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Dynamic Cue Combination in Distributional
Population Code Networks
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INTRODUCTION

In this chapter, we investigate how hierarchical
networks of neural populations might code
stable representations of transient stimulus
variables along with the uncertainty about
them, while allowing consistent semantics of
inputs and outputs at every level of the neural
hierarchy. One effective paradigm to study this
question is the integration of information from
multiple sensory sources. Significant behavioral
and neurophysiological evidence substantiates
the notion that when separate sensory modalities
receive correlated inputs about an external
stimulus, the information is often combined
to produce a coherent, unitary percept of the
world (Stein & Meredith, 1993). This ability
of neural systems to combine information
from multiple sources affords considerable,
ecologically relevant advantages. For instance, it
has been shown to attenuate the effects of input
variability owing to noise, thereby reducing the
overall uncertainty in the final estimate of the
stimulus variable.

Sensory cue integration and sensorimotor
combinations involve many important and
challenging statistical issues; for example, the
different sources of information are not equally
reliable, and their reliability can change with
changing stimulus conditions and task demands.
Bayesian probability theory has provided a
normative framework for predicting how
sensory systems might integrate information
optimally, to make perceptual inferences about

the environment from noisy sensory data. These
predictions have been quantitatively tested using
psychophysical experiments that examine what
computations are performed when reliability
of the cues changes over time. Results from
widely ranging studies of human cue integration
are consistent in that subjects behave in a
manner that takes the uncertainty in sensory
inputs into account, to form statistically optimal
estimates of stimulus variables (see Knill &
Pouget, 2004, for a review). Several different
computational strategies have been proposed
and validated; some examples are linear weighted
averaging (Hillis, Watt, Landy, & Banks, 2004;
Jacobs, 1999; Knill & Saunders, 2003; van
Beers, Sittig, & van der Gon, 1999), extensions
thereof (Landy, Maloney, Johnston, & Young,
1995), multiplicative interactions, and fully
probabilistic linear and nonlinear Bayesian
inference (Knill, 2003).

Regardless of the exact inference strategy,
the common theme in all these studies is
that sensory uncertainty determines the optimal
weighting scheme for combining sensory inputs
for perceptual judgments. Similarly, studies
also demonstrate that sensory and motor
uncertainties determine how sensory signals
should be transformed and used to plan actions
and guide behavior. An example of a com-
monly used paradigm involves manipulating
continuous visual feedback from the hand to
control pointing movements. Subjects are able to
compensate for experimentally induced changes
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in sensory (such as position and velocity) and
motor uncertainties and optimally adjust the
degree to which they rely on the feedback to
make corrections (Körding & Wolpert, 2004;
Saunders & Knill, 2003, 2004).

What is less clear is how neural systems might
represent information about the various cues,
to implement these putative computations in a
manner sensitive to the uncertainties about the
cues. More generally, because of the noise and
ambiguities inherent in sensory inputs, many
perceptual tasks are better viewed as statistical-
inference problems. One normative hypothesis
is that the brain represents and computes with
probability distributions over all the different
stimuli that are consistent with the inputs,
as opposed to unitary estimates of stimulus
variables (Zemel, Dayan, & Pouget, 1998).

In this chapter, we consider how a network
consisting of several neural populations can rep-
resent and combine information from multiple
cues in a statistically optimal manner, in order
to carry out proper probabilistic inference. We
then take this aim a step further, considering
time-varying inputs. If the neural system can
maintain, at each stage of local computation,
full distributions over all possible stimulus
values, it can allow considerable flexibility
in accommodating changing cue uncertainties.
This representational scheme thus pushes the
envelope on current psychophysical studies
of cue combination, yielding a computational
network of neural populations where the
responses approximate proper inference even
when cues’ values and uncertainties vary rapidly.

Influential ideas abound regarding how neu-
ral systems might encode (Jazayeri & Movshon,
2006; Rao, Olshausen, & Lewicki, 2002) and
interpret (decode) probability distributions over
stimulus variables (Deneve, Latham, & Pouget,
1999; Paradiso, 1988; Seung & Sompolinsky,
1993; Snippe & Koenderink, 1992), and how
various computations, including uncertainty-
sensitive, Bayesian optimal statistical processing,
might be performed through feedforward and
recurrent connections between neural popula-
tions (Deneve, Latham, & Pouget, 2001; Pouget,
Zhang, Deneve, & Latham, 1998). However,
theoretical investigations have for the most part

neglected the temporal dimension of coding;
often, the stimuli are treated as being discrete
rather than evolving along full trajectories
(Brunel & Nadal, 1998; Van Rullen & Thorpe,
2001). Otherwise it is assumed that encoded
stimulus variables do not vary quickly with
time, and therefore population spike counts as
opposed to actual timing of spikes suffice.

In this chapter we consider how a neural
system could properly combine cues even
as their reliabilities change dynamically and
continuously in time. The rest of the chapter is
organized as follows: The next section describes
a framework for characterizing how uncertain
information may be represented in population
codes, and how the representation may be
optimized to facilitate optimal decoding. We
then motivate and present a coding scheme
within this framework that applies to time-
varying stimulus variables. Next, we describe
a hierarchical network setup that utilizes this
coding approach, and we demonstrate an
application to a dynamic cue-combination task,
a novel adaptation of a sensorimotor task
(Körding & Wolpert, 2004). Specifically, we con-
sider how a neural population might recursively
integrate dynamic inputs from multiple sensory
modalities with learned prior information, to
determine appropriate motor commands that
control behavior. Then, we present results
of simulated experiments with this network.
Finally, we discuss implications of this scheme
and suggest some future directions.

APPROXIMATING
PROBABILISTIC INFERENCE
IN POPULATION-CODE
NETWORKS

To illustrate the cue-combination process that
we address in this chapter, let us consider
a simple target-localization task that involves
pointing a finger at a visual target. The
computational problem entails extracting a task-
relevant physical attribute of the environment
from multisensory data. In this case, we compute
the amount of displacement sc of the finger
from the current location to the target position.
Several useful cues (i.e., functions of the sensory
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input; see definition in Chapter 5) are available
in this context. In our example, we employ a
visual cue sv signaling the visual location of the
target, and a proprioceptive cue sp conveying
information about the position of the finger.

We begin by assuming that the basic repre-
sentations in the network are population codes;
that is, information about sensory and motor
variables is represented in the joint spiking
activity of large populations of neurons (Barlow,
1953; Georgopoulos, Schwartz, & Kettner, 1983).
It is impossible to infer the exact location of
the target or the finger position from the neural
activity due to uncertainty that arises from noise
in sensation and the sensorimotor transmission
process, as well as potential ambiguities in the
stimulus such as low-contrast visual information
about target location. Hence, the population
codes are treated as encoding whole probability
density functions (PDFs) over the underlying
variables rather than just a single best estimate.
The goal is to provide a rich representation of
uncertainty in the aspects of the stimuli that are
represented (see Pouget, Dayan, & Zemel, 2003,
for a review).

We formulate a neural implementation
that respects or aims to closely approximate
proper combination of probabilistic informa-
tion. According to the probabilistic population-
coding hypothesis, explicit activities ρ = {ρi} of
multiple neurons i = {1, 2, 3, . . . , n} represent
a probability distribution p(s|ρ) over an implicit
underlying variable s (such as the position
of the target), using some encoding scheme;
decoding then describes how the distribution
can be recovered from the population activity
(Anderson, 1994; Rao et al., 2002; Zemel
et al., 1998). One proposal for a neural
implementation of cue combination using the
distributional coding scheme entailed specifying
a simple two-layer feedforward network (Zemel
& Dayan, 1997). In the context of the target-
localization task we described earlier, the
first layer consists of separate populations of
visual and proprioceptive neurons that encode
probability distributions p(sv |ρv) and p(sp|ρp)
over visual and proprioceptive positions, in
their neural activities ρv and ρp , respectively.
Representing a complete distribution in this

manner may be essential for correctly com-
bining information from the different sensory
sources, if the statistical relationship between the
inputs (visual and proprioceptive) and outputs
(displacement sc) is to be preserved.

