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Abstract
Clustering is the task of grouping a set of exam-
ples so that similar examples are grouped into
the same cluster while dissimilar examples are
in different clusters. The quality of a cluster-
ing depends on two problem-dependent factors
which are i) the chosen similarity metric and
ii) the data representation. Supervised cluster-
ing approaches, which exploit labeled partitioned
datasets have thus been proposed, for instance to
learn a metric optimized to perform clustering.
However, most of these approaches assume that
the representation of the data is fixed and then
learn an appropriate linear transformation. Some
deep supervised clustering learning approaches
have also been proposed. However, they rely on
iterative methods to compute gradients resulting
in high algorithmic complexity. In this paper,
we propose a deep supervised clustering met-
ric learning method that formulates a novel loss
function. We derive a closed-form expression
for the gradient that is efficient to compute: the
complexity to compute the gradient is linear in
the size of the training mini-batch and quadratic
in the representation dimensionality. We further
reveal how our approach can be seen as learn-
ing spectral clustering. Experiments on standard
real-world datasets confirm state-of-the-art Re-
call@K performance.

1. Introduction
Clustering is a widely used technique with applications in
machine learning, statistics, speech processing, computer
vision. It consists in grouping a set of examples so that
“similar” examples are in the same cluster while “dissimi-
lar” examples are in different clusters. In most applications,
the vector representation of examples is given as input and
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Figure 1. Our approach learns a nonlinear embedding function in
a supervised way so that elements in the same category (here with
the same color) are organized into the same cluster.

a key step is then to determine an appropriate similarity
metric so that similar and dissimilar objects can be easily
identified. In some cases, experts with domain knowledge
may help determine an appropriate distance metric. How-
ever, in high-dimensional problems, determining an effec-
tive metric becomes increasingly difficult even for an ex-
pert, and standard metrics such as the Euclidean distance
can lead to very poor results.

Many approaches that learn an appropriate similarity met-
ric (Xing et al., 2002; Lajugie et al., 2014; Law et al.,
2016) or a nonlinear embedding function (Schroff et al.,
2015; Sohn, 2016; Song et al., 2017) in a supervised way
have thus been proposed. They assume the availability
of a training dataset that “shares the same metric” as the
test dataset that they want to partition (e.g. the datasets
represent the same concepts such as birds species or car
models). As both datasets share the same metric, the
model learned from training examples is expected to cor-
rectly compare test examples. The approaches can roughly
be divided into four groups based on two criteria: semi-
supervised/supervised setting and shallow/deep architec-
ture. In the semi-supervised setting (Xing et al., 2002;
Chopra et al., 2005), the training data is given as a small set
of example pairs that are expected to be in the same or dif-
ferent clusters. On the other hand, supervised approaches
(Lajugie et al., 2014; Law et al., 2016) assume the avail-
ability of labeled datasets for which the ground truth parti-
tions are provided during training. A model is then learned
so that some clustering algorithm will produce a partition
similar to the ground truth partition on the training dataset.
The supervised clustering setting can be seen as the spe-
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cial case of semi-supervised setting where all the pairwise
similarity relations between training examples are given. In
particular, supervised clustering is a specific classification
problem where the model is learned so that the representa-
tions of training examples are closer to the representative
vector of their category than to the representative vector of
any other category. In this paper, we propose a novel metric
learning approach whose rationale is illustrated in Fig. 1.
In particular, we leverage deep nonlinear and hierarchical
architectures to learn complex representations that better
reflect similarity relations among examples.

Many deep metric learning approaches (Schroff et al.,
2015; Song et al., 2016) extend the ideas introduced in the
shallow metric learning literature (Xing et al., 2002; Wein-
berger et al., 2006) to learn deep neural networks on large
datasets. The main difficulty is how to implement these
ideas so that they are scalable and avoid memory bottle-
neck. For instance, many approaches have proposed hard
negative mining strategies to limit the number of training
constraints. A deep supervised clustering approach was
proposed in (Song et al., 2017): to compute its gradient,
the approach uses an iterative greedy algorithm whose al-
gorithmic complexity is high.

Contributions: In this paper, we propose a metric learning
framework that optimizes an embedding function so that
the learned representations of similar examples are grouped
into the same cluster, and dissimilar examples are in differ-
ent clusters. To this end, we relax the problem of partition-
ing a dataset with Bregman divergences (Banerjee et al.,
2005), and we formulate our problem so that the gradient
is efficient to compute. In particular, the gradient can be
expressed in closed-form, and the algorithmic complexity
to compute it is linear in the size of the training mini-batch
and quadratic in the representation dimensionality, which
is better than the complexity of existing iterative methods.
Our method is also simple to implement and obtains state-
of-the-art performance on standard datasets.

2. Preliminaries
In this section, we provide some technical background
about clustering, and set up the notation throughout. We re-
formulate in matrix form the problem of clustering a set of
examples with Bregman divergences (Banerjee et al., 2005)
and write it as an optimization problem w.r.t. one variable
in Eq. (2).

