CSC 2515

Introdution to Machine Learning

Lectures:	Thursday 2:10-4
Lecture Room:	Bahen 1160
Instructor:	Richard Zemel
Instructor email:	<csc2515prof@cs.toronto.edu></csc2515prof@cs.toronto.edu>
Office hours:	Thursday 4-5 Pratt 290D
TA email:	<csc2515ta@cs.toronto.edu></csc2515ta@cs.toronto.edu>
Tutorials:	Tuesday 3:10-4
Tutorial Room:	Same as lecture
Class URL:	www.cs.toronto.edu/~zemel/Courses/CS2515

Readings

There is no required textbook for this course. There are several recommended books. On the course webpage I will post pointers to relevant readings from *Pattern Recognition and Machine Learning* by Chris Bishop and and from *Machine Learning: A Probabilistic Perspective* by Kevin Murphy. I will also provide pointers to other online resources.

Questions & discussion

We will be using Piazza, at piazza.com/utoronto.ca/fall2015/csc2515/home, in the class for questions and discussion and also for announcements. Register to have access at: piazza.com/utoronto.ca/fall2015/csc2515.

Course requirements and grading

The format of the class will be lecture, with some discussion. I strongly encourage interaction and questions. There are assigned readings for each lecture that are intended to prepare you to participate in the class discussion for that day.

The grading in the class will be divided up as follows:

Assignments	40%
Exam	25%
Project	35%

There will be two assignments; each is worth 20% of your grade.

Exams

There will be an exam in the last class meeting, on December 3^{rd} , which will be a closed book exam on all material covered up in the lectures, tutorials, and assignments. You will only be responsible for topics in the readings covered in the lectures, tutorials, and assignments.

CLASS SCHEDULE

Shown below are the topics for lectures and tutorials (in italics), as are the dates that each assignment will be handed out and is due. All of these are subject to change. The notes from each lecture and tutorial will be available on the class web-site the day of the class meeting.

Date	Торіс	Assignments
Sep 17	Introduction	
Sep 22	Probability for ML & Linear regression	
Sep 24	Basic Methods & Concepts	
Sep 29	Optimization for ML	
Oct 1	Nonparametric methods	Asst 1 Out
Oct 6	kNN & Decision trees	
Oct 8	Probabilistic Classifiers	
Oct 13	Naive Bayes & Gaussian Bayes classifiers	
Oct 15	Neural Networks	
Oct 20	Deep learning	Asst 1 In
Oct 22	Clustering	
Oct 27	Mixtures of Gaussians	Asst 2 Out
Oct 29	Continuous Latent Variable Models	Project Proposals In
Nov 3	PCA	
Nov 5	Kernel Methods	
Nov 10	SVMs	Asst 2 In
Nov 12	Structured Prediction Models	
Nov 17	Structured SVMs	
Nov 19	Ensemble Methods	
Nov 24	Boosting & Mixture of experts	
Nov 26	Reinforcement Learning	
Dec 1	Review for Test	
Dec 3	Test; Speech Recognition	
Dec 16		Projects In