Cue combination can then be cast as the
problem of inferring the distribution over
sc based on the inputs ρv and ρp , that is,
p(sc |ρv , ρp). Given that the inputs specify
probability distributions p(sv |ρv) and p(sp|ρp)
according to some encoding scheme, the Bayes-
optimal method of performing inference in
this approach is specified as follows (Zemel &
Dayan, 1997):

p(sc |ρv , ρp) =
∫

sv ,sp
p(sv |ρv)p(sp|ρp)

× p(sc |sv , sp)dsvdsp (20.1)

∝ p(sc)

∫
sv ,sp

p(sv |ρv)p(sp|ρp)

× p(sv , sp|sc)dsvdsp, (20.2)

where p(sc) is the prior distribution over sc .
We will assume that the information in the
different inputs is independent and that there is a
probabilistic generative model that specifies how
the distribution p(sv , sp|sc) over possible visual
target and proprioceptive finger locations is
produced, for any given displacement sc . Eq. 20.2
establishes the ideal observer, or the standard by
which inferences about the distribution over sc

should be judged.
Computations in the network are guided by

this probabilistic formulation. The feedforward
connections determine how ρv and ρp are
combined to produce ρc , such that ρc defines a
distribution that approximates Eq. 20.2 as closely
as possible. Figure 20.1 illustrates the generative
and recognition operations, showing the activi-
ties, the distributions that they represent, and the
various probabilistic relationships.

This formulation requires specifying a form
for the decoder that determines how the distri-
bution is derived from the activities, and then
optimizing the network synaptic connections
to approximate the ideal observer under the
specified encoding and decoding schemes. One
possible form of decoding is a kernel density
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Figure 20.1 An example of a network formulated to combine population code representations of PDFs.
The elements shown in solid lines depict explicit network components, including the population responses
(ρv , ρp, ρc ). The elements shown in dashed lines are the implicit components, i.e., the probabilistic
information represented by the explicit network components. The probabilistic combination provides the
target for the network population codes and weights; the decoded distribution p̂(s|ρ) should match the
posterior distribution p̂(s|ρ) obtained by Bayesian inference given the input PDFs p(sv |ρv) and p(sp|ρp).

estimate, in which the PDF is a sum of PDFs pro-
posed by each neuron in the population weighted
by its activity (Anderson, 1994); a second is
a more optimal but complicated maximum-
likelihood scheme (Zemel et al., 1998). An
alternative decoding approach decodes the
PDF as a log-linear combination of the PDFs
proposed by each neuron (Hinton, 1999):

p̂(s|ρ) ∝
∏

i
p̂i(s|ρ i)

ρi

= exp

(∑
i

ρ i log p̂i(s|ρ i)

)
. (20.3)

We have applied this product-of-experts formu-
lation (Huys, Zemel, Natarajan, & Dayan, 2007;
Natarajan, Huys, Dayan, & Zemel; 2008) and
shown that this scheme has the attractive feature
of allowing each neuron to be considered
independently of the others, while permitting a
wide variety of PDFs. Note in particular that this
product representation can produce much more
peaked distributions than the kernel density
estimate, which involves a linear combination of
PDFs.

Given this decoder, computation in neural
circuitry can be optimized such that applying
this simple decoder to the network outputs will

approximate the target distribution (Eq. 20.2)
as faithfully as possible. An important point is
that we are not proposing that neural circuits
actually perform decoding at each level. Rather,
the motivation for using this simple decoder is
to explore whether a coding scheme can be found
that will approximate proper inference, when
the information about the relevant variable(s) at
each level can be easily accessed, as in a log-linear
decoding scheme.

This framework, along with this product-
of-experts decoder, bears an interesting rela-
tionship to other recent proposals, notably
the probabilistic population codes of Pouget
and colleagues (Ma, Beck, Latham, & Pouget,
2006). Adopting the same decoder, they show
that under some limited assumptions about
the individual neuron’s PDFs (p̂i(s|ρ i)), several
natural computations can be carried out by linear
operations on activities in the input populations.

DYNAMIC PROBABILISTIC
POPULATION CODES

Time-Varying Continuous Inputs

The formulation described earlier readily applies
to static cue-integration problems, in which cue
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weights are assumed to remain constant over
time. In this section, we consider a more realistic
situation in which the input forms a continuous
stream and the underlying variable of interest
follows some trajectory. Hence, information
from each cue can accrue over time in ways
that affect how the different cues are combined
dynamically.

To consider continuous, dynamic inputs, we
switch the description of the neural activity
from rate based to spike trains. We also
adopt a different version of the decoder, which
ignores correlations in the inputs and treats
each spike independently, linearly integrating
the information conveyed by them. The log-
linear spike decoder (Hinton & Brown, 2000)
fits these desiderata, and it can be seen as
a simple extension of the product-of-experts
decoder described in the previous section
to spiking inputs, where the effect of past
spikes decays exponentially over time. Here
again, the motivation for this decoder is that
the information necessary to perform proper
probabilistic inference is available in a form
that biological neurons might reasonably be
expected to access.

Deriving an Optimal Time-Varying Target
Distribution Consider a dynamic stimulus
variable, say the position of a visual target,
that evolves over time forming a trajectory
defined by �sT = {s1, · · · , st , · · · , sT }, where st

is the position at time t . Thus, �sT defines the
trajectory through which this object moves in
the world. Note that we employ a discrete time
representation. A population of neurons i =
{1, 2, . . . ,N } that responds selectively to the
position generates a population spike sequence
�ξT = {ξ1, · · · , ξt , · · · , ξT }, where ξt is a binary
spike vector at time t , such that ξ i

t is 1 when
neuron i spikes at time t .1

We assume that the spikes �ξT are generated
by an encoding model P(�ξT |�sT ) that specifies
the probability of a particular population spike
sequence being evoked by the trajectory �sT . Since
neural spiking is stochastic and not capable of
representing the stimulus value exactly, we con-
sider the population response to implicitly define
a distribution over likely stimulus trajectories.

Then, the posterior distribution p(sT |�ξT ) over
stimulus positions can be estimated as a Bayesian
inverse of the respective encoding model. Thus,
we adopt the filtering goal of estimating the
posterior distribution over trajectories implied
by the input spikes, rather than the prediction
one of making an estimate about the future
course of the trajectory.

Spike-Generation Model We adopt a stan-
dard (tuning curve plus noise) spike-generation
model for the set of all the J spikes ξς ≡ {ξ i

tj
}J

j=1

at times 0 < {tj}J
j=1 ≤ T evoked by the trajectory

�sT , where ς is a collection of all spike times.
Under this model, the population response is
governed by neurons whose expected responses
are defined by partially overlapping Gaussian
tuning functions, and whose stochastic observed
responses are modeled as Poisson variables. The
spikes are probabilistically related to the stimulus
by means of a tuning function defined for each
neuron i in the population as follows:

fi(stj
) = rmax exp

(
−

(stj
− θi)

2

2σ 2

)
, (20.4)

where stj
is the value of the stimulus variable

at time tj , θi is the preferred stimulus value
of neuron i, rmax is the maximum input firing
rate and σ is the tuning width. By this simple
Gaussian definition, each neuron fires maximally
at its preferred value θi and the activity drops off
monotonically according to σ , as the stimulus stj

drifts away from θi .
The actual observed spikes are generated

as inhomogeneous and instantaneous Poisson
processes governed by the tuning functions
(Barbieri et al., 2004; Brown, Frank, Tang, Quirk,
& Wilson, 1998):

P(�ξς |�sT )∝
⎛
⎝∏

j

fi(j)(stj
)

⎞
⎠exp

(
−
∑

i

∑
t

fi(st )

)
.