Notation: We note 〈A,B〉 := tr(AB>), the Frobenius
inner product where A and B are real-valued matrices; and
‖A‖ :=

�
tr(AA>), the Frobenius norm of A. 1 is the

vector of all ones with appropriate dimensionality. A† is the
Moore-Penrose pseudoinverse of A. ri(F) is the relative
interior of the set F .

Data: We consider that we are given a set of n examples
f

1

, · · · , f
n

∈ F which may be represented as a single ma-
trix F = [f

1

, · · · , f
n

]

> ∈ Fn. In the following, we con-
sider that F ⊆ Rd, and thus Fn ⊆ Rn×d.

Bregman divergence: Any Bregman divergence d
�

: F ×
ri(F)→ [0,+∞) is defined as d

�

(x,y) = φ(x)− φ(y)−
〈x − y,�φ(y)〉 where φ : F → R is a continuously-
differentiable and strictly convex function, �φ(y) ∈ Rd
represents the gradient vector of φ at y. The most com-
monly used Bregman divergences for clustering are the
squared Euclidean distance defined with φ(x) = ‖x‖2

2

, the
KL-divergence (Dhillon et al., 2003) or the Itakura-Saito
distance (Buzo et al., 1980). We refer the reader to (Baner-
jee et al., 2005; Nielsen & Nock, 2009) for details.

Clustering: Partitioning the n observations in F =

[f

1

, · · · , f
n

]

> ∈ Fn into k clusters is equivalent to de-
termining an assignment matrix ˆY ∈ {0, 1}n×k such that
ˆY
ic

= 1 if f
i

is assigned to cluster c and 0 otherwise. In this
paper, we assume that each example is assigned to one and
only one cluster (i.e. the sum of each row of ˆY is 1) and that
there is no empty cluster (which corresponds to adding the
constraint rank( ˆY ) = k). Therefore, ˆY is in the following
set of assignment matrices:

Yn×k := { ˆY ∈ {0, 1}n×k : ˆY 1 = 1, rank( ˆY ) = k}

We assume as in (Banerjee et al., 2005) that each cluster c
is represented by a single representative vector z

c

∈ ri(F)
and that an example f

i

is assigned to cluster c only if
∀b 6= c, d

�

(f

i

, z
c

) ≤ d
�

(f

i

, z
b

) where d
�

is the chosen
Bregman divergence. To simplify the notations, we con-
sider that z

c

∈ F , and we concatenate the k representative
vectors into a single matrix Z = [z

1

, · · · , z
k

]

> ∈ Fk. The
problem of partitioning the n examples in F ∈ Fn with d

�

can then be formulated as minimizing the energy function:

min

ˆ

Y ∈Yn×k
,Z∈Fk

n!

i=1

k!

c=1

ˆY
ic

· d
�

(f

i

, z
c

) (1)

= min

ˆ

Y ∈Yn×k
,Z∈Fk

1

>Φ(F )−1

>Φ( ˆY Z)−〈F− ˆY Z,��(ˆY Z)〉

where we have used the definition of Bregman divergences
and we note: ∀A = [a

1

, · · · ,a
n

]

> ∈ Fn, Φ(A) =
[φ(a

1

), · · · ,φ(a
n

)]

> ∈ Rn is the concatenation into a
single vector of the different φ(a

i

) ∈ R, and �Φ(A) =
[�φ(a

1

), · · · ,�φ(a
n

)]

> ∈ Rn×d is the concatenation into
a single matrix of the different gradients�φ(a

i

) ∈ Rd.

Banerjee et al. (2005) demonstrated that, for any value of
ˆY ∈ Yn×k, the minimizer of z

c

in Eq. (1) is unique and
is the mean vector of all the examples in F assigned to
cluster c if and only if d

�

is a Bregman divergence. In
matrix form, this means that Z = (

ˆY > ˆY )−1

ˆY >F =

ˆY †F
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is the unique global minimizer of Z in Eq. (1). We then
define the set P = { ˆY ˆY † : ˆY ∈ Yn×k} and rewrite Eq. (1)
as a minimization problem w.r.t. one variable:

min

ˆ

C∈P
1

>Φ(F )− 1

>Φ( ˆCF )− 〈F − ˆCF,��( ˆCF )〉 (2)

As an illustration, if d
�

is the squared Euclidean dis-
tance, then Eq. (2) reduces to: ‖F‖2 − ‖ ˆCF‖2 − 〈F −
ˆCF, 2 ˆCF 〉 = ‖F‖2+‖ ˆCF‖2−2〈F, ˆCF 〉 = ‖F − ˆCF‖2.
We then obtain the formulation mentioned in (Lajugie
et al., 2014)[Section 2.2] of the usual kmeans algorithm:

min

ˆ

C∈P
‖F − ˆCF‖2 ⇔ max

ˆ

C∈P
〈 ˆC,FF>〉 (3)

by using the fact that all the matrices in P are orthogonal
projection matrices (i.e. symmetric and idempotent): we
then have ∀ ˆC ∈ P, ‖ ˆCF‖2 = tr( ˆC2FF>) = tr( ˆCFF>).

