Section 3 describes the pro-
posed framework in detail. Section 4 shows the connection
between our framework and PR. Section 5 presents our ex-
periment results on two foreground-background segmenta-
tion tasks. Section 6 concludes the paper.

2. Related Work
The earliest work on SSL dates back to the study of the
wrapper method known as self-training, in the 1960s, e.g.,
(Scudder III, 1965). Self-training iteratively uses the pre-
dictions of the model on unlabeled data as true labels to re-
train the model. Because of its heuristic nature, this method
is hard to analyze and its performance gains from the unla-
beled data are typically not significant.

A wide range of SSL methods have been developed
for classification problems to date (Nigam et al., 1998;
Joachims, 1999; Grandvalet & Bengio, 2005; Zhu et al.,
2003; Zhou et al., 2004; Belkin et al., 2006; Blum &
Mitchell, 1998); see (Zhu, 2005) and (Chapelle et al., 2006)
for excellent surveys and additional references.

Some researchers have adapted these methods to structured
output problems. These methods generally fall into one of
the following categories:

(a). Co-training, which iteratively uses the predictions
made by models trained on different views of the same data
to label the unlabeled set and update the model using the
predicted labels (Brefeld & Scheffer, 2006). The applica-
bility of this method is limited due to the requirement of
multi-view data.

(b). Generative models, which use unlabeled data to help
learning a model of the joint input-output distribution
p(x,y). While having some early success for classifi-
cation problems (Nigam et al., 1998), generative models

make strong assumptions about the data and have to date
achieved limited success on structured output problems.

(c). Low density separation based methods, which encour-
age confident predictions on unlabeled data. This trans-
lates to low entropy of the output posterior distribution in
a probabilistic modeling framework (Lee et al., 2006), and
large margin for methods in a max-margin framework (Zien
et al., 2007). A combined objective is optimized to mini-
mize the sum of the task loss on the labeled data and a
separation regularizer on the unlabeled data.

(d). Graph based methods, which construct a graph that
connects examples that are nearby in the input space, and
then encourage the predictions by the model for pairs of
connected examples to be close as well. Most of the work
in this category deals with sequence labeling problems. Al-
tun et al. (2006) uses a graph on parts of y to derive a
graph regularized kernel which is used in a max-margin
framework. Unlike our framework described below, this
approach is not able to incorporate other high order regular-
izers. Subramanya et al. (2010) proposes a semi-supervised
Conditional Random Field (CRF) that infers labels for un-
labeled data by propagation on a graph of parts, and then
retrains the model using the inferred labels. Finally, Vezhn-
evets et al. (2011) proposes a graph-based method for semi-
supervised image segmentation, which utilizes unlabeled
examples in learning by inferring labels for them based on
a graph defined on image superpixels.

Recently, other general frameworks for SSL in structured
output problems have been defined that can be viewed as
graph-based. Posterior regularization (PR) (Ganchev et al.,
2010) is a framework to incorporate constraints on struc-
tured probabilistic models through regularizers defined on
posterior distributions. He et al. (2013) applies this gen-
eral PR framework to graph-based SSL also using a CRF
model. PR is closely related to our framework: we show in
Section 4 that the two frameworks are optimizing special
cases of the same objective. Constraint Driven Learning
(CODL) (Chang et al., 2007) and Generalized Expectation
Criteria (Mann & McCallum, 2010) are two other notable
frameworks for incorporating contraints into the model.

A separate but related line of research is the study of trans-
fer learning or domain adaptation (Pan & Yang, 2010),
where most of the labeled data comes from a source do-
main and task performance is evaluated in a different target
domain, typically with little labeled data available. We ex-
plore some domain adaptation settings in our experiments
presented in Section 5.

3. Formulation
3.1. Background: Structured Output Learning

In structured output problems, the aim is to learn a mapping
from x in input space X to y in structured output space Y ,
given a set of labeled data DL = {(xi,yi)}Li=1. The map-
ping is usually implicitly determined by a score function
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f(x,y,w) where w is the set of parameters and the pre-
diction y

⇤
= argmax

y

f(x,y,w).

There are two dominant paradigms of structured output
learning, based on how the score function is used. The
max-margin methods (Taskar et al., 2004; Tsochantaridis
et al., 2005) maximize the margin between the score for the
correct output and all other outputs. The structured hinge
loss is usually used in max-margin methods:
Lh(xi,yi,w) = max

y

[f(xi,y,w)]� f(xi,yi,w) (1)

A standard approach in max-margin learning is to incorpo-
rate the task loss into the hinge loss (Taskar et al., 2004),

L(xi,yi,w) = max

y

[f(xi,y,w) +�(y,yi)]�f(xi,yi,w)

(2)
where � is the task loss. The second paradigm includes
probabilistic models, such as CRFs (Lafferty et al., 2001),
which interpret the score function as implying a distribu-
tion over the outputs p(y|x) / exp(f(x,y,w)) and then
adapt w to maximize the conditional likelihood.