(20.5)

This spiking model entails some assumptions
about the tuning properties and response of the
input neurons. In our abstraction, the spikes
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are conditionally independent events given the
stimulus and the current response is indepen-
dent of past activity. The tuning properties of the
input population are constrained such that each
neuron has the same maximum firing rate and
tuning width. Furthermore, the tuning functions
are assumed to span the stimulus state-space
evenly and densely such that

∑
i

∑
t fi(st ) is

approximately a constant. This leads to:

P(�ξς |�sT ) ∝
∏

j

fi(j)(stj
). (20.6)

Substituting for the tuning function from
Eq. 20.4, the input spike generation model
is then:

P(�ξς |�sT ) ∝ rmax

× exp

⎛
⎜⎝−

(
�sς − �θ(T )

)T (�sς − �θ(T )
)

2σ 2

⎞
⎟⎠ .

(20.7)

where �sς is the vector of all the stimulus

positions ordered by spike time, and �θ(T ) is
the corresponding vector of preferred stimulus
values of the spiking neurons.

Ideal Observer In Huys et al. (2007) we
investigated the computational consequences
of probabilistically encoding such stimulus
trajectories in the spiking activity of populations
of neurons. We summarize the basic setup and
findings here. We first specify a prior over
trajectories. The trajectories are defined over
continuous time, and they are assumed to be
drawn from a Gaussian process (GP). This
means that for any finite collection of times
� = {ti}, the stimulus values s� are drawn from
a multivariate Gaussian distribution with mean
m and covariance matrix C :

p(ϕ(0,T )) ∼ N (m,C) Cti tj

= c exp

(
−α

∥∥∥ti − tj

∥∥∥ζ
)
, (20.8)

where C is the matrix of Cti tj
at the discretized

times. Different values of ζ determine the
different classes of prior distributions over

trajectories, and c parameterizes the overall scale
of the process. The value of α scales the temporal
extent of the interactions in the stimulus.

Under the assumptions described above,
the posterior distribution for an observed
population spike train can be derived as a
Gaussian distribution with a mean μ(T ) that
is a weighted sum of the preferred positions of
neurons that fired, and a variance ν2(T ) that
depends only on C and the tuning width σ 2:

μ(T ) = k(�ξς ,T ) · �θ(T ) (20.9)

ν2(T ) = CTT − k(�ξς ,T ) · CςT . (20.10)

Here �θ(T ) is the vector of preferred stimulus
values of the spiking neurons, ordered by spike
time, ς is a collection of all spike times, CTT = c
is the static stimulus variance at the observation
time, and CςT is a vector of the cross-covariance
between the spike times and observation time T .
Recall that C depends only on the times of spikes,
not on their identities. The posterior variance
is similar to a Kalman filter and depends only
on when data are observed, not what data. The
weight on each spike depends strongly on the
time at which the spike occurred:

k(�ξς ,T ) = CTς (Cςς + Iσ 2)−1. (20.11)

Here, Cςς is the covariance matrix of the stimulus
at all the spike times. A spike that occurred in the
distant past will be given small weight.

Even under such a constrained and ana-
lytically tractable formulation of the encoding
model (Eq. 20.5), the population spike trains
tend to be sparse, so decoding trajectory
information as a Bayesian inverse of the
encoding model turns out to be ill posed. Prior
information about what trajectories are likely
plays a critical role. For the simple GP prior, the
form of the dynamics is controlled by the various
parameters, and particularly by the parameter ζ .
If ζ = 1, stimuli undergo Markovian dynamics,
and the posterior distribution can be written
in a recursive form that depends on only
current spikes and a single population vector
summarizing information in past spikes. But
when ζ = 2, stimulus correlations extend further
back in time, producing stimuli with smooth
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autocorrelations. This regime is the most ecolog-
ically relevant, as natural trajectories tend to vary
smoothly over time. In this case, however, a sim-
ple recursive decoding is not possible, as instead
decoding couples together the spikes, which
means that the entire population spiking history
is required to properly interpret a new spike.

Thus, our analyses show that neural corre-
lations induced by naturalistic, smooth stimuli
lead to a decoding problem that can only be
resolved by access to information that is nonlocal
both in time and across neurons. This makes
trajectory inference computationally very hard.
In a network of neurons, the downstream neural
population that obtains these spikes as inputs
faces a complicated inference problem, because
computational and behavioral constraints do not
permit retaining the full spiking history.

Optimizing a Network to Approximate
Time-Varying Target Distributions

We now turn to the network version of the
dynamic population-code combination prob-
lem, that is, the continuous analog to Figure 20.1.
In Natarajan et al. (2008), we considered the
distribution produced by the ideal observer
in the previous section as the optimal target
distribution for the network. The decoder
for the population spikes was a spike-based
version of the product of experts, in which
each spike is considered independently of the
others in the spike sequence, and spikes from
different neurons can be combined without
taking correlations into account. We then
formulated a recurrent network, the connection
strengths of which can be optimized so that this
simple decoder approximates the dynamic target
distribution. The details of the recurrent network
and the decoding model are provided next.

Nonlinear Recurrent Network Approximat-
ing Optimal Inference Let j = {1, 2, . . . ,M }
be a population of recurrently connected output
neurons in a network, receiving inputs �ξT from
the population i = {1, 2, . . . ,N }. We ascribe
simple dynamics to the recurrent population,
similar to the general spiking-neuron model
of Kistler, Gerstner, and van Hemmen (1997).
The output population spikes are specified by

�ρT , where ρ j
t = 1 if neuron j spikes at time t .

Like the inputs, the output spikes also convey
information about �sT .

The strength of the synaptic connection from
an input neuron i to an output neuron j is
characterized by the weight Wij , and lateral
connections between neurons j and k in the
output population by Ujk . This scheme is
illustrated in Figure 20.2. In a discrete time
representation, the internal state (analogous to
the membrane potential) of a neuron j at time T
can be characterized by a continuous variable hj

T :

hj
T =

T−1∑
τ=0

N∑
i=1

ξ i
T−τWijη(τ )

+
T−2∑
τ=0

M∑
k=1

ρk
T−τ−1Ukjη(τ ). (20.12)

The term η(τ ) specifies the effect of a past spike
on the current membrane potential; this typically
has a form where temporally distant spikes have
diminishing effects compared to more recent
ones. Note that the feedforward and lateral
weights can be negative. Thus, hj

T is a signed
variable where large negative values make spikes
unlikely; large positive values make them likely.

For each neuron j in the population, its
response is governed by a stochastic binary
spiking rule:

P(ρ j
T = 1) = σ (hj

T ). (20.13)

The spikes are generated independently among
the population. This implies that the probability
of any population binary (spike/no-spike) vector
ρT at time T is:

P(�ρT |�ξT ) =
∏

j

σ (hj
T )ρ

j
T (1 − σ (hj

T ))(1−ρj
T ),

(20.14)

where the sigmoid function is defined by
σ (hj

T ) = 1

1+exp(−h
j
T )

.

Note that the dynamics can be simplified
considerably if the influence of past spikes is
defined as:

η(τ ) = exp(−βτ ), (20.15)
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Figure 20.2 Schematic description of our network. Sensory input neurons i = 1, . . . ,N generate
population spikes in response to a stimulus trajectory. Downstream output population j = 1, . . . ,M
receives the input via feed-forward synapses W; recurrently processes the input using learned lateral synaptic
weights U to recode the input into a representation that is independently decodeable by downstream
neurons. Note the convention for this and subsequent figures: the neurons are arranged based on their
preferred stimulus values, and a circle indicates that the neuron at that position spiked at the particular time.

where β is the temporal decay constant. Using an
exponentially decaying function to characterize
the postsynaptic potential of a neuron allows us
to express the dynamics of the output population
in a recursive formulation:

hj
T =

∑
i

ξ i
T Wij +

∑
k

ρk
T−1Ukj + η(1)hj

T−1.

(20.16)

Then the probability of a population spike vector
is a function solely of the membrane potential
and population outputs at the previous time
step, and the current input spikes:

P(ρT |�ξT ) = P(ρT |hT−1; ρT−1; ξT ). (20.17)

Figure 20.2 illustrates our network formulation.