3. Deep Spectral Clustering Learning
In this section, we introduce our method that we call Deep
Spectral Clustering Learning (DSCL). We first relax the
clustering problem in Eq. (2) and consider the set of solu-
tions of the relaxed problem as the prediction function of
our model. Then, we present our large margin supervised
clustering problem and its efficient solver. Finally, we ex-
plain the connection of our approach with spectral cluster-
ing learning.

3.1. Constraint Relaxation

Optimizing Eq. (2) is a NP-hard problem (Aloise et al.,
2009), we then approximate it. Following (Shi & Malik,
2000; Zha et al., 2001; Ng et al., 2002; Peng &Wei, 2007),
we now present a spectral relaxation of this problem. In
particular, we extend the domain of Eq. (2) so that the set
of solutions of the resulting problem can be formulated in
a convenient way.

We propose to relax the constraint ˆC ∈ P in Eq. (2) with
the constraint ˆC ∈ Cn,k where the set Cn,k includes P and
is defined as the set of n × n rank-k orthogonal projec-
tion matrices Cn,k := { ˆC ∈ Rn×n :

ˆC2

=

ˆC, ˆC> =

ˆC, rank( ˆC) = k}. The set of solutions of the resulting
relaxed version of Eq. (2) can then be formulated:

f(F ) := argmax
ˆ

C∈Cn,k

1

>Φ( ˆCF ) + 〈F − ˆCF,��( ˆCF )〉 (4)

where the terms that do not depend on ˆC are omitted.

The solutions in Eq. (4) can be found in closed-form. Let us
note s = rank(F ), we show in the supplementary material
that if s ≤ k, then the set of solutions of Eq. (4) is f(F ) =
{ ˆC ∈ Cn,k : ˆCF = F} = { ˆC ∈ Cn,k : ˆC = FF † +

V V >, V V > ∈ Cn,(k−s), V V >F = 0}. In particular, if
s = k, then V V > = 0 and we have f(F ) = {FF †}.

In the following, we consider only the case where the di-
mensionality d of training examples is not greater than k so
that the property s ≤ k is satisfied. Nonetheless, if s > k,
the set of solutions can be considered as f(F ) = {FF †}.

3.2. Structured output prediction

In the following, we consider that we are given n exam-
ples x

i

∈ X (e.g. n images) and an embedding function
ϕ
θ

: X → F whose set of parameters is θ and such that
∀i ∈ {1, · · · , n},ϕ

θ

(x

i

) = f

i

(e.g. f
i

can be the output of
a convolutional neural network). All these representations
are concatenated into a single matrix F = [f

1

, · · · , f
n

]

> ∈
Fn. We are also given a ground truth assignment matrix
Y ∈ Yn×k which indicates the desired partition for the n
examples. In other words, letC = Y Y † ∈ P be the ground
truth clustering matrix of F , we would like to learn the em-
bedding function ϕ

θ

so that the matrix predicted with the
(relaxed) clustering problem f(F ) ⊆ Cn,k in Eq. (4) is as
close as possible to the ground truth clustering matrix C.

Different evaluation metrics such as purity, rand index and
normalized mutual information exist to evaluate cluster-
ing (see (Manning et al., 2008) [Chapter 16.3] for details).
As in (Hubert & Arabie, 1985; Bach & Jordan, 2004; La-
jugie et al., 2014; Law et al., 2016), we choose the Frobe-
nius norm which has many advantages. As explained in
(Lajugie et al., 2014)[Section 3.2], unlike rand index, the
Frobenius norm between clustering (orthogonal projection)
matrices takes into account the size of the different clusters
(i.e. its value is not dominated by the performance on the
largest clusters) and thus optimizes intra-class variance that
is a rescaled indicator.

3.2.1. PROBLEM FORMULATION

In the following, we consider that the matrix F is a vari-
able (that depends on ϕ

θ

). The problem of minimizing the
discrepancy between the ground truth clustering C ∈ P of
the matrix F and the (relaxed) clustering ˆC predicted with
f(F ) in Eq. (4) can be formulated as the following empiri-
cal risk minimization problem:

min

F∈Fn
max

ˆ

C∈f(F )

‖C − ˆC‖2 (5)

As all the matrices in f(F ) have the same rank, we can
rewrite Eq. (5): ‖C − ˆC‖2 = ‖C‖2 + ‖ ˆC‖2 − 2 tr(C ˆC)
where ‖ ˆC‖2 = tr(

ˆC) = rank(

ˆC) = k is a constant.
Eq. (5) is then equivalent to the problem:

max

F∈Fn
min

ˆ

C∈f(F )

tr(C ˆC) (6)
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Algorithm 1 Deep Spectral Clustering Learning (DSCL)
input : Set of training examples (e.g. images) in X , embedding function �θ , number of iterations τ , learning rates η1, · · · , η�
1: for iteration t = 1 to τ do
2: Randomly sample n training examples x 1, · · · , xn ∈ X
3: Create representation matrix F ← [f1, · · · , fn]> ∈ F n s.t. ∀i ∈ { 1, · · · , n} , fi = �θ(x i)
4: Create rescaled gradientG← (I− FF †)C(F †)> (see Eq. (9)) whereC = Y Y † is the desired partition matrix of the n examples
5: Update the set of parameters θ of �θ by exploiting the rescaled gradient G and perform gradient step with learning rate ηt
6: end for

which is naturally lower bounded by (see details in supple-
mentary material):

max

F∈Fn
min

ˆ

C∈f(F )

tr(C ˆCFF †) = max

F∈Fn
tr(CFF †) (7)

where we use the fact that ∀ ˆC ∈ f(F ), ˆCFF † = FF †.
We note that Eq. (7) equals Eq. (6) if rank(F ) = k.

