

Yujia Li **Daniel Tarlow Richard Zemel**

University of Toronto, Canada

Structured Output Learning

Real applications require structured prediction

Potential

 $v_{\rm max}$

Pattern

Weights

5

• Standard Model: Pairwise MRF/CRF

$$E(\mathbf{y}) = \sum_{i} f_i^u(y_i) + \sum_{ij} f_{ij}^p(y_i, y_j)$$

– Sparse connection - easier learning and inference

Overly simplistic - only modeling pairwise correlations

Pattern Potentials

• Penalize linearly if output deviates from a pattern

$$d(\mathbf{y}) = \sum_{i} abs(w_i) \mathbf{I}[y_i \neq Y_i]$$

$$f(\mathbf{y}) = \min\{d(\mathbf{y}) + \theta_0, \theta_{\max}\}\$$

– Min

$$f^{s}(\mathbf{y}) = \sum_{j} \min\{d_{j}(\mathbf{y}) + \theta_{j}, \theta_{\max}\}$$

$$f^{m}(\mathbf{y}) = \min\{d_{1}(\mathbf{y}) + \theta_{1}, ..., d_{J}(\mathbf{y}) + \theta_{J}, \theta_{\max}\}$$

RBMs are like Pattern Potentials

$$E(\mathbf{y}, \mathbf{h}) = -\sum_{ij} w_{ij} y_i h_j - \sum_i b_i y_i - \sum_j c_j h_j$$

$$F(\mathbf{y}) = -\sum_i b_i y_i \left[-\log\left(\sum_{\mathbf{h}} \exp\left(\sum_j \left(c_j + \sum_i w_{ij} y_i\right) h_j\right)\right)\right]$$
Standard RBM
$$-\sum_j \log(1 + \exp(c_j + w_{ij} y_i)) -\log\left(1 + \sum_j \exp(c'_j + w'_{ij} y_i)\right)$$

$$\min\{x, 0\} \approx -\log(1 + \exp(-x)) - \min\{x_1, \dots, x_J, 0\} \approx -\log\left(1 + \sum_j \exp(-x_j)\right)$$

Exploring Compositional High Order Pattern Potentials for Structured Output Learning

Potential

|-I

$$f(\mathbf{y};T) = -T \log \left(\sum_{\mathbf{h}} \exp \left(\frac{1}{T} \sum_{j} \left(c_{j} + \sum_{j} \right) \right) \right)$$

 CHOPP interpolates RBMs and Pattern Potentials, as well as different composition strategies

Sparsity on **h**

CHODD

1-of-J	Pattern Potential "min" composition		Extre
<i>Cardinality</i> <i>potential?</i>			
No sparsity	Pattern Potential "sum" composition		Stan
	T=0 Min out h	<i>Multiple modes?</i>	Su

• CHOPP-augmented CRFs

$$E(\mathbf{y};T) = f^{u}(\mathbf{y}) + f^{p}(\mathbf{y}) + \sum_{i} b_{i}y_{i} + T\log\left(\sum_{\mathbf{h}} \exp\left(\frac{1}{T}\sum_{j} \left(c_{j} + \sum_{i} w_{ij}y_{i}\right)h_{j}\right)\right)$$

MAP Inference with the "EM" Algorithm

Variational bound

$$-E(\mathbf{y};T) \ge f^u(\mathbf{y}) + f^p(\mathbf{y}) + \sum_i b_i y_i + \sum_{\mathbf{h}} q(\mathbf{h}) \sum_j \left(c_j + \sum_i w_{ij} y_i\right) h_j + H(q)$$

• E-step: compute optimal q(**h**) with **y** fixed

$$q(\mathbf{h}) = \frac{\exp\left(\frac{1}{T}\sum_{j}\left(c_{j} + \sum_{i}w_{ij}y_{i}\right)h_{j}\right)}{\sum_{\mathbf{h}}\exp\left(\frac{1}{T}\sum_{j}\left(c_{j} + \sum_{i}w_{ij}y_{i}\right)h_{j}\right)}$$

M-step: change y with q fixed

$$\sum_{i} \left(b_i + \sum_{j} w_{ij} \mathbb{E}_q[h_j] \right) y_i + f^u(\mathbf{y}) + .$$

New unary potential

The EM algorithm always increases the bound

mely Sparse RBMs

dard RBMs

T=1ım out **h**

 $f^p(\mathbf{y})$ This is a pairwise CRF!

Learning CHOPP Parameters

• Minimize expected loss

 $L = \sum p(\mathbf{y}|\mathbf{x})\ell(\mathbf{y},\mathbf{y}^*)$

• Follow the negative gradient estimated by a set of samples

$$\frac{\partial L}{\partial \theta} \approx \frac{1}{N-1} \sum_{n=1}^{N} \left(\ell(\mathbf{y}^n, \mathbf{y}^*) \right)$$

- Increase energy for samples with high loss
- Decrease energy for samples with low loss

Experiments

• An example using RBM trained with CD

Unary Prediction

Pairwise Initialize EM

with this

More experiments

Method	Horse IOU	Bird IOU	Person IOU
Unary Only	0.5119	0.5055	0.4979
iPW	0.5736	0.5585	0.5094
iPW+RBM	0.6722	0.5647	0.5126
iPW+jRBM	0.6990	0.5773	0.5253

 $\left(-\frac{1}{N}\sum_{i=1}^{N}\ell(\mathbf{y}^{n'},\mathbf{y}^{*})\right)\left(-\frac{\partial E(\mathbf{y}^{n})}{\partial\theta}\right)$