An Independent Probabilistic Decoder The
decoding model specifies the probabilities of
various stimulus trajectories based on the spike
sequence. Rather than considering the com-
plicated space of possible trajectories given an
entire spike train, we focus on an instantaneous
version of the problem. In mathematical terms,
our aim is to decode at time T a distribution
over the stimulus position at that time, sT , given
all the spike observations up to that particular
time, �ρT = {ρ1, · · · , ρT }; that is, we want to
infer p̂(sT |�ξT ) to approximate closely the true

posterior distribution p(sT |�ξT ). In this scheme,
the total effect of the spike-train E(s,T , �ρT )
is specified as a linear combination of the
individual spikes:

E(s,T , �ρT ) =
M∑

j=1

T−1∑
τ=0

κstd(j, s, τ )ρ j
T−τ ,

(20.18)

where κstd(j, s, τ ) is the spatiotemporal decoding
kernel defined as being uniform and separable;
uniform in that the shape of the kernel is the
same for the entire population, and at all times,
and separable as κstd(j, s, τ ) = φj(s)ψ(τ ), where
φj(s) is the spatial component and ψ(τ ) is the
temporal component. Then the spatiotemporal
contribution of the spikes (Eq. 20.18) can be
rewritten as follows:

E(s,T , �ρT ) =
∑

j

[
T−1∑
τ=0

ψ(τ )ρ j
T−τ

]
φj(s).

(20.19)

The spatial dimension of the kernel is parame-
terized as

φj(s) = |s − sj |2
ω

, (20.20)

where ω is the projective width of the neurons
and sj is the preferred stimulus value of neuron j .
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Thus, φj(s) defines the influence of the output
of a particular neuron j in the population j =
{1 . . .M }, on the spatial interpretation of the
underlying variable.

The temporal dimension of the kernel is
specified as an exponential decay (analogous to
the postsynaptic potential of the neuron, η in
Eq. 20.16): ψ(τ ) = exp(−γ τ ). The parameter
γ , which we refer to as the temporal integration
constant, specifies the timescale for synaptic
integration in the readout. It effectively controls
what effect the spiking of a neuron at one time
has on the interpretation at future times. Hence,
the kernels are very simple, specified using
just three parameters: the preferred stimulus
value sj and spatial projective width ω for
neuron j , and the temporal integration constant
γ . The approximating probability distribution
over stimulus trajectories p̂(sT |�ρT ) is interpreted
from the spiking activity as:

p̂(sT |�ρT ) ∝ exp(−E(s,T , �ρT )). (20.21)

Eqs. 20.18 and 20.21 define our decoding
hypothesis. Under this model, a downstream
neuron simply has to add the responses of
all the neurons that impinge on it; linear
functions of these afferent spikes establish the
information available in the population inputs.
The information is thus readily accessible: if the
convolution of spikes with the spatiotemporal
kernels κstd(j, s, τ ) can be considered as defining
the postsynaptic potentials of neurons, then
information about the relative probabilities of
stimulus values can be thought of as being
accessed by simply adding (and exponentiating)
the neuronal excitatory postsynaptic potential
(EPSPs). Figure 20.3 illustrates the decoding
method.

This choice of decoder is crucial, especially
for ecologically relevant, smoothly varying
trajectories. If we allow a complex decoder,
for example, the Bayesian decoder p(sT |�ξT )
described earlier, then the network needs access
to all the input spikes (Huys et al., 2007). To
prevent infinite regress, the decoder applied
to the output spikes should access the type
of information that biological neurons might
reasonably be expected to extract. In our case,

this is particularly a decoder that does not
require access to all spikes at all times. We
chose an independent decoder that integrates
the information provided by spikes recursively,
which provides a more plausible analog to how
real neurons may integrate information.

Independent decoding of the input spikes �ξT

is far from optimal, especially for the smooth
case. This decoder cannot by itself access the
information in the input spikes that is due to
the stimulus autocorrelations. Thus, this choice
of output decoder shifts the onus of providing
the information about the stimulus correlations
from the decoder onto the network. In essence,
the task of the network is to produce spikes
that represent the information contained in the
stimulus autocorrelations to make up for the fact
that the decoder of its output spikes �ρT will,
by itself, neglect any such information in the
inputs �ξT .

In Natarajan et al. (2008), the overall aim
of the network was to form output spikes
such that the posterior obtained by decoding
these spikes according to Eqs. 20.18 and 20.21
would faithfully approximate optimal decoding
of input spikes p(sT |�ξT ). The network encoded
spatiotemporal stimulus regularities in the
lateral connections of the output population.
The network was trained to minimize the KL
divergence between the decoded distribution
p̂(sT | �ρT ) and the analytically-derived optimal
distribution p(sT |�ξT ). Results showed that the
network obviated the need to maintain a
spiking history by making the temporal prior
information explicit in the spiking activity of
the population. The recurrent structure thus
kept the information contained in the past
spikes online. It handled noisy and sparse input
appropriately by re-expressing the information
contained in the input into a set of spikes that
were independently decodeable.

This form of temporal recoding can be
considered a natural extension of the line-
attractor scheme of Pouget et al. (1998). Both
methods formulate feed-forward and recurrent
connections so that a simple decoding of the
output can match optimal but complex decoding
applied to the inputs. The model presented
here extends this approach to spiking networks,
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Figure 20.3 The independent decoding model. (A) Output spikes (solid black circles) of population j =
{1, 2, . . .M } convey information about the stimulus trajectory (solid gray line). (B) and (C) An example
of the form of spatial and temporal components of the decoding kernel. (D) Linear contribution of the
population spikes through time. (E) Inferred posterior distribution (shaded in gray) over stimulus positions
through time; posterior mean is in dashed gray line.

and more importantly, to dynamically varying
inputs associated with a prior that must be
learned.

Our method is also related to some other early
proposals where the spiking activity of either
a single neuron (Deneve, 2005) or a pair of
neurons (Gold & Shadlen, 2001) is considered
as reporting (logarithmic) probabilistic infor-
mation about an underlying binary hypothesis.
Another approach proposes that a population
of neurons directly represents the (logarithmic)
probability over the states of a hidden Markov
model (Rao, 2004). Like Deneve (2005), we
consider the transformation of input spikes to
output spikes with a fixed assumed decoding
scheme so that the dynamics of an underlying
process is captured. Our decoding mechanism
produces something like the predictive coding

apparent in Deneve (2005), except that here,
a neuron may be silent not only if it itself
has recently spiked and thereby conveyed the
appropriate information, but also if one of its
population neighbors has recently spiked. This is
explicitly captured by the recurrent interactions
among the population.

APPLYING THE CODING
SCHEME TO DYNAMIC CUE
COMBINATION

In this section we consider how a neural
system might employ the proposed coding
scheme recursively, to dynamically weight and
integrate information about a transient stimulus
variable from different sensory modalities.
Particularly, we evaluate the coding efficacy of
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our approach when input to the model has the
same characteristics as the output representation
produced by it; that is, information can be
decoded in an (approximately) optimal manner
even when the decoder ignores correlations in
the inputs and treats each spike independently,
linearly integrating the information conveyed by
them (Eq. 20.21). We examine whether and how
the model can approximate proper inference in
a challenging version of a cue-combination task,
one in which the inputs and their reliabilities
are continuously varying through time, and the
information is communicated by spiking neural
populations.

The advantage of independent interpretabil-
ity of spikes is not confined to decoding.
Neural computations underlying integration of
information from different modalities (e.g.,
Ernst & Banks, 2002; Hillis, Ernst, Banks,
& Landy, 2002) or sensorimotor combination
(e.g., Körding & Wolpert, 2004) become
straightforward, requiring only an addition in
the log domain or multiplication of single-
neuron (Chance, Abbott, & Reyes, 2002; Poirazi,
Brannon, & Mel, 2003; Salinas & Abbott, 1996)
or population (Deneve et al., 2001) activity.

In this section, we look beyond decoding
as the canonical task; we explore how our
dynamic coding scheme can be manipulated
easily and integrated efficiently in a hierarchical
manner to perform uncertainty-sensitive neural
computations through time. Specifically, we
consider how we can extend the framework
presented earlier (see section on “Approximating
Probabilisitic Inference in Population-Code
Networks”) to handle continuous, dynamic
stimulus variables.