The difficulty of optimizing the problem in Eq. (7) is that it
depends on both F and F †. If we assume that rank(F ) is a
constant (with F not necessarily full rank) in Eq. (7), then
the problem is differentiable (Golub & Pereyra, 1973) and
the gradient of Eq. (7) w.r.t. F is:

�
F

= 2(I − FF †)C(F †)> (8)

where I is the identity matrix. Details on the gradient can
be found in the supplementary material. Our matrix F is
always full rank in our experiments1, so the constant rank
condition along the iterations is satisfied.

3.2.2. LOW ALGORITHMIC COMPLEXITY

We now show that in addition to having a closed-form ex-
pression, computing our gradient�

F

is efficient: the com-
plexity to compute it is linear in n and quadratic in d.

We note C = Y Y † ∈ P the ground truth partition matrix
where the matrix Y ∈ Yn×k is given: let y

c

be the c-th
column of Y , then the c-th column of (Y †)> can be written

1

max{1,y�c 1}
y

c

. The complexity to compute (Y †)> is linear
in n due to the sparsity of Y . (Y †)> is also sparse (i.e. it
contains n nonzero elements). We can then write �F

2

as:

G :=

�
F

2

=

(
Y − F [F †Y ]

)
[F †(Y †)>]> (9)

where [·] indicates d× k matrices which are computed effi-
ciently due to the sparsity of Y . The complexity to compute
F † is O(ndmin{n, d}) (i.e. O(nd2) as we assume d ≤ n).

3.2.3. DIRECT LOSS MINIMIZATION

Our method computes in closed-form the gradient of the
structured output prediction problem in Eq. (5) when
rank(F ) = k, and its algorithmic complexity is low.

1In our experiments, since the number of rows of F is greater
than its number of colums, F has full column rank.

To the best of our knowledge, although we exploit clas-
sic spectral relaxation results, our method is the first ap-
proach that includes the closed-form solution of the relaxed
kmeans problem (see Section 3.1) within a large margin
method for structured output. Even Mahalanobis metric
learning methods (Lajugie et al., 2014) cannot use such a
simplification due to the nature of their model, and the for-
mulation of their subgradient is then different.

Including the closed-form solution of the relaxed
kmeans algorithm results in a simple problem formula-
tion (see Eq. (7)). The resulting large margin optimization
problem is easy to optimize as we do not have to perform
loss-augmented inference during training.

3.3. Learning deep models

Our method can be used to learn neural networks with con-
ventional gradient-based methods by exploiting chain rule.
Our approach is illustrated in Algorithm 1.

In detail, we note a mini-batch matrix F = [f

1

, · · · , f
n

]

> ∈
Fn the concatenation into a single matrix of the n differ-
ent embedding representations ϕ

θ

(x

i

) = f

i

, where, for in-
stance, ϕ

θ

: X → F is a neural network embedding func-
tion and x

i

∈ X is an image. We can rewrite Eq. (7) as
a minimization problem by defining our loss function as a
function of the mini-batch representation matrix:

Loss(F ) := k − tr(CFF †) (10)

which is nonnegative and where C = Y Y † ∈ P is the
ground truth clustering matrix of F . The neural network ϕ

θ

is then learned via backpropagation as illustrated in Algo-
rithm 1 (i.e. using stochastic gradient descent with rescaled
gradient −G where G is defined in Eq. (9)).

We note that the structure of the learned neural network
is not limited to the case where F is Rd. For instance,
if the goal is to partition probability distributions with
KL-divergence, the set F can be constrained to be the d-
dimensional simplex {x ∈ [0, 1]d : x>1 = 1} by using a
softmax regression at the last layer of the neural network.

Regression problem: It is worth noting that�
F

is also the
gradient w.r.t. F of the nonlinear least squares problem:

max

F∈Fn
−1
2

‖FF † − C‖2 (11)
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where we assume that the rank of F is constant (otherwise,
the problem is not differentiable). Our solver can then be
seen as a gradient-based solver for the nonlinear regression
problem that iteratively decreases the distance ‖FF †−C‖.
In particular, the spectral relaxation proposed in Section 3.1
allows to write the set of predicted clusterings f(F ) as a
function of FF †, and the choice of the Frobenius norm to
compare clusterings makes our problem similar to a least
squares problem.

Given the least squares formulation of Eq. (11), one can see
that our problem focuses more on the similarity between
the matrices C and FF † than between C and the individ-
ual matrix F . Our problem can then be seen as a spectral
clustering algorithm as explained in the following.

