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Pattern Potentials

Standard Model: Pairwise MRF/CRF
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CHOPP interpolates RBMs and Pattern Potentials, 
as well as different composition strategies
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p(y|Eq[h]) what the RBM thinks about y

y computed using Graph Cut

An example using RBM trained with CD

E-step: compute optimal q(h) with y fixed

M-step: change y with q fixed

New unary potential
This is a

pairwise CRF!

Learning CHOPP Parameters

The EM algorithm always increases the bound

Minimize expected loss

Follow the negative gradient estimated by a set of samples

– Increase energy for samples with high loss

– Decrease energy for samples with low loss

Experiments

Learned Filters

More experiments
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Standard RBM 1-of-J constraint

Figures: Weizmann horses dataset and http://www.vision.ee.ethz.ch/~hpedemo/fullhpedemo.png