Dynamic Sensorimotor Task

We focus on a version of the sensorimotor inte-
gration task where Körding and Wolpert (2004)
explored the consequence of manipulating the
reliability of visual feedback during reaching.
Figure 20.4 illustrates the experimental setup
where a starting position and a target position
are marked using a white and green circle,
respectively, indicated at the bottom and top
of a horizontal plane. Subjects were required
to reach to the visual target from the starting
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Figure 20.4 Experimental setup. 1-d position of
the finger on the screen is represented along the
x-axis, and the time-course of the trial along the y-
axis. The unfilled circle at the bottom of the screen
indicates the starting position of the cursor; the
green filled circle at the top of screen shows the
target position. The task is to reach the target as
closely as possible. The invisible finger trajectory
is indicated by a solid blue line; the true cursor
position by a dashed blue line. On the trial shown
here, the cursor is laterally displaced relative to
the finger position by 0.45 cm. The mid-point
of the trial is indicated by the horizontal black
dashed line at the center of the figure; the blue
unfilled circle along the cursor path indicates brief
visual feedback. Based on this feedback, there is
compensatory correction in the finger trajectory
from the mid-point onwards. Further details of the
setup are provided in the text.

position, within the virtual-reality environment
that blocked the hand from view. A cursor was
shown before the start of the movement; it
was then hidden except for one point of visual
feedback midway through the trial. At the onset
of movement, unbeknownst to the subjects, the
cursor was laterally displaced relative to the true
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finger position by an amount drawn randomly
from a known prior distribution.

Midway through the movement, brief visual
feedback about the cursor position was provided.
On each trial, the reliability of the visual feedback
was a random draw of positions from a Gaussian
distribution, with position indicated using dots.
Across trials, the feedback was varied across four
conditions, σ 0

v (a single precise white dot), σM
v ,

σ L
v (small translucent dots distributed as a two-

dimensional Gaussian with standard deviations
of 1 and 2 cm, respectively), and σ∞

v (no
feedback). The task was to land the cursor as
close to the target as possible; feedback about the
final cursor position was provided only in the
high-reliability condition σ 0

v .
Subjects were trained for about 1000 trials in

the task to ensure that they encountered many
samples of the lateral shift drawn from the under-
lying prior distribution. Upon testing, subjects
were found to generate compensatory correc-
tions in their finger trajectories in the second half
of the movement, in order to offset the imposed
lateral displacement of the cursor. The authors
assumed a Bayes-optimal strategy and inferred
the priors used by subjects based on the mea-
sured shifts in final estimates of target position.

On test trials where no visual feedback was
given, subjects appeared to learn the prior
distribution over offsets: The estimated displace-
ment was equivalent to the mean of the prior
distribution. On trials in which feedback was
provided, subjects combined prior knowledge of
the distribution with sensory (visual) evidence
in a manner that was appropriately sensitive to
the degree of noise in the visual feedback. The
authors accounted for their results within this
framework as follows: Adjustments to ongoing
motor commands were dependent on both the
reliability of sensory inputs and on an estimation
of prior probabilities of displacements in a
manner consistent with Bayesian computation.
Other studies (e.g., Tassinari, Hudson, & Landy,
2006) have employed related experimental
paradigms without assuming any strategy, and
they have quantitatively demonstrated that
human performance does indeed result from
a nearly optimal combination of sensory and
prior information.

Dynamic Cue-Combination Network

The objective for our recurrent network model
is to compute the distribution over cursor
positions on the screen based on information
about finger position and visual information
about the cursor, each having varying noise
levels.

We set up a hierarchical network much like
that described earlier (see section, “Approximat-
ing Probabilisitic Inference in Population-Code
Networks”), where two independent sensory
populations (visual and proprioceptive) are
connected by means of feedforward weights
to a third population of downstream neurons
(Fig. 20.5). The first layer re-represents its inputs
into a form that is independently decodeable
using our log-linear scheme. It is these spikes that
serve as inputs to the downstream population,
which in turn combines the information with
knowledge of the prior distribution over the
lateral shifts that is learned in the network
synaptic connections. A posterior distribution
is derived from the output spikes of the down-
stream population using the same decoding
scheme. This makes the approach recursive in
that the spikes at every level may be interpreted

Visual neurons
(recoded visual inputs)

Proprioceptive neurons
(recoded proprioceptive inputs)

Downstream multi-sensory neurons
(recoded proprioceptive + visual inputs)

Figure 20.5 Dynamic combination network.
Recurrently connected uni-sensory populations of
proprioceptive and visual neurons recode their
inputs into independently decodeable represen-
tations which then serve as inputs to a third
recurrently connected downstream population that
combines them. Feed-forward weights connect the
two levels of the network. In this recursive scheme,
inputs and outputs to the network have consistent
semantics, i.e., they are independently interpretable
using a fixed decoding scheme.
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using the same decoding approach. The mean
of the posterior distribution provides the final
estimate of the cursor position on the screen. In
our network model, this mean can be thought
of as computing the “motor command” for
compensation in the finger position. Details of
our simulation, including the setup of each of
these elements of recursive computation, are
provided next.

Network Preprocessing: Log-Linear Decode-
able Unisensory Inputs We create input
spikes for our network by applying the recurrent-
network approach to Gaussian-Poisson spikes,
as described earlier (see section on “Spike-
Generation Model”), separately for visual and
proprioceptive inputs. Neural populations iv =
{1, · · · ,Nv} and ip = {1, · · · ,Np} are defined
such that the preferred stimulus positions of the
neurons are evenly distributed in the stimulus
space. The neurons are individually tuned to
respond across a certain range of the stimulus
space. The visual �ξ v and proprioceptive inputs �ξ p

are determined by Gaussian tuning curves with
Poisson variability (Eq. 20.4). In the simulations
that follow, sparse inputs are generated by
assigning a low value to the maximum input
firing rate rmax = 0.144 Hz and tuning width
σ = 0.1 cm in Eq. 20.4.

Laterally connected visual and proprioceptive
neural populations jv = {1, 2, · · · ,Mv} and jp =
{1, 2, · · · ,Mp}have preferred stimulus positions
distributed evenly across the stimulus space and
receive input spikes �ξ v and �ξ p , respectively,
in response to the visually observed cursor
position and the finger position. The lateral
connections of the individual populations are
indicated by Uv , Up ; the projective width used
in our simulations is ω = 0.2 (Eq. 20.20).
Each population individually learns to recode its
inputs into representations �ρv and �ρp that are
independently decodeable.

For training the preprocessing systems,
stimulus trajectories�sp and�sv are drawn from the
Gaussian process prior distribution (Eq. 20.8).
The parameter ζ of the covariance matrix C
determines the smoothness of the trajectories.
By changing the value of ζ we can consider
different classes of GP priors, each defining the

density over a set of trajectories with similar
spatiotemporal dynamics. Since a hallmark of
motor behavior is that movements are smooth,
relatively straight trajectories (Flash & Hogan,
1985; Morasso, 1981), we choose parameters of
the Gaussian process prior such that the resulting
trajectories have smoothly varying dynamics.
The particular values used in the simulation are
specified in Figure 20.6.

This spike-generation model leads to a simple
ideal observer to produce the training signal: the
posterior distributions p(sp

T |�ξ p
T ) and p(sv

T |�ξ v
T ) for

an observed population spike train, as described
above (see section on “Ideal Observer”).
Approximate posterior distributions p̂(sp

T |�ρp
T )

and p̂(sv
T |�ρv

T ) are decoded following Eqs.
20.18 and 20.21. Then each population jv =
{1, 2, · · · ,Mv} and jp = {1, 2, · · · ,Mp} individ-
ually learns to recode its inputs by minimizing
the divergences between the true and approx-
imate posterior distributions over finger and
cursor positions: DKL(p(sp

T |�ξ p
T )||p̂(sp

T |�ξ p
T )) and

DKL(p(sv
T |�ξ v

T )||p̂(sv
T |�ξ v

T )), where DKL(p(s)||p̂(s))
=∑

s p(s) log(p(s)/p̂(s)) is the Kullback-Leibler
(KL) divergence, or relative entropy between the
true p(s) and model distribution p̂(s).