3.4. Connection with spectral clustering

We now explain how our proposed method can be seen as
learning spectral clustering in a supervised way.

As explained in (Bach & Jordan, 2004; Von Luxburg,
2007), spectral clustering does not refer to one particu-
lar method but to a family of methods (e.g. (Shi & Ma-
lik, 2000)) that partition a dataset by exploiting the leading
eigenvectors of a similarity matrix. They rely on the eigen-
structure of a similarity matrix to partition examples into
disjoint clusters, with examples in the same cluster having
high similarity and examples in different clusters having
low similarity. In our case, as can be seen in Eq. (7), the
(kernel) similarity matrix is K = FF † = UU> where
U ∈ Rn×s is a matrix whose columns are the left-singular
vectors of F corresponding to its nonzero singular values
and where s = rank(F ). By definition, these left-singular
vectors of F are also the s leading eigenvectors of K.

It is worth noting that our approach is different from classic
spectral clustering approaches that perform clustering by
exploiting some Laplacian matrix of the similarity matrix.
Our approach directly performs clustering by exploiting the
leading eigenvectors of the similarity matrix K.

By increasing the value tr(CFF †) = tr(CUU>) at
each backpropagation iteration, the leading eigenvectors of
UU> = K become more similar to the leading eigen-
vectors of C. As C and K = UU> are both orthogonal
projection matrices, in the ideal case, tr(CUU>) is max-
imized when the column space of one of the two matri-
ces C or (UU>) is included in the column space of the
other matrix. In particular, if rank(C) = rank(UU>),
then tr(CUU>) is maximized iff C = UU> (Fan, 1949).
In this ideal case, we have argmax

ˆ

C∈P〈 ˆC,UU>〉 = {C},
which corresponds to the solution of Eq. (3) when replac-
ing F by U ; in other words, partitioning the rows of U with
kmeans will return the desired clustering matrix C.

It is then clear that comparing the similarity between the

rows of U (i.e. using spectral clustering) is at least as rel-
evant as comparing the rows of F to partition the dataset.
In our experiments, our method obtains better performance
when the left-singular vectors of the test set matrix are used
for partitioning rather than the learned features.

4. Experiments
The goal of metric learning is to learn a metric that can
be used to compare new examples, possibly from cate-
gories that were not in the training dataset. In this context,
the model is learned on a training dataset and tested on a
dataset that shares the same “semantical” metric and repre-
sents similar concepts. This allows to evaluate the gener-
alization ability of the model. Following the experimental
protocol described in (Song et al., 2016; 2017), we evaluate
our method on the following fine-grained datasets and use
the exact same train/test splits:

• The Caltech-UCSD Birds (CUB-200-2001) dataset (Wah
et al., 2011) is composed of 11,788 images of birds from
200 different species/categories. We split the first 100 cat-
egories for training (5,864 images) and the rest for test
(5,924 images).

• The CARS196 dataset (Krause et al., 2013) is composed
of 16,185 images of cars from 196 model categories. The
first 98 categories are used for training (8,054 images), the
rest for test (8,131 images).

• The Stanford Online Product (Song et al., 2016) dataset is
composed of 120,253 images from 22,634 online product
categories. It is partitioned into 59,551 images from 11,318
categories for training and 60,502 images from 11,316 cat-
egories for test.

In these experiments, the categories for training and the cat-
egories for testing are disjoint although they belong to the
same context (i.e. they all represent birds, cars or products).
This makes the problem challenging as deep models may
overfit on the training categories2. In the same way as the
baselines, we then perform early stopping.

4.1. Implementation details

We closely follow the experimental setup described in
(Song et al., 2016; 2017). In particular, we implemented
our method with the Tensorflow package (Abadi et al.,
2016) and used the Inception (Szegedy et al., 2015) net-
work with batch normalization (Ioffe & Szegedy, 2015)
pretrained on ImageNet/ILSVRC 2012-CLS (Russakovsky
et al., 2015), we fine-tuned the network on the training
datasets. We perform two types of fine-tuning:

2For instance, our model obtains more than 90% performance
for all the evaluation metrics on the training categories after 1000
iterations.
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Algorithm 2 DSCL Normalized Spectral Clustering
input : Test set Ft ∈ F nt , nt is the number of test examples
1: CreateMt ∈ Rnt× d by mean centering Ft

2: Create r = rank(Mt)
3: Create Ut = [u1, · · · , unt ]> ∈ Rnt× r s.t. MtM

†
t = UtU

>
t

4: Create T = [t 1, · · · , t nt ]> ∈ Rnt× r s.t. ∀i, t i = 1
‖ u i‖ 2 u i

5: partition the rows of T into k clusters with kmeans

• end-to-end: we fine-tune the model and update the pa-
rameters of all the layers of the neural network during back-
propagation. In this case, we perform 100 iterations of gra-
dient descent.

• last layer: we freeze all the parameters of the neural
network (pretrained on ImageNet) except those in the last
layer. Only the parameters in the last layer of the model are
updated. We perform 200 iterations of gradient descent.

In both cases, we remove the softmax function at the end
of the last layer.

