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Abstract
Top-k voting is an especially natural form of partial vote
elicitation in which only length k prefixes of rankings are
elicited. We analyze the ability of top-k vote elicitation to
correctly determine true winners, with high probability,
given probabilistic models of voter preferences and can-
didate availability. We provide bounds on the minimal
value of k required to determine the correct winner un-
der the plurality and Borda voting rules, considering both
worst-case preference profiles and profiles drawn from
the impartial culture and Mallows probabilistic models.
We also derive conditions under which the special case
of zero-elicitation (i.e., k = 0) produces the correct win-
ner. We provide empirical results that confirm the value
of top-k voting.

1 Introduction
Social choice has provided valuable foundations for the de-
velopment of computational approaches to preference aggre-
gation, group decision making and a variety of other prob-
lems in recent years. As algorithmic advances and data ac-
cessibility make the methods of social choice more broadly
applicable, relaxing the assumptions of classical models to fit
a richer class of practical problems becomes imperative. To
this end, research has begun to address the informational de-
mands of preference aggregation. For example, recent work
has considered models in which information about the set
of available candidates is imperfect [Lu and Boutilier, 2010;
Baldiga and Green, 2011; Boutilier et al., 2012]. Similarly,
knowledge of voter preferences may be incomplete [Konczak
and Lang, 2005; Xia and Conitzer, 2008; Lu and Boutilier,
2011b].

In this work, we bring together these two lines of re-
search to investigate the feasibility and value of top-k vot-
ing. Our first motivation is to use intelligent vote elici-
tation techniques to minimize the amount of voter prefer-
ence information required to determine the winner in an
election (or more broadly, the desired outcome of a group
decision). Vote elicitation has received considerable atten-
tion recently [Conitzer and Sandholm, 2005; Conitzer, 2009;
Kalech et al., 2011; Lu and Boutilier, 2011b; 2011c; Ding
and Lin, 2012], and has proven to be effective in reduc-
ing the amount of information—and corresponding cognitive
and communication burden—needed to determine winners in

practice. Our second motivation is to develop methods that
handle uncertainty in the set of available candidates. In many
settings, voters may need to specify their preferences over a
range of potential candidates prior to knowing which are in
fact available or viable for selection [Lu and Boutilier, 2010;
Baldiga and Green, 2011; Boutilier et al., 2012]. Exam-
ples include ranking job candidates, public projects, or even
restaurants. The potential impact of candidate unavailability
on vote elicitation is clear: since certain desirable alterna-
tives may turn out to be unavailable, one may need to elicit
more preference information than is typical in the case of
fully known candidates in order to ensure the correct winner
is chosen.

We address the problems of efficient preference elicitation
in this context in the form of top-k elicitation. In top-k vot-
ing, agents are asked to provide the length k prefix of their
preference ranking instead of their full ranking. In the stan-
dard “known candidates” model, top-k voting has been used
heuristically [Kalech et al., 2011] and the optimal choice of
k has been analyzed from a sample-complexity-theoretic per-
spective [Lu and Boutilier, 2011c]. However, bounds on the
required values of k for specific preference distributions and
voting rules have remained unaddressed, as has the impact of
unavailable candidates on top-k voting.

In this work, we examine two common voting rules, plural-
ity and Borda—these serve as a useful starting point for the
investigation of our model, representing rather different ex-
tremes in space of so-called scoring rules for voting. Given a
prior distribution on the preference profile, and a distribution
over the set of available candidates (for which the standard
“known candidates” model is a special case), we ask: what is
the minimal value of k for which top-k voting determines the
true winner (with high probability), with respect to the un-
derlying preference profile? We provide theoretical results,
in the form of upper and lower bounds on k, for both worst-
case preferences and certain preference distributions (includ-
ing impartial culture and Mallows distributions). As a special
case, we consider zero-elicitation protocols, where k = 0.
We show when, as a function of the election parameters, the
true winner can be determined with high probability without
eliciting any information from voters. We also provide em-
pirical results demonstrating the extent to which top-k voting
determines true winners as a function of k.



2 The Model
Let C = {c1, . . . , cm} be the set of (potential) candidates
from which a winner is to be selected using some voting
rule. Let N = {1, . . . , n} be the set of voters, and let
voter i’s preference πi be a permutation of C: intuitively, for
1 ≤ j < j′ ≤ m, πi(j) is preferred by i to πi(j′). Let L
denote the set of all preferences over C. A preference profile
π = (π1, . . . , πn) ∈ Ln represents the collection of voter
preferences. A voting rule v : Ln× 2C → C selects a winner
from C given a vote profile and a set of available candidates.