As a concrete example, for binary segmentation problems,
X is the space of images and Y = {0, 1}P , where P

is the number of pixels in an image. f(x,y,w) usu-
ally has the form of f(x,y,w) =

P
i2V f

u
(x, yi,w

u
) +P

(i,j)2E f

p
(x, yi, yj ,w

p
), which is a sum of unary po-

tentials defined on individual pixels and pairwise poten-
tials defined on pairs of neighboring pixels. Usually G =

(V,E) is a grid graph. When the pairwise potentials satisfy
certain properties, namely submodularity, the exact optimal
y

⇤ can be found using graph cuts. See (Nowozin & Lam-
pert, 2011) for an excellent review of structured learning
and prediction.

3.2. High Order Regularized SSL

In an SSL setting, we have a set of unlabeled data DU =

{xj}L+U
j=L+1 in addition to the labeled data DL. Our objec-

tive for learning is composed of a loss defined on labeled
data, and a regularizer defined directly on predictions of the
model on unlabeled data:1

min

w

LX

i=1

L(xi,yi,w) +R

⇣
{yj}L+U

j=L+1

⌘
(3)

s.t. yj = argmax

y

f(xj ,y,w), 8j � L+ 1

In this max-margin formulation, L is a loss function such
as the scaled hinge loss defined above, R is the (high or-
der) regularizer, and the constraints force {yj}L+U

j=L+1 to be
predictions of the model for unlabeled data.

R specifies prior constraints about the predictions on un-
labeled data. A high-order regularizer is one that imposes
constraints on sets of output elements rather than indepen-

1Here we are ignoring data independent regularizers, e.g., L1
and L2, in this formulation for simplicity, but it is straightforward
to incorporate them into the model.

dently on each element. One example of a high-order R is
the cardinality regularizer, where R(YU ) is a function of
1

>
YU , and the vector YU is defined as the concatenation

of all yj’s for j � L+ 1. For example, in a part-of-speech
NLP task, this could refer to the number of words labeled
as verbs, while in an image segmentation task it could refer
to the number of pixels labeled as foreground. This is use-
ful to encourage the predicted labels to have similar count
statistics as the labeled data. As observed in many previ-
ous papers, e.g., (Zhu et al., 2003; Wang et al., 2008), en-
forcing this type of constraint is important for imbalanced
datasets. In Section 3.3, we describe a graph based regular-
izer R and its combination with cardinality regularizers. A
variety of other high-order regularizers, e.g., (Vicente et al.,
2008; Kohli et al., 2009; Tarlow et al., 2010; Chang et al.,
2007; Carlson et al., 2010), have been defined in various
structured output settings.

Minimizing the objective in Eq. 3 is difficult due to the
hard constraints that make R a complicated and possibly
non-continuous function of w. To solve this difficulty, we
utilize some relaxations of the hard constraints.

We observe that these constraints are equivalent to the fol-
lowing when the maximum is unique,

f(xj ,yj ,w) = max

y

f(xj ,y,w), 8j � L+ 1. (4)

Since we have max

y

f(xj ,y,w) � f(xj ,yj ,w) for all
yj , the amount of constraint violation can be measured by
the difference max

y

f(xj ,y,w)�f(xj ,yj ,w). We there-
fore replace the constraints by a term in the objective that
penalizes constraint violation,

min

w,YU

LX

i=1

L(xi,yi,w) +R(YU )

+ µ

L+UX

j=L+1


max

y

f(xj ,y,w)� f(xj ,yj ,w)

�
(5)

where µ measures the tolerance of constraint violation.
When µ ! +1, this is equivalent to Eq. 3; when µ <

+1, this becomes a relaxation of Eq. 3, where YU can
be different from the predictions made by the model. This
relaxation decouples w from R and makes it possible to
optimize the objective by iterating two steps, alternatively
fixing w or YU and optimize over the other, where both
steps are easier to solve than Eq. 3:

Step 1. Fix w and optimize over YU . The optimization
problem becomes

min

YU

R(YU )� µ

L+UX

j=L+1

f(xj ,yj ,w) (6)

This step infers labels for those unlabeled examples, based
on both the current model and the regularizer. This is a
MAP inference problem, and the hard part is to handle
the high-order regularizer R(YU ). A wide range of meth-
ods have been developed for computing MAP in models
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with high-order potentials (Vicente et al., 2008; Kohli et al.,
2009; Tarlow et al., 2010; Tarlow & Zemel, 2012). We dis-
cuss the approach for our loss-based graph regularizer and
cardinality regularizers in more detail in Section 3.3.
Step 2. Fix YU and optimize over w. The optimization
problem becomes

min

w

LX

i=1

L(xi,yi,w)+µ
L+UX

j=L+1


max

y
f(xj ,y,w)� f(xj ,yj ,w)

�

(7)
This step updates the model using both the labeled data and
the labels inferred from Step 1 for unlabeled data. Note that
the last term is just Lh in Eq. 1, and this optimization is no
harder than optimizing a fully supervised model, which can
be solved by methods such as subgradient descent.