The images are first resized to square size (256× 256) and
cropped at 227 × 227. For the dataset augmentation, we
use a random horizontal mirroring for training and a single
center crop for test. As in (Song et al., 2017) and unlike
(Sohn, 2016), we use a single crop per image.

We ran our experiments on a single Tesla P100 GPU with
16GB RAM, and used a standard Stochastic Gradient opti-
mizer. Our batch size is set to n = o×p = 18×70 = 1260,
our method backpropagates the loss in Eq. (10) for all
the examples in the batch. As Inception is a large model
and to fit into memory, we iteratively compute submatri-
ces F

i

∈ Fo and concatenate them into a single matrix
F = [F>

1

, · · · , F>
p

]

> ∈ Fn. Our method then computes
the gradient matrix G = [G>

1

, · · · , G>
p

]

> ∈ Rn×d defined
in Eq. (9), and minimizes the loss function 〈F,−G〉 =∑

p

i=1

〈F
i

,−G
i

〉 with gradient descent where −G is fixed.

Different embedding dimensionality values d ∈
{64, 128, 256, 512} are tested in (Song et al., 2016),
it is reported that d does not play a crucial role. In our
case, we then set our dimensionality d to be equal to the
number of categories k for the Birds and Cars datasets.

For the Products dataset which contains more than 10k cat-
egories, we observed as in (Sohn, 2016) that the larger the
value of d, the better the results. We then set d = 512 in
order to be fair with the other models and randomly sub-
sample 512 training categories.

4.2. Partitioning a test dataset

Partitioning a test dataset X
t

= [x

1

, · · · ,x
nt ]
> ∈ Xnt

(where x
i

∈ X is an image in these experiments, and n
t

is
the number of test examples) is done by first computing the
test representation matrix F

t

= [ϕ
θ

(x

1

), · · · ,ϕ
θ

(x

nt)]
> ∈

Fnt where ϕ
θ

is the learned embedding function, and then
applying a partition algorithm. The partition algorithm can
either be a standard clustering algorithm as described in
(Banerjee et al., 2005), or can exploit the connection of our
method with spectral clustering as explained in Section 3.4.

The spectral clustering (SC) algorithm that we use, which is
inspired by (Ng et al., 2002), is illustrated in Algorithm 2:
we first mean center F

t

(the mean of each column of the
resulting matrix M

t

is zero), then we extract the matrix U
t

that contains the leading left-singular vectors of the result-
ing matrix M

t

, the rows of U
t

are then �
2

-normalized and
partitioned with the usual kmeans algorithm.

To test our method without spectral clustering, we �
2

-
normalize the output representations as done in (Song et al.,
2017) and then apply the usual kmeans algorithm with the
squared Euclidean distance.

4.3. Quantitative results

We compare our method to current state-of-the-art metric
learning approaches in Tables 1 to 3 by evaluating the Nor-
malized Mutual Information (NMI) and Recall@K perfor-
mances. In particular, Recall@1 is a useful metric in zero-
shot learning contexts, it allows to assign the category of
a test image to the category of its nearest neighbor, it then
evaluates the generalization performance of a model to new
similar concepts. The scores for the following baselines
(Schroff et al., 2015; Song et al., 2016; Sohn, 2016; Song
et al., 2017) are reported from (Song et al., 2017) where the
methods are tested in a similar setup. As explained in the
related work (Section 5), the NMI-based approach (Song
et al., 2017) is the only baseline that is explicitly learned to
optimize a clustering criterion.

We also report the performance of the vanilla
GoogLeNet/Inception features pretrained on ImageNet,
and GoogLeNet features fine-tuned for classification with
softmax regression. In both cases, we report the results
obtained with Spectral Clustering (SC) as illustrated in
Algorithm 2, and without SC (as explained in the last
paragraph of Section 4.2). We report the scores for
�
2

-normalized features as they obtain better performance
than unnormalized features in our experiments.

Recognition performance: Our spectral clustering ap-
proach obtains state-of-the-art Recall@K performance on
all the datasets. Only the method in (Song et al., 2017)
obtains better NMI performance on Birds and Products,
this can be expected as the model in (Song et al., 2017) is
specifically learned to optimize the NMI evaluation metric.
Our choice to optimize the Frobenius norm which allows
to compute a gradient in closed-form then seems to be a
good trade-off for scalability as it obtains competitive NMI
results and state-of-the-art Recall@K performance.
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Table 1. NMI and Recall@K evaluation on the Birds (CUB-200-
2011) dataset

Method NMI R@1 R@2 R@4 R@8

Triplet s.h. (Schroff et al., 2015) 55.38 42.59 55.03 66.44 77.23
Lifted struct (Song et al., 2016) 56.50 43.57 56.55 68.59 79.63
Npairs (Sohn, 2016) 57.24 45.37 58.41 69.51 79.49
NMI-based (Song et al., 2017) 59.23 48.18 61.44 71.83 81.92

Vanilla GoogLeNet (with SC) 53.53 42.56 55.55 67.86 78.39
Vanilla GoogLeNet (without SC) 50.28 40.11 53.17 66.02 76.59
Softmax regression (with SC) 55.91 45.49 58.64 70.65 79.17
Softmax regression (without SC) 55.74 46.00 58.03 69.32 78.28