We consider two voting rules: plurality and Borda. In
plurality voting, given a profile π, the plurality score of
candidate c is the number of times that c is ranked first:
scP (c,π) = |{i ∈ N : πi(1) = c}|. The plurality win-
ner is the candidate with maximal plurality score (ties can be
handled arbitrarily; the tie-breaking rule used does not im-
pact our results). In Borda voting, the Borda score of c is
the number of candidates ranked below it, summed over all
preferences πi: scB(c,π) =

∑
i∈N [m−π−1i (c)]. The Borda

winner is the candidate with maximal Borda score.

Unavailable Candidates. Recent attention has been paid
to the possibility of voting over a slate of potential candi-
dates C, prior to determining the availability of the actual
set of candidates A ⊆ C. When determining the availabil-
ity of candidates is costly or risky (e.g., making job offers,
determining feasibility of public projects, calling restaurants
for reservations), it often makes sense to elicit voter pref-
erences prior to determining availability. Once preferences
are known, one can focus availability determination on can-
didates most likely to be winners relative to the true avail-
able set A [Lu and Boutilier, 2010; Baldiga and Green, 2011;
Boutilier et al., 2012]. Following these recent models, we as-
sume that each candidate c ∈ C is available i.i.d. with some
fixed probability p ∈ (0, 1]. The use of a fixed p simplifies
our presentation; but using distinct probabilities pc for differ-
ent candidates c does not change the nature of our results—all
can be adapted accordingly.

Given a set A ⊆ C of available candidates, a reduced pref-
erence πi|A is obtained by restricting πi to the candidates in
A; we denote by π|A the reduced preference profile obtained
in this way. Plurality and Borda voting in the unavailable
candidate model are defined in the obvious way, using the
scores obtained relative to the reduced profile. Notice that in
the unavailable candidates model, it is no longer sufficient to
run plurality voting by eliciting just the top-ranked candidate
from each voter: in general the entire ranking may be needed.

Top-k voting. Recent research has focused on the use of in-
telligent preference elicitation schemes to minimize the bur-
den on voters and obviate the need to provide full preference
rankings. One especially natural approach is top-k voting,
in which voters are asked to list only their k most preferred
candidates (or the k-th prefix of their ranking) [Kalech et al.,
2011; Lu and Boutilier, 2011b; 2011c]. We discuss below al-
ternative ways in which such votes can be used to determine
winners; but here we adopt an especially simple approach.

Given a voting rule v and some k ∈ [m], we denote by
(π(k)) = (π

(k)
1 , . . . , π

(k)
n ) the k-truncated preference profile.

We use this truncated profile to determine plurality scores in
the obvious fashion, by counting the number of first place
rankings. We compute Borda scores by assigning a score of
m̃ − π−1i (c) to any candidate c in voter i’s k-truncated vote,
where m̃ is the number of available candidates, and a score
of zero otherwise. In the unavailable candidates model, we
employ the same technique, restricting the truncated vote to
the available set A. Our goal is to determine values of k that
suffice to determine the true winner (with high probability)
relative to the true (untruncated) preference profile.

If candidates are always available (i.e., p = 1) then k = 1
is sufficient to determine the correct plurality winner, and
general top-k voting is of no value. By contrast, the possi-
bility of unavailable candidates intuitively requires that one
use larger values of k for plurality and other voting rules.

Probabilistic preference models. It has become increas-
ingly common to analyze voting rules under the assump-
tion that agent preferences are drawn from a prior distri-
bution over permutations. One important class of distri-
butions, widely used in psychometrics, statistics, and ma-
chine learning, is the Mallowsϕ-distribution [Mallows, 1957;
Marden, 1995]. It is described by two parameters: a refer-
ence ranking π̂ ∈ L, and a dispersion parameter ϕ (control-
ling variance). The probability of a permutation π under this
model is Pr(π) = ϕτ(π,π̂)/Zm, where τ(π, π̂) is the Kendall-
tau distance,

τ(π1, π2) = |{c, c′ : π−1
1 (c) < π−1

1 (c′) and π−1
2 (c) > π−1

2 (c′)}|,

and Zm is a normalization constant. Importantly, when
ϕ = 1, one obtains the uniform distribution over L, the so-
called impartial culture (IC) assumption, a modeling assump-
tion widely used in social choice.