Thus our learning algorithm proceeds by iteratively solving
the optimization problems in Eq. 6 and Eq. 7.

3.3. Graph-Based SSL for Image Segmentation

In this section we describe an application of the proposed
framework to graph-based SSL for binary segmentation,
but we note that our method can be easily extended to
multi-class segmentation. Graph-based SSL uses a graph
so constructed that examples close on this graph should
have similar outputs. The model is then regularized by this
graph to make predictions that are smooth on it. Here we
assume the graph is represented by edge weights sij which
measures the similarity between example i and j, and the
two examples are connected only when sij > 0.

Choosing a proper output similarity metric is important for
graph-based SSL methods. For classification, most graph-
based methods define this similarity as the squared differ-
ence of two posterior distributions (Zhu et al., 2003; Zhou
et al., 2004). For structured prediction, (Subramanya et al.,
2010; He et al., 2013) follow this approach but use marginal
distributions over parts of output in the squared difference.

However, structured output problems have a natural simi-
larity metric in the output space, defined by the loss func-
tion. For probabilistic models, it is not easy to incorporate
the loss function into the similarity metric. But our frame-
work allows the use of loss functions in the regularizer R.

We define the graph regularizer
RG(YU ) = �

X

i,j:sij>0

sij�(yi,yj) (8)

where the sum is over all edges in the graph, connecting
both labeled and unlabeled examples, and � is a weight
factor. This regularizer requires yi and yj to be close when
sij is large.

To use this regularizer into our framework, we need to solve
the MAP inference problem in Step 1 of the algorithm:

min

YU

�

X

i,j:sij>0

sij�(yi,yj)� µ

L+UX

j=L+1

f(xj ,y,w). (9)

�������

���
�������

Figure 1. Graph structure with Hamming loss. Black edges rep-
resent intra image structure, and grey edges represent graph con-
straints.

Here each f(xj ,y,w) is a sum of unary and pairwise po-
tentials, and the graph regularizer is a high order poten-
tial. For decomposable loss functions like Hamming loss,
the graph regularizer becomes a sum of submodular pair-
wise potentials. The MAP inference is then a standard in-
ference problem for pairwise graphical models and can be
solved via graph cuts. The structure of this graph is shown
in Fig. 1. More complicated loss functions, such as the
PASCAL loss, can also be handled using an iterative leave-
one-out optimization method described in the supplemen-
tary material.

The graph regularizer can also be combined with other
types of high order regularizers, for example the cardinal-
ity regularizers described earlier. In fact, graphs with sub-
modular pairwise potentials have a known short-boundary
bias (Kohli et al., 2013) which favors a small number of cut
edges (pairs of pixels that have different labels). This bias
can cause some serious problems in SSL when the num-
ber of labeled examples is not balanced across classes. In
our binary segmentation problem, usually the majority of
pixels belong to background and only a small portion be-
long to foreground. Then when we run the optimization,
this bias would make the model predict much more back-
ground for the unlabeled images. In the extreme case when
unary potentials are weak, all unlabeled pixels will be pre-
dicted to have the dominant label. The use of cardinality
regularizers is then especially important.

We define a cardinality regularizer
RC(YU ) = � h(1

>
YU ) (10)

where � is a weight parameter and
h(x) = max{0, |x� x0|� �}2 (11)

x0 is the expected number of foreground pixels computed
according to the number of total pixels and the proportion
of foreground in labeled images, and � is the deviation from
x0 that can be tolerated without paying a cost. We use � =

x0/5 throughout all our experiments.
Then the optimization problem in Step 1 becomes

min

YU

�
X

i,j:sij>0

sij�(yi,yj)+� h(1>YU )�µ
L+UX

j=L+1

f(xi,yj ,w)

(12)
Finding the optimum of this problem is in general not easy.
However, finding the optimum for both a submodular pair-
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wise MRF and a cardinality potential plus unary potentials
can be done very efficiently. We therefore decompose the
objective into two parts and use dual-decomposition (Son-
tag et al., 2011) for the optimization. Details about this can
be found in the supplementary material.

4. Connection to Posterior Regularization
There is a surprising connection between the proposed
framework and the PR based SSL method described in (He
et al., 2013). We show in this section that for some general
settings the two methods are optimizing special cases of
the same objective. The key results are: under a zero tem-
parature limit, (1) the KL-divergence term in PR (see be-
low) becomes the constraint violation penalty in our frame-
work (Eq. 5), and (2) the posterior distribution becomes the
(hard) model prediction.