Ours (end-to-end/with SC) 58.12 49.78 62.56 73.55 82.78
Ours (end-to-end/without SC) 56.99 47.57 59.66 71.57 81.28
Ours (last layer/with SC) 59.16 53.22 66.09 76.70 85.33
Ours (last layer/without SC) 56.87 50.08 62.24 73.38 82.38

Table 2. NMI and Recall@K evaluation on the Cars196 dataset

Method NMI R@1 R@2 R@4 R@8

Triplet s.h. (Schroff et al., 2015) 53.35 51.54 63.78 73.52 82.41
Lifted struct (Song et al., 2016) 56.88 52.98 65.70 76.01 84.27
Npairs (Sohn, 2016) 57.79 53.90 66.76 77.75 86.35
NMI-based (Song et al., 2017) 59.04 58.11 70.64 80.27 87.81

Vanilla GoogLeNet (with SC) 44.53 35.37 47.32 60.60 71.69
Vanilla GoogLeNet (without SC) 47.99 35.56 47.27 59.37 72.16
Softmax regression (with SC) 53.13 50.11 60.49 71.68 80.14
Softmax regression (without SC) 52.13 48.75 58.52 70.97 78.37

Ours (end-to-end/with SC) 58.04 59.37 71.25 80.62 88.32
Ours (end-to-end/without SC) 56.08 57.08 69.23 79.39 87.46
Ours (last layer/with SC) 64.25 73.07 82.19 89.01 92.99
Ours (last layer/without SC) 61.12 67.54 77.77 85.74 90.95

Table 3. NMI and Recall@K evaluation on the Products (Stan-
ford Online Products) dataset

Method NMI R@1 R@10 R@100

Triplet s.h. (Schroff et al., 2015) 89.46 66.67 82.39 91.85
Lifted struct (Song et al., 2016) 88.65 62.46 80.81 91.93
Npairs (Sohn, 2016) 89.37 66.41 83.24 93.00
NMI-based (Song et al., 2017) 89.48 67.02 83.65 93.23

Vanilla GoogLeNet (with SC) 56.01 44.09 61.32 77.82
Vanilla GoogLeNet (without SC) 55.32 43.73 60.84 76.54
Softmax regression (with SC) 63.53 51.95 69.83 85.36
Softmax regression (without SC) 63.10 51.65 69.75 85.32

Ours (end-to-end/with SC) 89.40 67.59 83.71 93.25
Ours (end-to-end/without SC) 88.70 64.52 81.53 92.35
Ours (last layer/with SC) 88.75 65.30 81.50 92.40
Ours (last layer/without SC) 86.95 64.90 78.05 91.50

The usual kmeans algorithm applied on the representa-
tions of our learned model obtains worse results than our
proposed spectral clustering (SC) approach. It obtains bet-
ter performance than most baselines on Birds and Cars, but
also poor results on the Products dataset. This may be ex-
plained by the fact that there are only 5.3 images per cat-
egory in this dataset, which is 10 times less than for the
other datasets. Some categories also contain only 2 images,
which is hard to generalize on. Our approach is then more
appropriate when the categories are large (i.e.more than 50
images) than when there are many (very) small clusters.

We also note that when our model updates only the last
layer during fine-tuning, it obtains state-of-the-art perfor-
mance on Birds and Cars, but not as good as our fully
learned model on the Products dataset. The strong results
on the former two is likely due to their small size (fewer
than 10k training images); which makes learning all the
layers prone to overfitting. Learning in all layers seems
beneficial on larger datasets such as Products.

We observe that most baselines (Schroff et al., 2015; Sohn,
2016; Song et al., 2017) and our spectral method obtain
comparable results on the Products dataset. There is then
not a clear way to learn deep models in contexts with small
categories. On the other hand, there is a huge gap in
Recall@K performance on the other datasets between ap-
proaches that optimize clustering and approaches that do
not. The largest performance gap is observed on the Cars
dataset which contains the largest number of images per
category (more than 80).

It is also worth noting that unlike usual softmax regression
for classification that promotes centroids to be one-hot vec-
tors in the ideal case, our approach takes as input the cur-
rent representations and tries to group similar examples to-
gether without fixing the desired centroids. It can then be
easily combined with other approaches.

Training time: Once the matrix representation of the mini-
batch F ∈ Fn has been computed, computing the gradient
G takes 1 second (with n = 1280 and d = 100). Since
we backpropagate our loss for all the examples in the mini-
batch, each iteration takes about 50 seconds due to the large
architecture of Inception. Nevertheless, multiple GPUs can
be used in parallel to speed up training.

Qualitative results: t-SNE (Van Der Maaten, 2014) plots
are available in the supplementary material.