Related Work. As mentioned, vote elicitation has at-
tracted considerable recent attention, usually in the context
of standard “known available candidate” models. Of partic-
ular relevance is work on top-k voting. Unlike our model,
in which we “zero out” the scores of unavailable candidates,
other work has treated the uncertainty in the missing candi-
dates more cautiously. Kalech et al. [2011] use top-k bal-
lots to determine possible and necessary winners [Konczak
and Lang, 2005] and develop heuristic elicitation schemes
to extend these ballots to quickly identify true winners for
several different voting rules. Lu and Boutilier [2011b] use
minimax regret to measure error in winner determination
and to guide elicitation heuristically as well. Both methods
show good empirical performance (and handle general partial
votes) but provide no theoretical guarantees on the required
values of k. The optimal choice of k has been analyzed from a
sample-complexity-theoretic perspective by Lu and Boutilier
[2011c], who provide bounds on the required number of sam-
pled profiles needed to estimate the required value of k for ar-
bitrary distributions; but this does not provide direct bounds
on k itself. Theoretical communication complexity results
show that Borda (and other rank-based rules) cannot benefit
from the use of top-k voting in the worst-case [Conitzer and
Sandholm, 2005], a point to which we return below.

None of the models above consider candidate unavailabil-
ity. The idea of voting with unavailable candidates was con-
sidered by Lu and Boutilier [2010] and Baldiga and Green



Voting rule Adversarial IC
Plurality, n = poly(m) k = O(logm) k = O(logm)
Plurality, n = exp(m) k = Ω(m) k = Θ(logm)

Borda, n = Ω(m3 logm) k = Ω(m) k = Ω(m/ logm)

Table 1: Top-k voting: bounds on k

[2011], who study the impact of missing candidates on the fi-
delity of a winner using voting rules such as Borda, and how
close ranking policies for selecting winners approximate the
true winner. More general querying policies, assuming costly
availability tests, were studied by Boutilier et al. [2012]. Un-
available candidate models also bear a strong connection to
the study of manipulation by candidate addition and dele-
tion [Hemaspaandra et al., 2007; Bartholdi III et al., 1992].
These models do not consider partial preferences. Chevalyre
et al. [2010] analyze the possible and necessary winner prob-
lem under (general) partial preferences, when new candidates
are added to an election, for several voting rules, but do not
consider elicitation or quantifying the amount of information
needed to determine a necessary winner.

Our results. In most of our theoretical bounds, we say that
a value of k produces a correct winner with high probability
(w.h.p.) if the probability that top-k voting returns the true
(full profile) winner is 1− o(1), where o(1)→ 0 as m→∞.
For plurality, we provide an upper bound of O(logm) on the
k that produces the correct winner w.h.p., if n is polynomial
in m, even if the preference profile is selected by an adver-
sary. If n is exponentially larger than m, we show that under
impartial culture we require k = Θ(logm), while k = Ω(m)
is needed in the worst case. For Borda, we show that for a
sufficiently large n (polynomial in m), k is Ω(m/ logm) un-
der impartial culture, even if p = 1; and it has a lower-bound
of k = Ω(m) in the worst case. Our top-k results are summa-
rized in Table 1.

We also consider the case where preferences are distributed
according to a Mallows model with reference ranking π̂. In
this model, we provide theoretical results for the special case
of k = 0, in other words zero elicitation protocols. We pro-
vide lower bounds on the required number of voters n needed
to find winners w.h.p., as a function of ϕ and m. For plu-
rality, we show that if n = Ω(logm/(1 − ϕ)3), then the
top candidate in π̂ is the winner w.h.p. For Borda, we de-
rive a lower bound of lnm · Γ(ϕ) on n, where Γ(ϕ) =
(8(1 + ϕ)2(1− ϕ)3 + (1 + ϕ))/(1− ϕ)7.

We support our theoretical findings by testing the perfor-
mance of top-k voting (including the special case of zero elic-
itation) under varying parameter values (k, n,m,ϕ). Our em-
pirical results suggest that when the dispersion parameter is
bounded away from 1, fairly low values of k are sufficient for
correct winner determination.

Space limitations preclude the inclusion of proofs of cer-
tain results. Omitted proofs can be found in an extended ver-
sion of this paper.1

1See www.cs.toronto.edu/∼cebly/papers.html.

3 Top-k Voting and Plurality Scoring
We start with a theoretical analysis of the performance of
top-k voting with plurality scoring, assessing the values of k
needed to determine the true plurality winner w.h.p. As noted
above, if the candidate availability probability p is 1, setting
k = 1 trivially guarantees correct winner selection. There-
fore, in this section we assume that p is a fixed probability,
bounded away from 1. We distinguish: (a) worst-case results,
in which an adversarial preference profile is selected to min-
imize the odds of correct winner selection, and expectations
are taken over available candidate sets A; and (b) average-
case results, in which profiles are drawn from some distribu-
tion (e.g., impartial culture), and expectations are taken over
both profiles and available sets.