The idea of PR is to regularize the posterior distributions
so that they are consistent with some prior knowledge. For
graph-based SSL the prior knowledge is the smoothness of
the posterior distribution over the graph. PR optimizes the
following objective

min

w

LX

i=1

L(xi,yi,w) + �R

⇣
{p

w

(y|xj)}L+U
j=L+1

⌘
(13)

where L(xi,yi,w) = � log p

w

(yi|xi) is the negative con-
ditional log likelihood for labeled data, and R is the poste-
rior regularizer.

In PR, auxiliary distributions {qj(y)}L+U
j=L+1 are introduced

to make the optimization easier, and the following objective
is used instead:

min

w,q

LX

i=1

L(xi,yi,w) + �R(q)

+ µ

L+UX

j=L+1

KL(qj(y)||pw(y|xj)). (14)

Optimizing this objective will learn w and q such that the
p

w

distribution is consistent with labeled data, the q dis-
tribution is smooth on the graph, and the two distribu-
tions should also be close to each other in terms of KL-
divergence. This objective is then optimized in an alternat-
ing approach similar to the method utilized in our model as
described above.
To relate this formulation of PR to our proposed method,
we introduce a temperature parameter T , and define
p

w

(y|x, T ) =

1
Zp

T
exp

⇣
f(x,y,w)

T

⌘
and q(y, T ) =

1
Zq

T
exp

⇣
g(y)
T

⌘
. Here Z

p
T and Z

q
T are normalizing con-

stants, and g(y) is an arbitrary score function. The tem-

parature augmented objective has the form of

min
w,q

LX

i=1

L(xi,yi,w, T ) + �R(qT )

+ µ
L+UX

j=L+1

TKL(qj(y, T )||pw(y|xj , T )) (15)

where L(xi,yi,w, T ) = � log p

w

(yi|xi, T ) and R(qT ) is
the regularizer defined on {qj(y, T )}L+U

j=L+1. This objective
is the same as the PR objective when T = 1. Next we show
that when T ! 0 this becomes the objective of our method
in Eq. 5.

Using the definition of p and q, the KL-divergence term can
be rewritten as

TKL(qj(y, T )||pw(y|xj , T ))

=

X

y

qj(y, T ) [gj(y)� f(xj ,y,w)] + TZ

p
T � TZ

q
T

(16)
Denote yj = argmax

y

qj(y, T ), and let T ! 0, then

qj(y, T ) !
⇢

1, y = yj

0, otherwise

(17)

and

TZ

p
T ! lim

T!0
T log

X

y

exp

✓
f(xj ,y,w)

T

◆

=max

y

f(xj ,y,w) (18)

TZ

q
T ! lim

T!0
T log

X

y

exp

✓
gj(y)

T

◆
= gj(yj) (19)

Substituting the above equations into Eq. 16,
TKL(qj(y, T )||pw(y|xj , T ))

!max

y

f(xj ,y,w)� f(xj ,yj ,w) (20)

as T ! 0. This is identical to the constraint violation
penalty in Eq. 5.

The relation between the regularizer terms depends on the
specific regularizers used in the model. For example, R
can be defined as

P
i,j:sij>0 sij

P
c(pw(yic = 1|xi) �

p

w

(yjc = 1|xj))
2, where c indexes pixels, as in (He et al.,

2013). Here p

w

(yic = 1|xi) = 1 for labeled foreground
pixels and p

w

(yic = 1|xi) = 0 for labeled background
pixels, to only regularize the posterior distributions for the
unlabeled data.

For the regularizer term in this case, according to Eq. 17,
for binary segmentation we have qj(yc = 1, T ) ! yjc as
T ! 0 for each pixel c. Therefore

R(qT ) !
X

i,j:sij>0

sij

X

c

(yic � yjc)
2

=

X

i,j:sij>0

sij�(yi,yj) (21)

where �(yi,yj) is the Hamming loss.
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Finally, for L(xi,yi,w, T ) term, it is known, e.g., in
(Hazan & Urtasun, 2010), that as T ! 0 this term con-
verges to the structured hinge loss.2

Remark. Hazan & Urtasun (2010) proposed a framework
that unifies the max-margin and probabilistic methods for
structured prediction. Our result here can be thought of as
an extension of this to semi-supervised learning of struc-
tured output problems. Moving to the max-margin for-
mulation loses the uncertainty representation of the prob-
abilistic models, but has the ability to specify high order
constraints directly on model predictions and to use power-
ful discrete optimization algorithms, therefore overcoming
some difficulties of inference in loopy probabilistic mod-
els. In addition, our generalized formulation also opens up
the possibility of probabilistic models using temperatures
other than 1, which can have some desirable properties,
e.g., when T is close to 0 the posterior distribution will
be much more concentrated.