Note that beyond labeling the two unisensory
populations as visual and proprioceptive, we
have not detailed how the two modules differ
from each other in the information they repre-
sent. Typically, in such a sensorimotor context,
the proprioceptive neurons are simulated to
encode information about finger position in
joint-angle space, and the visual neurons would
encode information in retinocentric space.
However, neural mechanisms underlying sen-
sorimotor transformations have been explored
extensively, often formalized as coordinate
transformations between body-centric and eye-
centric representations (Baraduc, Guigon, &
Burnod, 2001; Deneve et al., 2001; Pouget
et al., 2003). Hence, we assume that the visual
and proprioceptive inputs have already been
converted into a common frame of reference by
some mechanism (the basis-function approach
of Pouget et al. can be readily implemented
under our scheme), and we explore differ-
ences in the dynamics of the two unisensory
networks.
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Recall that in our setup, there is a steady
stream of proprioceptive inputs from the sensed
location of the finger, but visual information is
very sparse since it is displayed only as a brief
flash as in the original experiment. Therefore,
in generating the stimulus trajectories �sp and
�sv , we consider slightly different dynamics in
specifying the Gaussian-process prior. Recall
(see section on “Ideal Observer”) that different
values of ζ determine the different classes
of prior distributions over trajectories. We
generated the finger trajectories using faster,
smoother temporal dynamics by setting ζ = 2 in
Eq. 20.8; the cursor trajectories were generated
by setting ζ = 1. Accordingly, the proprioceptive
and visual inputs in our network reflect the
differences in the input dynamics (see the
parameter values below Fig. 20.6). Consequently,
the learned parameter β, which specifies the
dynamics of the spiking activity (Eqs. 20.15–
20.16), is observed to be different for the two
submodules. We elaborate on this in the section
on “Simulation Results.”

Training the Network The recoded visual
and proprioceptive inputs are then fed to the
next stage of recurrent processing by neurons
that combine the information. It is in these
feedforward and lateral weights (as well as
network dynamics) that we expect the learned
prior distribution over lateral shifts to be
embedded. Therefore, the trajectories for this
second stage of processing are generated such
that there is compensation for the imposed
lateral shift at the midpoint of each trial. The
visual stimulus (cursor sv

t ) indicates the position
of the finger sp

t at any time t . The cursor sv
t

is shifted laterally from the finger position sp
t

by a value δshift drawn from the known prior
distribution pshift ∝ N (μshift, σshift) that carries
information about the probabilistic structure of
variations in the task.

Halfway through the trial, at t = T/2,
the visual stimulus is displayed only for that
timestep, with varying degrees of uncertainty for
different trials: σ 0

v when the exact position of
the cursor sv

(t=T/2) is shown with no variability,
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Figure 20.6 Generating visual and proprioceptive inputs with varying dynamics. The solid red line shows
a sample finger trajectory generated from a GP prior with ζ = 2, α = 0.05, c = 0.2. The dashed red line is a
sample cursor trajectory; ζ = 2, α = 0.15, c = 0.5. White circles shaded black indicate proprioceptive and
visual input spikes in the left and right panels, respectively. The spatio-temporal distributions in gray-scale
plot the approximate distributions derived from decoding proprioceptive (left) and visual (right) recoded
outputs. The dashed white lines show the means of these posterior distributions.



382 NEURAL IMPLEMENTATION

and σM
v and σ L

v when the cursor is displayed
with medium and large variances. The idea is
that based on this visual input, the subsequent
finger positions change to compensate for the
lateral shift. For this, we estimate the shift in
the trial using Bayes rule, given the visual input
and the known prior distribution. The posterior
distribution over sensed lateral shifts in each trial
is computed and the mean of this posterior is
selected to be the estimate on that trial; the finger
position is compensated by that amount.

The training signal for this stage is the
true posterior distribution over cursor positions,
derived following Eq. 20.2,

P(sc
T |�ρv

T , �ρp
T ) ∝ P(�sc

T )

∫
�sv
T ,�s

p
T

p(sv
T |�ξ v

T )p(sp
T |�ξ p

T )

× P(�sv
T ,�sp

T |�sc
T )d�sv

T d�sp
T . (20.22)

Here, the combined stimulus prior P(�sv
T ,�sp

T |�sc
T )

can be seen as scaling the prior over dis-
placements P(�sc

T ). The network parameters
are optimized to minimize the KL divergence
between this distribution and the distribution
derived from decoding its outputs �ρp according
to Eq. 20.21. The proprioceptive inputs are
received at a timescale that fits our general
scheme well; the visual inputs are received just
as a brief flash. The lateral connections in the
top level integrate the inputs and maintain the
belief state online.

SIMULATION RESULTS

In this section, we present results from simu-
lating the network under various experimental
conditions. The trained network from the
previous section was tested on a set of 500
trials; in the following simulations, we assumed
a prior distribution pshift ∝ N (μshift, σshift), where
μshift = 0.3 and σshift = 0.2. We first analyze
results on a single trial of the experiment
followed by results summarized over the 500
test trials.

Figure 20.7 plots the estimated cursor distri-
butions for three different stimulus conditions:
σ 0

v , σM
v , and σ L

v . In each vertical panel, the x-axis
represents the stimulus space (i.e., finger/cursor

position) and the y-axis represents the time steps
in the course of the trial; each trial proceeds from
the bottom up. The starting position of the finger
movement is indicated by the black circle at the
center of stimulus space (0 cm) and the target
position by the circle shaded in green at the top
of the panel. At the start of a trial, the cursor
is shifted laterally by 0.45 cm. The true cursor
position is indicated by the dashed line in red
(σ 0

v ), blue (σM
v ), and white (σ L

v ). The estimated
posterior distribution over cursor positions is
plotted in grayscale for each step of the trial.

At the start of the trial the estimated posterior
appears to rely heavily on the prior distribution
pshift(�) for all three conditions; the estimated
mean is centered around the mean of the
Gaussian prior distribution at 0.3 cm. During
the first half of the movement, the variance of
the posterior distribution is seen to grow with
time. The only inputs during this phase are the
proprioceptive inputs from the unseen hand and
the visual input at t = 1; the increasing variance
of the posterior distribution indicates increasing
unreliability of the finger position estimate.

When visual feedback is presented midway
through the trial, the posterior mean shifts
toward the cursor position (0.45 cm for the
trials presented here) and the posterior variance
shrinks. This increased certainty about the
position of the cursor reflects augmentation of
the sensory inputs with new visual information.
From this point on, the posterior distribution
appears to rely more on the visual feedback
and less on the learned prior information.
The variance in general is less during the
second half of movement compared to the
first. One clear difference between the decoded
distributions for the three stimulus conditions is
that the posterior variance increases as the visual
reliability decreases.

Figure 20.8 plots the estimated mean of the
posterior distribution in dashed red, blue, and
white lines for each of the conditions discussed
earlier. The finger trajectory on the trial is
indicated by the solid line. The panels on the
right of the plot indicate the amount of visual
noise for each condition. For the high-reliability
condition, σ 0

v , the final estimate of the target
location (i.e., the mean of the estimated posterior
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Figure 20.7 Simulation results. Estimated cursor distributions for three stimulus conditions. True lateral
shift of visual cursor on all trials = 0.45 cm. Dashed lines in each panel indicate true cursor position: red—
σ 0

v , blue—σM
v and white—σ L

v . At each timestep, the estimated posterior distribution over cursor positions
is plotted in gray-scale for all three stimulus conditions. At the start of the trial, the estimated posterior
mean is centered around 0.3 cm, the mean of the Gaussian prior distribution over lateral shifts. Notice how
for all three stimulus conditions, the posterior variance increases during the first half of the movement and
shrinks at the mid-point (indicated by the horizontal dashed black line) when visual feedback is provided.
At this point, there is also a sudden shift in posterior mean. These results are analyzed in detail in the text.

at the end of the trial) is right on target.
For σM

v and σ L
v , it is shifted away from the

target location, toward the true displaced cursor
position. The degree of this shift increases with
increasing unreliability in visual feedback. These
observations show that the sensory inputs were
integrated with the learned prior in a manner
that was appropriately sensitive to the degree of
noise in the visual feedback: As the precision of
the visual input decreases, the system relies more
on prior knowledge of displacement statistics
to adjust finger movement.