We first show that, even in the worst case, when the number
of voters n is “small” relative to the number of candidates m,
a small value of k suffices for plurality:
Theorem 1 (Worst-case upper bound, poly. n). If n =
poly(m), then top-k voting with k = O(logm) determines
the correct plurality winner w.h.p. in the worst case.

Proof. Consider a vote π ∈ L. Set k = 2 log n/ log( 1
1−p ).

The probability that all top-k candidates are unavailable is
1/n2. Taking a union bound over all votes, the probability
that some vote has all top-k candidates unavailable is 1 −
1/n = 1− o(1).

Since thisO(logm) upper bound applies in the worst case,
it also applies to the average case for any profile distribution.
However, in the worst case, having n sub-exponential in m is
required if we want a small k.
Theorem 2 (Worst-case lower bound, exp. n). If n =
exp(poly(m)), top-k voting requires k = Ω(m) to determine
the correct plurality winner w.h.p. in the worst-case.

Proof. Let C = {c1, . . . , cm} ∪ {a, b}, and p = 1/2. A key
observation is that the unavailable set has size at least m/2
with probability very close to 1/2 (we assume for simplicity
that m is even). We create a scenario in which a and b have
very close plurality scores, requiring a large value of k to tell
which has the higher score. Consider the set H = {S ⊆ C :
|S| = m/2} containing all subsets of C of size m/2. We
show that k ≥ m/2 is required. Create two sets of votes:

1. V1: This set ensures a and b have the two highest scores
if they are available (which occurs with constant prob-
ability, so assume both are). Let t = 2 · |H|, and for
a set S ⊆ C, let lin(S) be an arbitrary ordering of S.
Create t+ 1 copies of a > lin(C \ {a}), and t copies of
b � lin(C \ b). Note: a gets one more vote than b in V1.

2. V2: For every S ∈ H, create two copies of the ranking
lin(S) � b � a � lin(C \ (S ∪ {a, b})).

Now, suppose the unavailable set has size at least m/2. The
plurality score of a is t+ 1, the score of b is at least t+ 2, and
so b is the true winner. Otherwise, the score of a is t+ 1, that
of b is t, and a is the winner. (All other candidates have score
at most t.) If k ≤ m/2 then the voting scheme doesn’t see b
in the set V2, and so it gives incorrect results with probability
roughly p2/2.



Thus, for large n, we must set k ≥ m/2 in the worst-
case. However, under impartial culture, a small value of k =
O(logm) again suffices for the average case:

Theorem 3 (Avg. case upper bound, exp. n). If n =
exp(Ω(m)), then top-k voting with k = O(logm) determines
the correct plurality winner w.h.p. under impartial culture.

Proof. Let V be an arbitrary vote profile. Parti-
tion V into two sets: V1 = {πi ∈ V :
one of πi(1), . . . , πi(k) is available}, V2 = V \ V1. Let A ⊆
C be the available set, let m̃ = |A|, n1 = |V1|, n2 = |V2|.
For c ∈ C, let scP1 (c) and scP2 (c) be its plurality scores in
elections (V1, A), (V2, A), respectively. W.l.o.g., order can-
didates based on scP1 (·): scP1 (c1) ≥ scP1 (c2) ≥ · · · ≥
scP1 (cm̃). We prove that c1 is the true winner w.h.p.

By a simple Chernoff-bound argument, m·p2 ≤ m̃ ≤ 2m·p,
w.h.p. Similarly, a simple calculation shows that E[n2] =
n · (1 − p)k, and using a Chernoff bound we obtain n2 ≤
2n · (1− p)k w.h.p. Hence, n1 ≥ n− 2n · (1− p)k w.h.p.

We now give an anti-concentration argument about the dif-
ference between the scores according to V1. We let D1

i,j =

scP1 (ci)− scP1 (cj) (we define D2
i,j similarly).

Lemma 4. D1
1,2 = Ω(n1/m

3.5) with high probability.

Proof. After conditioning on A, consider the votes V1 se-
quentially. By a simple balls and bins argument, the differ-
ence between the scores of ci and cj increases by 1 due to
vote πt (t = 1, . . . , n1) with probability 1/m̃, decreases by 1
with probability 1/m̃, and does not change with probability
1− 2/m̃. We can thus treat this change as a random variable
Xt, rewriting D1

i,j =
∑n1

t=1Xt, where Xt = 1, Xt = −1
each with probability 1/m̃, and Xt = 0 with probability
1 − 2/m̃. Then V ar(Xt) = E[X2

i ] = 2
m̃ ,E[D1

i,j ] = 2n1

m̃ ,
and ρ = E[|Xt|3] = 2

m̃ . The Berry-Esseen Theorem allows
us to prove that D1

1,2 (and hence D1
1,j for every j s.t. cj ∈ A)

is “large enough.”