5. Experiments
5.1. Datasets and Model Details

We explore the efficacy of the proposed framework on
two semi-supervised foreground-background segmentation
tasks. For the first task, we use the Weizmann Horse dataset
(Borenstein & Ullman, 2002), a fully-labeled set of 328
images. For the unlabeled Horse dataset, we used im-
ages labeled “horse” in CIFAR-10 (Krizhevsky & Hinton,
2009), which are not segmented. For the second task, we
constructed a labeled set of 214 “bird” images from the
PASCAL VOC 2011 segmentation data (Everingham et al.,
2010). The unlabeled Bird images come from the Caltech-
UCSD Bird (CUB) dataset (Welinder et al., 2010). Note
that this setting of SSL is especially challenging as the un-
labeled data comes from a different source than the labeled
data; utilizing unlabeled examples that are extremely dif-
ferent than the labeled ones will hamper the performance
of an SSL learning algorithm. For the unlabeled sets we
therefore selected images that were similar to at least one
image in the labeled set, resulting in 500 unlabeled Horse
images from CIFAR-10, and 600 unlabeled Bird images
from CUB. For all the images in both tasks, and their corre-
sponding segmentations, we resize them to 32⇥32, which
is also the size of all CIFAR-10 images.

The Bird images contain considerably more variation than
the Horse images, as the birds are in a diverse set of poses
and are often occluded. We found that utilizing the PAS-
CAL birds alone for training, validation and test did not
leave enough training examples to attain reasonable seg-
mentation performance. We thus created an additional la-
beled set of 600 bird images using the CUB dataset (a dif-
ferent set of 600 images than the aforementioned unlabeled

2With a loss term added to the score function f , which can be
set to 0 for T = 1 case to prove the equivalence.

set). Details on how we generated segmentations for these
images are in the supplementary material; these generated
segmentations are available online.

In our experiments we compare four types of models: (1)
the baseline Initial model, which forms the basis for each
of the others; (2) a Self-Training model that iteratively
uses the current model to predict labels for unlabeled data
and updates itself using these predictions as true labels; (3)
Graph, our graph-based SSL method that uses the graph
regularizer RG; (4) Graph-Card, our SSL method utiliz-
ing both graph and cardinality regularizer RG +RC .

The Initial model is trained in a fully supervised way on
only labeled data by subgradient decent on scaled struc-
tured hinge loss. The model’s score function f is defined
as in the example given in Section 3.1. We extracted a 149
dimensional descriptor for each pixel in an image by ap-
plying a filter bank. Then a multi-layer neural network is
trained using these descriptors as input to predict binary
labels3. The log probability of each class is used as the
unary potential. For pairwise potentials, we used a stan-
dard 4-connected grid neighborhood and the common Potts
model, where f

p
(x, yi, yj) = �pijI[yi 6= yj ] and pij is a

penalty for assigning different labels for neighboring pixels
yi and yj . We define pij as the sum of a constant term that
encourages smoothing and a local contrast sensitive term
defined in (Boykov & Jolly, 2001) which scales down the
penalty when the RGB difference between pairs of pixels
is large. In our experiments, we fix the pairwise potentials
and focus on learning parameters in the neural network for
unary potentials only.

During learning, the gradients are back-propagated through
the neural network to update parameters. Since neural net-
works are highly nonlinear models, it is hard to find the op-
timal w in Eq. 7 in every Step 2 of our algorithm. Instead,
we only take a few gradient steps in Step 2 of each itera-
tion. Other hyper parameters, e.g. �, µ, �, are tuned using
the validation set, see supplementary material for more de-
tails on parameter settings.

For the graph-based models, we used the Histogram of Ori-
ented Gradients (HOG) (Dalal & Triggs, 2005) image fea-
tures to construct the graph. We set sij = 1 if examples
i and j are one of each other’s 5 nearest neighbors, and
sij = 0 otherwise. Fig. 2 shows some nearest neighbor
search results using HOG distance.

5.2. Experimental Settings

For our experiments, we examine how the performance of
the SSL methods change with the number of labeled im-
ages, by randomly selecting L images from the training set
to be used as labeled data and adding the remaining images
to the unlabeled set. Starting from L = 5, we gradually in-

3We also tried a linear model initially, but neural nets signifi-
cantly outperform linear models by about 10%.
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Figure 2. Left most column are query images, and the 5 columns
on the right are the nearest neighbors retrieved based on HOG
similarity. All query images are randomly chosen. Left: query
from Weizmann dataset, retrieve CIFAR-10 horses. Right: query
from PASCAL dataset, retrieve CUB birds.

crease L to the entire training set. Note that while we vary
the training and unlabeled sets in this way, the validation
and test sets remain constant, in order to make comparisons
fair. This process is repeated 10 times, each time including
randomly selected images in the training set. All models
are evaluated using per-pixel prediction accuracy averaged
over pixels in all images, and we report the mean and stan-
dard deviation of the results over the 10 repetitions.