5. Related work
As explained in Section 1, many approaches have been pro-
posed to learn a similarity metric (Xing et al., 2002; Bar-
Hillel et al., 2005; Lajugie et al., 2014; Law et al., 2016;
2017b) or a nonlinear embedding function (Schroff et al.,
2015; Song et al., 2017) optimized to perform clustering.
However, most of them belong to the semi-supervised set-
ting (Xing et al., 2002; Bar-Hillel et al., 2005; Schroff et al.,
2015), i.e. they are designed to learn from small sets of
pairwise or triplet-wise relations and do not account for
the global clustering performance on the training dataset.
In pairwise approaches, the model is given pairs of exam-
ples (x

i

,x
j

) which are either similar (e.g. the examples are
in the same category) or dissimilar (e.g. the examples are
in different categories), the model is then learned so that
the distances between representations of similar objects
are smaller than the distances between dissimilar objects.
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In the triplet-wise approach (Schultz & Joachims, 2003;
Weinberger et al., 2006), triplets of examples (x

i

,x+

i

,x−
i

)

are provided and the model is learned so that the distance
between the representations of the pair (x

i

,x+

i

) is smaller
than for the pair (x

i

,x−
i

). We focus on the supervised clus-
tering setting which considers all the possible similar and
dissimilar pairs and takes into account the global clustering
structure of the training dataset (here a mini-batch).

In the shallow metric learning literature, (Lajugie et al.,
2014; Law et al., 2016) learn a linear transformation in the
supervised clustering setting so that the partition obtained
when using kmeans on a dataset is as close as possible to
the desired partition. However, they both consider that the
data representation is fixed and are limited by the complex-
ity of their linear model. Moreover, their solvers are very
different from ours. Lajugie et al. (2014) propose an ex-
tension of the structural SVM (Tsochantaridis et al., 2005)
for Mahalanobis distances, and their projected subgradient
method thus has high complexity. Law et al. (2016) pro-
pose a closed-form solver but the method is limited to the
case where there is a single training dataset and they do not
provide gradient-based strategies to optimize other types of
models such as neural networks.

In the deep learning literature, Song et al. (2016) proposed
to approximate a loss function that considers all the positive
and negative pairs. To this end, they iteratively randomly
sample a few similar pairs, and then actively add their diffi-
cult neighbors to the training mini-batch. This idea is sim-
ilar to the idea of active set of constraints used in (Wein-
berger & Saul, 2009; Law et al., 2017a) to limit the num-
ber of active constraints (i.e. the number of constraints that
have nonzero subgradients) and be able to optimize over
large numbers of triplets. Although their approach con-
siders most of the similarity relations, it is not optimized to
group all the similar examples into the same unique cluster.
Indeed, each category can be divided in multiple subclus-
ters as explained in (Song et al., 2017).

Sohn (2016) proposed to tackle the problem of slow con-
vergence of triplet-wise approaches (caused by hard nega-
tive mining) by optimizing losses over (n + 1)-tuplets. In
particular, an efficient batch construction method is pro-
posed to require 2n examples instead of the naı̈ve (n+1)n
to build n tuplets of length (n + 1). The loss func-
tion recruits multiple distances between dissimilar exam-
ples from different categories and approximates the ideal
loss that minimizes the distances between similar examples
while maximizing the distances between dissimilar exam-
ples. This approach considers the global structure of the
representation of mini-batches better than triplet-wise ap-
proaches. However, although it does take into account most
distances in the mini-batch, it does not explicitly optimize
the model so that it obtains good clustering performance.

In the deep metric learning literature, the most similar ap-
proach to ours is (Song et al., 2017). They select for
each category one unique example that will be the medoid
(i.e. representative example). The choice of the medoids
is not discussed and may be problematic if there is noise
in the labels. In contrast, our centroids are learned so that
they are the mean vectors of the training examples. Indeed,
our set of centroids is written Z =

ˆY †F where F ∈ Fn is
the representation of our mini-batch and ˆY is implicitly in-
cluded in the formulation of the set Cn,k. Our optimization
problem then learns a data representation such that training
examples are projected close to their respective centroids.
Moreover, the gradient in (Song et al., 2017) requires an it-
erative greedy algorithm and each iteration of their greedy
algorithm has higher complexity than the complexity of
computing our gradient (we set the dimensionality d of
our learned representations to be k). Each iteration of the
greedy algorithm is linear in the size of the mini-batch and
cubic in the number of categories in the mini-batch.

Deep learning was also used in (Ionescu et al., 2015) to
learn a convolutional neural network optimized for cluster-
ing. However, it is applied to unsupervised image segmen-
tation with normalized cuts (Shi & Malik, 2000). We are
interested in this paper in the supervised clustering setting
where the ground truth partition is provided. Another deep
clustering approach was proposed in (Hershey et al., 2016).
However, their model is not optimized to be robust to the
size of the different clusters as discussed in Section 3.2.

6. Conclusion
We have presented a novel deep learning approach opti-
mized for the supervised clustering task. Our method is
simple to implement and scalable thanks to its low algorith-
mic complexity. It also obtains state-of-the-art recall@K
performance on different standard fine-grained datasets.
Future work includes improving our proposed solver by ex-
ploiting the results in (Ionescu et al., 2015) which take into
account the structure of the neural network instead of using
a standard stochastic gradient descent solver.
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