Lemma 5 (Berry-Esseen [?]). LetX = X1+ · · ·+Xn be the
sum of i.i.d. zero-mean random variables s.t. E[X2

i ] = σ2 >
0,E[|Xi|3] = ρ <∞. Let Fn(·) be the cdf of X , and let Φ(·)
be the cdf of the normal distribution. Then:

sup
x
|Fn(x)− Φ(x)| < Cρ

σ3
√
n

(1)

where 0 < C ≤ 0.4784.

In our case: Cρ
σ3
√
n

= C√
n1
· 2m̃ ·

(
m̃
2

)3/2
= C ′ ·

√
m̃
n1

. Hence,

we may assume that D1
i,j is effectively given by the normal

distribution N (0, σ2 = 2n1

m̃ ), which gives us:

Pr[|D1
i,j | < t] ≤ 1√

2π

∫ t/σ

−t/σ
e−x

2/2dx <
1√
2π
· (2t/σ)

= t ·
√

m̃

π · n1
(2)

Setting t =
√
n1

m̃3.5 and taking the union bound over all
possible pairs (i, j) gives D1

1,2 = Ω( n1

m3.5 ) with probability

1−O(1/m̃) = 1−o(1), where the last equality follows from
the concentration bound on m̃.

A concentration bound on D2
1,j (for all cj ∈ A \ {c1})

follows from a Chernoff bound and a union bound over all j:

Pr[D2
1,j ≤ 2

√
n2

m̃
· logm for all j ≥ 2] = 1− o(1) (3)

We now summarize by showing that, w.h.p., D1
1,2 > D2

1,j :
√
n1

m̃3.5
>

√
n2 · logm√

m̃
(4)

As m > m̃ and
√
m > 1, it suffices to show:√

n− 2n · (1− p)k
m3.5

>
√

2n · (1− p)k · logm (5)

The above holds (for n,m sufficiently large) if we set (1 −
p)k = m−8, which gives k = O(logm), as required.

A matching lower-bound shows this upper-bound is tight:

Theorem 6 (Avg. case lower bound). If n = exp(Ω(m)),
k = Ω(logm) is necessary for top-k voting to produce the
true plurality winner w.h.p. under impartial culture.

Proof. The proof is largely symmetric to the proof of the
upper-bound. We use the same notation as in the previous
proof. We first provide an upper-bound on the difference
between the score of the highest-ranking candidate and the
second-highest. As before, order C based on their scores
in V1: scP1 (c1) > scP1 (c2) . . . (for completeness, let un-
available candidates have score 0). Also, recall that D1

i,j =

scP1 (ci)− scP1 (cj). The following lemma asserts that the top
two scores are likely to be close to one another.2

Lemma 7. D1
1,2 = O(

√
n log2 logm
m logm ) = o(

√
n
m ) w.h.p.

Proof. Let A ⊆ C be the available set (|A| = m̃), and parti-
tion A into two (roughly) equal size sets: A1, A2 ⊂ A, such
that |A1| = bm̃/2c , |A2| = dm̃/2e. Define two random
variables: t1 = maxc∈A1 sc

P
1 (c), t2 = maxc∈A2 sc

P
1 (c).

It it easy to see that D1
1,2 ≤ |t1 − t2|, so we prove the

claim by upper-bounding the r.h.s. of the inequality. The
number of the votes in V1 that rank candidates in A1 (A2)
first is bounded away from n1/2 by O(

√
n1) w.h.p. So the

score of each candidate in A1 and A2 is distributed accord-
ing to a typical balls-and-bins process, in which n1/2 ±
o(n1) balls are thrown into m̃/2 bins, at random. Using
Thm. 1 of [Raab and Steger, 1998], we have |ti − E[ti]| =

Θ

(√
n1 log m̃

m̃

√
(1− (1 + ε) log log m̃

2 log m̃ )

)
, for ε > 0 w.h.p.,

for i = 1, 2. Using our bounds on m̃, n1, and the ap-
proximation

√
1− x = 1 − Θ(x), we derive |t1 − t2| =

O(
√

n·logm
m

log logm
logm

) = O(n log2 logm
logm

), w.h.p.

Lemma 8. Let k = o(logm). Then D2
2,1 = Ω(

√
n/m) with

constant probability.

2We thank Neal Young for the idea of the proof.



The proof is similar to that of Lemma 4.