We ran three types of experiments. In the first one, the
training, validation and test set were all drawn from the
same dataset. For the Horse task, there were up to 200
training images, 48 validation, and 80 test images, drawn
from the Weizmann set, and 500 unlabeled images from
CIFAR-10. For the Bird task, there were up to 200 train-
ing images, 200 validation, and 200 test images, and 600
unlabeled images, all drawn from the CUB dataset.

The second experiment explored domain adaptation. In
many experimental settings, there are insufficient labeled
examples to obtain good performance after splitting the
dataset into training, validation, and test. This was the case
with our PASCAL Bird dataset, which necessitated label-
ing examples from the CUB set. An interesting question
is whether training on one domain, the source domain, can
transfer to a different, target domain, when the unlabeled
data comes from the target domain, i.e., the same dataset as
the test set, and both differ from the training set. It is pos-
sible for the model to learn special features about the target
domain by using unlabeled data, therefore obtaining larger
performance gains. In the second experiment we explored
the performance of the various models in a version of this
domain adaptation setting on the Bird segmentation task.

The third experiment directly assesses the impact of draw-
ing the validation set from the same dataset as the source,
versus drawing the validation from the target domain. In
our original bird experiment the validation set comes from
the source domain, while in the second experiment it comes
from the target domain; tuning hyperparameters on the tar-
get domain may contribute to some of the performance
gains. To examine this, we compared the models in two

Experiment train validation test unlabeled
(1) Horse W-200� W-48 W-80 R-500+

(1) Bird C-200� C-200 C-200 C-600+

(2) Domain Adapt. P-214� C-200 C-200 C-600+

(3) Val: Source P-40� P-174 C-200 C-600+

(3) Val: Target P-40� C-174 C-200 C-600+

Table 1. Experimental settings and datasets. Each dataset descrip-
tion follows the format [dataset code]-[size]. Dataset codes: P for
PASCAL VOC birds, C for CUB birds, W for Weizmann horses,
R for CIFAR-10 horses. Superscript “-” means at most, and “+”
means at least, see paper for more details.

more settings, both of which use a training set of 40 im-
ages drawn from the PASCAL dataset, and the same 200
CUB test images and 600 unlabeled CUB images. The ex-
periments differ in that in the first setup the validation set
is composed of 174 images drawn from the source domain,
the PASCAL set, while in the second they are from the tar-
get CUB domain. Table 1 lists the datasets used in each
experimental setting.

5.3. Results

Experiment 1. Results for the first basic SSL experiments
are shown in Fig. 3; (a),(c) show how test set performance
changes as the number of labeled images increases, while
Fig. 3(b),(d) show the improvement from SSL using the
three methods compared to the initial model more directly.

As can be seen, for both segmentation task self-training
achieves a small improvement with very few labeled ex-
amples, but does not help too much in general, as it is
mostly reinforcing the model itself. Graph-based methods
work significantly better than self-training throughout. For
Horse segmentation, the use of unlabeled data helps the
most when the number of labeled images are small. The
improvement becomes smaller as the number of images in-
creases. The model saturates and achieves very high ac-
curacy (more than 92%) with 200 labeled images, where
using unlabeled data does not make too much difference.

For Bird segmentation, graph-based methods achieve a
small improvement over self-training and the initial model
when the number of labeled images is small (L  20).
This can be explained by the complexity of the bird dataset;
more examples are required to achieve reasonable segmen-
tations. There is a jump in performance from L = 20 to
L = 40: as the initial model gets better, combining with the
graph, inferred labels for unlabeled data become much bet-
ter and therefore more helpful. From Fig. 3 we can see that
when L = 40, using graph-based methods the test accuracy
nearly matches that of a fully supervised model trained with
all 200 labeled images, thus saving a lot of labeling work.

Comparing “Graph-Card” and “Graph”, we can see that us-
ing a cardinality regularizer further improves performance
over only using the graph regularizer, as in most horse seg-
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Figure 3. Experiment 1 (a),(c): Test performance for the initial
model and the 3 SSL methods; (b),(d): improvements for the three
methods over the initial model.
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Figure 4. Experiment 2: Results for the domain adaptation Bird
task, where the unlabeled and validation and test sets are from a
different dataset than the training set. The curve for “Initial” is
behind “Self-Training”.

mentation cases and bird segmentation with few labeled
images. It is most helpful when the number of images are
small, where the initial model is very weak and the short-
boundary bias becomes especially significant when infer-
ring labels for unlabeled images. For a lot of cases, the use
of a cardinality potential can compensate for this bias.