To quantify the system behavior, we calculate
the average performance of the network over
500 trials. Figure 20.9 summarizes the final
deviation of the estimated cursor position from
the target, as a function of the true lateral shift
on each trial. These values are averaged over
the 500 trials for each condition. The results
are qualitatively similar to those observed by
Körding and Wolpert (2004): The slope of the
plotted lines increases with visual uncertainty.
For σ 0

v , the estimated cursor position lands
on average at the true target position; with



−0.5 −0.25 0.25 0.5

Feedback

No Feedback

Finger
path
(not visible)

Cursor
path

Lateral shift = 0.45

T
ria

l D
ur

at
io

n

Space (cm)

Estimated lateral shift

σ0

0.1 cm

σM

σL

Degrees of blur

Figure 20.8 Estimated mean of the posterior distribution. Solid lines—finger trajectory; dashed lines—
estimated posterior mean. Illustrations on the right indicate the degree of visual noise for each stimulus
condition. For σ 0

v (red line), the mean of the estimated posterior at the end of the trial is right on target. For
σM

v and σ L
v , (blue and black lines, respectively), it is shifted away from the target location, towards the true

displaced cursor position. The degree of this shift increases with increasing unreliability in visual feedback.
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Figure 20.9 Summary results. Average network performance over 500 trials for each of the three conditions.
The x-axis plots the true lateral shifts imposed on different runs of the simulations; the y-axis indicates the
final deviation of the cursor from the target. The solid red, blue and black lines plot the final deviation of
the estimated cursor position from the target for the three different stimulus conditions. For σ 0

v , this plot
is almost a horizontal line, indicating that the estimated cursor position lands on average at the true target
position. The slope of the blue and black lines increases with visual uncertainty. Results are qualitatively
similar to those of Körding and Wolpert (2004).



DYNAMIC CUE COMBINATION 385

increasing noisiness, the final cursor position is
displaced. We conclude from these results that
the sensory integration in our dynamic network
was appropriately sensitive to the degree of noise
in the visual feedback.

Network Preprocessing: Cue
Differentiation

We can gain some insight into how the
network achieves this behavior by examining
its learned feedforward and lateral weights,
temporal decay constant, and the decoding
kernels. We first discuss the components of
the preprocessing stage. Here, the learned
feedforward connectivities for the visual and
proprioceptive unisensory networks were quali-
tatively similar (not shown), displaying a strong
local connectivity, with each input neuron
having strong excitatory connections to neurons
in the recurrent population having the same or
very similar stimulus preference and inhibitory
connections to their neighboring neurons.

Figure 20.10 plots the learned lateral con-
nection strengths Uv and Up for the recurrently
connected visual and proprioceptive neurons.
The plot is in the form of a matrix, where
the rows jv = {1, 2, · · · ,M } and columns kv =
{1, 2, · · · ,M } correspond to the output neurons
spatially laid out in the stimulus space. Each cell
of the weight matrix U is shaded according to the
strength of the synapse Ujv kv

. The connectivities
learned by both networks are starkly different.
We attribute this to the differences in temporal
dynamics of the input stimulus (and therefore
the dynamics of the neural inputs) to these
networks.

Let us first examine the weights Up (Fig. 20.10,
left panel). Each neuron is seen to strongly excite
its immediate neighbors and also to inhibit the
ones further away. The strength of excitation
is strongest for neurons tuned to the center of
the stimulus space and decreases as the neuron’s
stimulus preference moves toward the periphery.
This is likely a direct consequence of the spatial
range of the stimuli the network was trained on.
The negative weights allow one neuron’s spikes
to decrease the membrane potential of another.
So the population activity not only indicates
where the stimulus is at any given time (by

spiking when the stimulus is at the neuron’s
preferred position) but also actively indicates
where the stimulus may not be.

The temporal decay constant adapts to a large
value, β = 2.42 (Eqs. 20.15–20.16). This allows
the postsynaptic potential of neurons in the
recoding population to decay slowly with time.
This means that temporally distant spikes have
very slowly diminishing effects on the current
population activity. The decay constant reflects
the temporal extent of the interactions in the
stimulus, specified by α in Eq. 20.8. This same
rate of decay is applied to γ in the temporal
kernel to decode the spikes; it implies that the
influence of a spike persists for a while, having
a slowly decaying effect on the representation at
future times.

Next, we examine the weights Uv (Fig. 20.10,
middle panel). Each neuron has strong positive
connections to some (but not its immediate)
neighbors, evident in the positive weights.
However, the learned temporal decay constant
β = 1.85 is much lower than that of the
proprioceptive network.

Learned Network Components

Next, we analyze the components of the network.
The feedforward weights from the visual and
proprioceptive ensemble to the recurrently
connected multisensory neurons display strong
local connectivity. The rightmost panel in
Figure 20.10 plots the lateral weights learned
during the combination stage, in the same matrix
format described earlier. The positive synaptic
weight patterns are off diagonal, indicating that
at every time step, each neuron is signaling
several (again, not immediate) neighboring
neurons to fire at subsequent time steps during
recurrent processing. The learned temporal
decay constant is large again, β = 2.38.

Since the lateral weights and the decay
constant are learned together in an iterative
manner with the decoding kernels fixed, they
influence each other very closely. Combined with
the input spikes to the population, they influence
the membrane potential hT (Eq. 20.16) of
neurons in the recurrently connected population
according to how the input population connects
to the recurrent population via the feedforward
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weights. In the absence of input spikes, recurrent
activity contributes to the persistent effect
of previously observed spikes. This triggers a
cascaded pattern of activation among neurons
of the recurrent population. This explains the
increasing variance with time in the decoded
distribution.

SUMMARY AND DISCUSSION

Our understanding of how the central nervous
system might encode and interpret sensory input
has significantly progressed in the last decades.
Concomitantly, theoretical explorations have
provided numerous hypotheses and results on
how various ecologically relevant computations
might be performed through feedforward and
recurrent connections between neural popula-
tions (Deneve et al., 2001; Pouget et al., 1998).
Our study is at the intersection of these two lines
of work. We explore the characteristics of neural
population codes desirable for uncertainty-
sensitive, optimal downstream decoding of the
represented information. We focus on time-
varying inputs represented by a spiking network
and attempt to understand dynamic population
codes from a functional perspective, beyond the
issue of stimulus representation.

Summary

In this chapter, we first reviewed our proposal
for how uncertainty about time-varying sensory
inputs can be represented in population spike
times. In our scheme, recoding produces tem-
porally independent spikes, and the decoding
kernels convolve them in such a way that
information originally encoded in spatiotem-
poral spike patterns can now be independently
decoded to produce a smooth, inferred distri-
bution. Our main contribution here was an
extension of the coding scheme to develop a
recursive, hierarchical formulation of the system.

The highlights of our proposal are as follows.
We first specified a recursive application of
our coding scheme; we demonstrated how the
recoded information can be manipulated easily
and integrated efficiently in two stages to causally
reweight and integrate information about the
stimulus variable from different modalities. One

population encoded dynamic proprioceptive
information while another represented visual
information; both utilized the recoding scheme
to efficiently represent a stimulus variable such as
position. Then, a third population received these
recoded spikes as inputs, combined them using
the same representational scheme, and produced
a spike-based representation of the posterior
distribution over positions.

Second, in our formulation, the visual and
proprioceptive subnetworks receive inputs of
varying temporal dynamics. The propriocep-
tive neurons received inputs corresponding to
smoothly varying finger trajectories; the visual
neurons received sparser inputs corresponding
to a visual stimulus (cursor position on screen)
that was only briefly flashed midway through
the experimental trial. The main computational
advantage of using a fixed independent decoder
such as ours is that rather than employ-
ing different decoding strategies for different
stimulus dynamics, a neural population can
recode the input representation into one that
can be decoded independently regardless of
stimulus dynamics. Our results demonstrated
that the visual and proprioceptive subnetworks
did in fact learn to reflect the different
dynamics underlying their respective inputs.
Additionally, our results showed that under this
coding scheme, a downstream neural population
(recurrently connected multisensory neurons)
is able to appropriately compute with inputs
from the different sources using the same fixed
independent decoder.