To summarize, we see that top-k voting can be very ef-
fective for plurality voting with the possibility of unavailable
candidates under the impartial culture model, requiring elic-
itation of only the O(logm) most-preferred candidates from
each voter to ensure the correct winner w.h.p. (this upper
bound is tight). If one wants worst-case assurances, this same
bound suffices for “small” elections (with a number of voters
polynomial in n); but for “large” elections (with an exponen-
tial number of voters), top-k voting offers no savings.

4 Top-k Voting and Borda Scoring
We now turn our attention to Borda scoring, and provide sim-
ilar results. As with plurality, we begin with a worst-case
lower bound on k. We note that the following result fol-
lows quite directly from a general result on the (determinis-
tic) communication complexity of any rank-based voting rule:
Conitzer and Sandholm [2005] show that such rules require
O(nm logm) bits of communication in the worst case (i.e.,
essentially elicitation of full rankings). However, we provide
a direct construction for Borda.

Theorem 9 (Worst case lower bound). Top-k voting requires
k = Ω(m) to determine the correct Borda winner w.h.p. in
the worst-case, even when p = 1.

Proof. Assume for simplicity that |C| is odd and larger than
5. Let A be an available set and C = {c} ∪ A for some des-
ignated candidate c. Let π be an arbitrary ordering of A, and
πr its reverse. Let (π1, π2) be a profile with two votes, where
π1 and π2 are obtained by placing c between the candidates
ranked in positions m−1

2 − 1 and m−1
2 in each of π and πr.

If k = m−1
2 − 1, c will not be the top-k Borda winner, even

though it is the true Borda winner—its average score is m+1
2 ,

whereas the average score of all other candidates is m−12 .

We now provide an average-case lower bound on k under
the impartial culture assumption.

Theorem 10 (Avg. case lower bound). If n = Ω(m3 · logm),
then k = Ω(m/ logm) is necessary for top-k voting to pro-
duce the true Borda winner w.h.p. under impartial culture,
even when p = 1.

Proof. The proof idea will be similar to the proof we give for
the plurality voting rule: we will upper bound the observed
difference in score between the winner according to the top-
k voting, and any other candidate. Then, we will show that
with constant probability this difference between the score of
the winner and that of the candidate with the second high-
est score is eliminated as a result of discounted votes. Given
the real Borda scores scBi (·) of the candidates in vote πi, let
αi(c) = scBi (c) if scBi (c) ≥ m − k, and αi = 0, other-
wise. That is, αi(c) is the Borda score of c according to top-
k voting. Similarly, βi(c) = scBi (c) if scBi (c) < m − k
and βi(c) = 0 otherwise; i.e., the extra score “missed” due
to top-k voting. We let α(c) =

∑
i∈N αi(c) and β(c) =∑

i∈N βi(c). Finally, for two distinct candidates c, c′ ∈ C,
DT (c, c′) = α(c)−α(c), and DB(c, c′) = β(c)− β(c′). We

will show that if c and c′ are the highest and second highest
ranking candidates according to top-k voting, with constant
probability, for o(m/ logm), DT (c, c′) < DB(c′, c).

Lemma 11. If k = o(m/ logm), then for all c, c′ ∈ C,
DT (c, c′) = o(

√
n m

logm ) with high probability.

Proof. We prove the lemma via a simple concentration
bound. Clearly E[DT (c, c′)] = 0. Bounding the variance:

V ar[DT (c, c′)] =
n

m(m− 1)

k∑
tc=0

k∑
tc′=0

(tc′ − tc)2

=
n

m− 1

k∑
t=0

t2 − 2

m(m− 1)

(∑k
t=0 t

)2
= n · (k + 1)(4mk2 + 2mk − 3k3 − 3k2)

6m(m− 1)

= O(
nk3

m
) =

αnk3

m
(6)

where the last inequality was obtained by assuming that k =
o(m).

Now, using the Bernstein inequality, we get that for any
c, c′ ∈ C:

Pr[|DT (c, c′)| ≤
√

5 logm

√
αk3

m
]

≤ 2 exp

(
− 5 logm·αnk3/m

αnk3+m
3 ·

√
α logm·nk3

m

)
≤ 2 exp

(
5 logm·αnk3/m

2αnk3/m

)
=

2

m2.5
(7)

where the second inequality follows by assuming: n ≥
m3·logm
9·α·k3 . The lemma follows by taking the union bound over

all O(n2) pairs (c, c′), and plugging k = o(k/ logm).

Next, we show that this gap in observed scores of, among
other pairs, the highest and second-highest scores , can be
closed due to uncounted scores.

Lemma 12. If k = O(m/ logm) then DB(c′, c) =
Ω(m
√
n) with constant probability, where c and c′ are the

candidates with the highest and second-highest scores.