Experiment 2. Fig. 4 shows the results for the domain
adaptation setting, where the training data is from one
dataset while the unlabeled data and the test and valida-
tion examples come from a different set. Compared to the
original bird experiment, we observe that: (1) the perfor-
mance jump from L = 20 to L = 40 is considerably larger;
(2) the gap between SSL methods and the initial model is
also more significant; and (3) the improvement from self-
training is almost non-existent.

Experiment 3. We compare the “Graph-Card” method
across the two settings, where the validation set is either
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Figure 5. Experiment 3: Comparison between validation on
source domain and validation on target domain. Left: test accu-
racy as number of labeled images increases. Right: difference be-
tween the two settings (validate on target vs. validate on source).

from the source or the target domain. Fig. 5 summarizes
the results. In this comparison, the model validated on the
target domain performs consistently better than the model
validated on the source domain. However, the difference
decreases as the number of labeled images increases, as in
both settings the method is getting closer to the limit, which
can be seen from other experiments on bird segmentation,
where the performance levels off when L � 40.

6. Conclusion and Future Work
In this paper, we proposed a new framework for semi-
supervised structured output learning that allows the use
of expressive high order regularizers defined directly on
model predictions for unlabeled data. We proved that this
framework and PR are closely related. Experimental re-
sults on image segmentation tasks demonstrated the effec-
tiveness of our framework, and its ability to strongly benefit
from unlabeled data in a domain adaptation setting.

Looking forward, we are exploring the learning of the in-
put similarity metric sij in our graph-based SSL example,
and also incorporating other types of high order regular-
izers. Developing more efficient inference algorithms for
these high order regularizers is important for the success
of the method. On the application side, our segmentation
tasks are especially relevant when combined with an object
detector. SSL for a structured prediction model that per-
forms segmentation and detection jointly is an interesting
and challenging future direction.
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In this supplementary material we present:

• Dual decomposition inference for optimizing Equa-
tion 12 in the main paper.

• A leave-one-out algorithm for optimizing Equation 9
in the main paper for PASCAL loss.

• Remark on the connection between our method and
Constraint Driven Learning (CODL).

• More details about the bird datasets.

• More details about hyper parameter settings.

• More experiment results.

1. Optimizing Equation 12 using Dual
Decomposition

Eq.12 is a special case of the following more general opti-
mization problem

min

y
fu

(y) + fp
(y) + h(1>y)

where y 2 {0, 1}P , fu, fp and h are unary, pairwise and
cardinality potentials respectively. To see this, note that
in Eq.12 f is a sum of unary and pairwise potentials and
�(yi,yj) is a sum of pairwise terms. This is hard to opti-
mize due to the interaction between the pairwise potential
and high order cardinality potential.

In dual decomposition, we decompose the original problem
into two subproblems that are more tractable. We define
A(y) = µfu

(y) + fp
(y) and B(y) = (1 � µ)fu

(y) +

h(y), where µ is a fixed constant, e.g. 0.5, then the original
objective is A(y) +B(y).

For any � 2 RP , we have a lower bound on the original
objective,

L(�) = min

y

n

A(y) + �>
y

o

+min

y

n

B(y)� �>
y

o

As �>
y is just a sum of very simple unary potentials, each

of the subproblems here are easy to solve. For the first one,
graph cuts can be used to find exact optimum, and for the
second one we can use methods described in (Gupta et al.,
2007).

We then maximize this lower bound over �, to make it as
tight as possible and hence approach the optimum of the
original problem. We can compute the subgradient of the
lower bound with respect to �,

@L
@�

=

ˆ

y

A � ˆ

y

B

where ˆ

y

A is the optimal y for the first subproblem and ˆ

y

B

is the optimal y for the second subproblem. In our exper-
iments we follow this subgradient to optimize the lower-
bound, but a wide range of other optimization techniques
can be applied here as well.

Once the optimization terminates, we have to decode the
final y⇤ as the solution to the two subproblems may not
agree. For this we can calculate the original objective for
all ˆyA and ˆ

y

B’s encountered during the optimization and
choose one that has the smallest objective value. Other
heuristics can be applied here as well.

2. Optimizing Equation 9 for PASCAL Loss
For a single class, let y 2 {0, 1}P denote the prediction for
each pixel whether it belongs to that class, and let y⇤ be the
ground truth. The PASCAL loss is defined as

�(y,y⇤
) = 1�

P

i I[yi = 1 and y⇤i = 1]

P

i I[yi = 1 or y⇤i = 1]

.

(Tarlow & Zemel, 2012) describes an efficient method to
compute MAP for high order factors such as the PASCAL
loss, with the true label fixed. Here we use this as a sub-
routine in our optimization.