The inputs to the visual and proprioceptive
neurons were constrained to be sparse. This
was meant to simulate those situations where
the temporal dynamics of a stimulus are
incompatible with (i.e., faster than) neural
spiking dynamics. Such input sparsity makes a
more challenging case for recoding; if spikes are
dense relative to the movement in the stimulus
(i.e., the likelihood term in Eq. 20.4 dominates
either via very low noise σ or high firing rates
rmax), the contribution of the prior will be
small and recoding may not be necessary. On
the other hand, if spikes are sparse, the prior
will be more important and approximations
more costly; recoding will become important
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due to the need to account for spatiotemporal
stimulus dynamics and the desire to decode
independently. Our choice of a sparse spiking
regime implies that the complexity of the
decoding task primarily derives from the smooth
dynamics of the finger movements.

Third, our learning rule for the multi-
sensory downstream population was derived
by applying the independent decoder to the
recoded unisensory inputs. The computational
motivation for applying this rule recursively is
that at each level of the hierarchy, additional
information from other spiking populations is
combined, such that the network is effectively
consolidating the information in all of its inputs.
This implies that the learning objective is to
simply preserve the information in the combined
inputs. This preservation is itself a form of
computation, because it involves combining
the distributions implied by the visual and
proprioceptive unisensory inputs.

Finally, this model relates to experimental
results from Körding and Wolpert (2004) using
many simulations with smooth trajectories and
varying visual noise levels. We demonstrated
that our spiking cue-combination network can
account for these data, yielding the same
dependence of the final cursor position on
the degree of noisiness in the visual feedback.
Our implementation possesses some neural
plausibility, since it employs a straight-forward
nonlinear network requiring access to the type
of information that biological neurons might
reasonably be expected to extract.

Related Work

Several sensorimotor-transformation schemes
have been proposed that exploit redundancy
and broad tuning ubiquitous in the cortex
to minimize the deleterious effects of noise
(Baraduc et al., 2001; Salinas & Abbott,
1995) or to generate probabilistic population
codes to represent Gaussian and more general
forms of probability distributions to propagate
uncertainty in neural processing (Knill & Pouget,
2004; Pouget et al., 1998; Pouget, Deneve,
Ducom, & Latham, 1999).

One popular theory is based on a neural
architecture that combines basis functions and

attractor dynamics. The basis functions are used
to recode sensory information into a flexible
intermediate representation to facilitate the
transformation into a motor command; attrac-
tor dynamics are used for optimal statistical
inferences. As an example, Deneve et al. (2001)
proposed a network architecture that uses gain-
encoding to combine inputs from two sensory
modalities (vision and audition) and perform
optimal Bayesian inferences.

This model used basis functions to perform
coordinate transformations of the inputs (from
retinal to head-centric coordinates) and then
decode the maximum-likelihood estimate of the
encoded variable (object location) given both
inputs. This scheme relaxes noisy population
codes into smooth hills of activity over time
(stable network states called attractors). As
a consequence, the multimodal inputs are
integrated with weights proportional to their
reliability. Our model presented here can be
viewed as extending this approach to spiking
networks and, more important, to dynamically
varying inputs associated with a prior that must
be learned.

Similarly, Salinas and Abbott (1996) demon-
strate the use of recurrent architectures in
computing the basis functions themselves to
produce a useful intermediate representation
of visual target location for motor action.
Their approach uses recurrently connected
populations to produce multiplicative responses
as an emergent property of the network, even
when individual neurons can only simply sum
their synaptic inputs linearly. This scheme
is illustrated by modeling the combination
of target-retinal-location and gaze-direction
inputs in parietal cortex. Such a multiplicative
parietal representation has been shown to be
very versatile because downstream neurons
can readily read out various task-specific
linear combinations of inputs. In both these
approaches, recurrent connectivity effectively
suppresses input noise. Salinas and Abbott
(1996) also suggest how their model can select
between multiple inputs.

Our proposed decoding scheme also bears
an interesting relationship to other recent
proposals, notably the probabilistic population
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codes of Ma and colleagues (2006). Adopting
the same decoder, they show that under
some limited assumptions about the individual
neurons’ probability density functions, several
natural computations can be carried out by linear
operations on activities in the input populations.
This means that in these situations, simple neural
circuits, namely linear ones, can approximate
optimal inference, which makes the optimization
of the circuit trivial. The formulation readily
applies to static cue-integration problems, in
which cue weights are assumed to remain
constant over time.

We consider a more realistic situation in
which the input forms a continuous stream
and the underlying variable of interest follows
some trajectory. Hence, information from
each cue can accrue over time in ways that
affect how the different cues are combined
through time. Our framework thus provides a
computational characterization of the function
of neural populations in a network, combining
information from their input populations and
performing computations in such a way that
simple decoding closely approximates optimal
inference.

Limitations of Our Approach

One limitation in the model is that the learning
procedure is driven by supervision. The network
assumes access to a global reward signal:
knowledge of the optimal posterior based on
the available information in the input spikes.
The objective of learning in this setup was
to assess whether any set of synaptic weights
could be found that could perform meaningful
computations dynamically, beyond the sole
objective of input representation. If the aim
extends to making the learning plausible in a
biological context, then some feedback about
the optimal distribution over stimulus values
would be required. While information about
the true underlying value can be plausibly
derived, it is more challenging to envision
how information about the optimal distribution
could be obtained.

In our simulation of the Körding and Wolpert
(2004) experiment, we are not focusing on how
subjects actually learn, but rather how the neural

populations can faithfully encode and transmit
the information about the stimulus position via
multiple cues. So, assuming that the population
receptive and projective fields are defined, we
only model how the feedforward and recurrent
connections, and other network parameters
adapt to ensure that the full distributional
information is maintained online.

Predictions

Since we are always in the sparse spike limit in
our simulations, the information per spike is
of most relevance. If there were dense spiking,
the population firing rate (DeCharms & Zador,
2000; Silberberg, Bethge, Markram, Pawelzik,
& Tsodyks, 2004; Zhang & Sejnowski, 1999)
might carry enough information to overwhelm
any prior. The model makes two predictions
about dynamically changing uncertainty: (1)
During the first half of the trial, the variance
of the time-varying posterior distribution over
cursor positions rapidly increases with time.
The variance decreases when visual feedback is
received and then increases again much more
slowly during the second half of movement. (2)
The degree of uncertainty is consistent with the
degree of noise in visual feedback.

Our model allows further predictions for
extended versions of this task. For example,
visual feedback could be provided more than
once during the trial, and the model would
predict the relationship between the estimated
displacement and the particular feedback (posi-
tion and uncertainty) on each trial. Our
scheme is general enough to accommodate cases
where the prior over cursor displacements is
multimodal. Whereas standard dynamic models,
such as Kalman filters, are unable to represent
and update a multimodal posterior, our model
can maintain and generate predictions in
this case.

With regard to the population code, our study
makes several predictions that may help initiate
physiological investigations into representations
of dynamic inputs. First, analysis of the
visual and proprioceptive network dynamics
suggests that the temporal dynamics of spiking
reflect the temporal dynamics of the stimuli
themselves. Second, lateral connections play a
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critical role in encoding the temporal prior
over stimulus dynamics, so that spikes during
periods of limited input can be interpreted
as making predictions about the underlying
stimulus. In particular, during such periods, we
expect to observe the way that the increased
uncertainty (i.e., posterior variance) is coded.
A future line of work involves examining
whether the firing properties of the multisensory
neurons in our network resemble those of
parietal or motor cortical neurons. Since the
firing patterns are by-products of the network
dynamics, this investigation may be a useful
step toward guiding and constraining our model
formulations.

NOTE

1. Regarding notation: throughout this chapter
we use a boldface variable to denote responses
in a population of neurons; we use the arrow
notation, e.g., �sT , to denote a time-series vector,
in this case of length T .
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