Proof. We prove the lemma as before by showing that the dif-
ferenceDB(c′, c) can be well approximated using the normal
distribution.

Claim 13. If k = O(m/ logm), V ar[DB(c, c′)] = Ω(m2 ·
n), with constant probability.

First, conditioning on the first and second ranking can-
didates c1, c2 (WLOG), we divide V into four sets: V1 =
{πi ∈ V : πi(c), πi(c

′) ≤ k}, V2 = {πi ∈ V : πi(c) ≤
k, πi(c

′) > k}, V3 = {πi ∈ V : πi(c) > k, πi(c
′) ≤ k},

V4 = {πi ∈ V : πi(c), πi(c
′) > k}. Furthermore, we let

n1, n2, n3, and n4 denote the sizes of V1, V2, V3 and V4, re-
spectively.

By assuming that k = O(m) and using a concentration
argument, we get that n1 = n2 = n3 = n4 = Θ(n) with



high probability. As before, we lower-bound the variance of
DB(c, c′).

E[(DB(c, c′))2] =
n2 + n3
m− k

m−k−2∑
t=0

t2

+
n4

(m− k)(m− k − 1)

m−k∑
tc=0

m−k∑
tc′=0

(tc − tc′)2

= n4 ·
(m− k)3 − (m− k)

6 · (m− k − 1)

+
n2 + n3

6
· (m− k + 1)(2m− 2k + 1)

Assuming only k = β ·m and using the concentration bounds
for n2, n3, and n4 suffices to get E[(DB(c, c′))2] = Θ(m2 ·
n).

On the other hand, E[DB(c, c′)] = (n2 − n3) · m−k2 .
As V ar[DB(c, c′)] = E[DB(c, c′)2] − E[DB(c, c′)]2, upper
bounding E[DB(c, c′)] will prove the claim. First, notice that
E[n2 − n3] = 0. Furthermore, notice that V ar(n2 − n3) ≤
nk·(m−k)m(m−1) , as for every vote, the probability that only one of

{c, c′} is in the top-k is k·(m−k)m(m−1) . Plugging k = O(m/ logm)

implies V ar[n2 − n3] ≤ β n
logm , w.h.p. By a straightfor-

ward tail-bound we get that |n2 − n3| = O(
√

n
logm ) with

constant probability. Plugging this bound into the term for
E[DB(c, c′)] gives that V ar[DB(c, c′)] = Ω(m2 · n) with
constant probability.

As done for the Plurality rule, we turn to the Berry-Esseen
to lower bound DB(c, c′). First, we lower bound the third
moment of DB(c, c′).

Claim 14. The third moment ρ = E[|(DB(c, c′) −
E[DB(c, c′)])3|] = O(m3 · n2).

To prove the claim, we note that |DB(c, c′)| ≤ m · n, as
the difference between the Borda score of any two candidates
is at most m · n. Also, by a slightly stronger tail-bound,
we get that |n2 − n3| ≤ n

√
m, w.h.p., which implies that

E[DB(c, c′)] = O(n
√
m). Expanding the term for ρ, we ob-

tain:
ρ = E[|(DB(c, c′)− E[DB(c, c′)])3|]
≤ E[|DB(c, c′)|3] + |E[DB(c, c′)]3|
+ 3E[DB(c, c′)2] · E[|DB(c, c′)|]
+ 3E[|DB(c, c′)|] · E[DB(c, c′)]2 (8)

By a simple tail bound, with probability 1 − O(1/m),
|DB(c, c′) − E[DB(c, c′)]| ≤ O(

√
logm ·√

V ar(DB(c, c′))) = O(m·
√
n

logm

√
logm) = O(m

√
n

logm ).

So: E[DB(c, c′)3] ≤ O(m
√
n/ logm) +O( 1

m ·m · n) =

O(m
√
n/ logm) (we have used the upper bound on the total

difference).
Thus:

ρ ≤ O(m
√
n/ logm) +O(m

√
n/ logm)

+m3 · n1.5 +O(m3 · n1.5) +O(m3 · n2)

Thus, for a normal distribution Φ centered around
E[DB(c, c′)], we have:

sup
x
|Pr[DB(c, c′) = x]− Φ(x)] <

Cρ

σ3
√
n

=
O(m3 · n2)

Θ(m3 · n1.5) ·
√
n

= O(
√

1/m), with constant probability

Using the properties of the normal distribution, we get
that with constant probability DB(c, c′) = Ω(m

√
n) (as

|E[DB(c′, c)]| = O(m
√
n) and V ar = Ω(m

√
n) with con-

stant probability).