Since the graph term in Eq. 9 is a sum of many high order
factors, direct optimization is very hard, and even messages
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are hard to compute. We therefore use a leave-one-out al-
gorithm instead. This algorithm iterates through all j’s one
by one. For each j, all yj0 for j0 6= j are fixed and we
optimize over yj only. For a single j, the corresponding
optimization problem has the form of

min

yj

�
X

i:sij>0

sij�(yi,yj)� µf(xj ,yj ,w)

This is a sum of unary and pairwise potentials in f plus a
set of PASCAL loss high order potentials.

We can again use dual decomposition to do the optimiza-
tion. There are two types of subproblems: (1) unary poten-
tials + pairwise potentials, which can be optimized using
graph cuts; (2) unary potentials + one PASCAL loss poten-
tial, which can be optimized by invoking the optimization
subroutine.

This optimization for a single j can also be done by mes-
sage passing, as messages for the PASCAL loss can be effi-
ciently computed as described in (Tarlow & Zemel, 2012).

If for each j this optimization can decrease the objective,
then Step 1 of our proposed algorithm in Section 3.2 will
monotonically decrease the objective in Eq.5, therefore our
algorithm is still guaranteed to converge.

3. Remark on the Connection between Our
Method and Constraint Driven Learning
(CODL)

The Constraint Driven Learning (CODL) (Chang et al.,
2007) is similar to our algorithm described in Section 3.2
in the main paper, which is also an alternating optimization
method, with some notable and important differences:

1. Few people have explored the use of high order reg-
ularizers in CODL, and the optimization in Step 1 is
usually done by heuristic search rather than using ef-
ficient discrete optimization algorithms.

2. In Step 2, CODL uses the inferred labels as true labels
while we use them in the constraint relaxation penalty.

3. The CODL learning algorithm does not correspond to
the optimization of a unified objective function. As we
derive the algorithm from a joint optimization prob-
lem, it is possible to develop variants other than the
coordinate descent currently used.

4. More Details about the Bird Datasets
We obtained the PASCAL VOC “bird” dataset by first re-
stricting the image based on the bounding box containing
the bird, and then labeling all bird pixels as 1 and all other

pixels as 0, resulting in 214 bird images with segmenta-
tions.

We selected images from the pool of unlabeled images by
utilizing the Histogram of Oriented Gradients (HOG)(Dalal
& Triggs, 2005) image features as the distance measure
and choosing the set closest to the labeled images. We
choose 500 images from CIFAR-10 for the horse segmen-
tation task, and 600 images from CUB for the bird segmen-
tation task according to this criterion.

We obtained labels for CUB dataset, from the rough seg-
mentations provided in CUB. The rouph segmentations
provides a localization of the object but are not very pre-
cise around the boundary. Usually the rouph segmenta-
tions will include a significant amount of background in
the foreground mask. To refine this, we fixed the pixel la-
bels in the interior of the foreground area and the back-
ground area, and try to relabel the boundary pixels. More
specifically, we used GrabCut (Rother et al., 2004), by al-
ternating appearance model fitting and segmentation label
updates. The fixed foreground and background areas are
used to train the initial appearance model. After that, an
extra hole filling operation from mathematical morphology
is used to post process the results. These segmentations
generated in this way capture most of the details of bird sil-
houettes. Fig. 1 shows some sample images and generated
segmentation masks for the CUB dataset.

5. More Details about Hyper Parameter
Settings

We formulate µ as µ0/U where U is the number of unla-
beled examples. We found that µ0 is not very sensitive to
different datasets, and we used the same µ0

= 100 for all
splits of all datasets. More tuning of this parameter for dif-
ferent datasets may result in even better performance.

The parameter � for cardinality potentials is fixed to 1 for
all experiments.

Parameter � and learning rate, momentum, etc. for the neu-
ral networks are tuned using the validation set. We found
that � is more sensitive to datasets than µ0 and �, but a wide
range of � works quite well.

6. More Experiment Results
Some segmentation results for the intial model, and the
models trained with self-training, our graph based method
and our graph based method + cardinality regularizer are
shown in Fig. 2. These examples are randomly chosen with
models trained with 40 labeled images on one split of the
corresponding datasets.

The effect of using cardinality regularizers is most obvious
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Figure 1. Samples from the CUB dataset and generated segmentations.

from the horse segmentation results. On the bird dataset,
there is a significant difference between methods that use
graph sturcture (“Graph” and “Graph-Card”) and those do
not (“Initial” and “Self-Train”).
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Figure 2. Example segmentation results for horse and bird images. In each row, the first two columns contain the original image and the
ground truth segmentation. The next four columns are results obtained using “Initial”, “Self-Training”, “Graph”, “Graph-Card”.