Combining Lemma 11 and Lemma 12 we get that
D(c, c′) = DB(c, c′) + DT (c, c′) < 0 with constant prob-
ability, which proves the theorem.

To summarize, top-k voting cannot ease the elicitation bur-
den in Borda elections in the worst case. Under impartial
culture, there is hope for some elicitation savings for elec-
tions of reasonable size, as indicated by our lower bound
of k = Ω(m/ logm), which suggests that O(m/ logm)
might suffice. But these savings are not nearly as substan-
tial as in the case of plurality, nor are they guaranteed with-
out a matching upper bound. A matching upper bound, or a
stronger lower bound—for instance, perhaps our proof could
be strengthened to give a lower bound of Ω(m)—is an im-
portant result needed to complete the picture regarding Borda
under impartial culture. Despite this, we will see below that
top-k voting can, in fact, help substantially in Borda voting
under other, more realistic preference distributions.

5 Zero-elicitation Protocols
It is widely recognized that the impartial culture assumption
does not provide a realistic model of real-world preferences
or voting situations [Regenwetter et al., 2006]. For this rea-
son, exploring the ability to limit elicitation under other, more
realistic probabilistic models of voter preference is of great
import. We consider one such model in this work, namely the
Mallows model, since it allows us to generalize the impartial
culture model (which is a special case) by simply varying the
dispersion or degree of concentration of voter preferences in
a natural way. While we do not claim that the Mallows model
is an ideal model for all social choice situations (though
it serves as an important backbone for mixture models of
preferences [Murphy and Martin, 2003; Busse et al., 2007;
Lu and Boutilier, 2011a]), it represents an important starting
point for the broader investigation of top-k voting.

In this section, we theoretically analyze the special case of
zero elicitation protocols—that is, top-k voting when we set
k = 0—under Mallows model distributions. Specifically, we
ask how concentrated voter preferences need to be—what dis-
persion values ϕ suffice—to ensure that correct plurality and
Borda winners can be selected w.h.p. without eliciting any in-
formation from voters. For ease of presentation, we assume
p = 1 (i.e., all candidates are available); however, our proofs
can be modified to accommodate p < 1, using simple appli-
cations of Chernoff and union bounds to account for missing
candidates. In the next section, we empirically analyze top-k



voting for both zero elicitation and more general values of k
under Mallows models.

It is important to recognize that voting is often used for
two distinct purposes, aggregation of preferences as discussed
above, and aggregation of information [de Caritat marquis de
Condorcet, 1785; Young, 1995]. In the latter case, it is often
assumed that some true (objective) latent ranking of alterna-
tives gives rise to the reported rankings of voters, with the
aim of recovering this latent ranking from the votes (e.g., us-
ing some form of maximum likelihood estimation). In such
a case, having the mean ranking π̂ given a priori via a Mal-
lows model leaves no reason to actually elicit votes (since
the ranking to be estimated is given as input). However, vot-
ing does offer value when aggregating preferences: The rank-
ing π̂ may represent, for example, an ordering of candidates
based on some observable characteristic that correlates voter
preferences, but does not actually determine them. If our aim
is to maximize societal satisfaction using a specific voting
rule (as opposed to estimating the objective ranking itself),
then preference elicitation is generally needed. Our aim in
this section is analyze how concentrated preferences need to
be to support preference aggregation with no elicitation.

Assume a Mallows model (π̂, ϕ) over m candidates C.
With no elicitation, the candidate with the expected highest
(plurality or Borda) score is obviously the highest ranked can-
didate π̂(1), and it has the highest probability of winning if
ϕ < 1 (if ϕ = 1, all candidates are equally likely to be win-
ners). Under plurality voting, we can show that with a suffi-
ciently large voter population, this approach performs well.

Theorem 15. If n = Ω
(

logm(1−ϕm)
(1−ϕ)3

)
, then the highest-

ranked candidate π̂(1) is the plurality winner w.h.p.
Thm. 15 can be proven using the Bernstein inequality and

union bound to bound the probability that the highest-ranked
candidate in π̂ is dominated by another.

Proof. Relating to our previous notation, we let Di =
scP (c1) − scP (ci). Also, we assume without loss of gen-
erality that the candidates in C are numbered based on their
position in the reduced reference ranking π̂.

It follows from the definition of the Mallows distribu-
tion that Pr[π−1(1)| = ci] = ϕi−1/Zm. Thus, E[Di] =
n(1−ϕi−1)

Zm
, and E[D2

i ] = n(1+ϕi−1)
Zm

.
Now, by the union bound, we have

Pr[Di > 0,∀i 6= 1] ≥ 1−
∑
i 6=1

Pr[Di < 0]

As before, we can treat Di as the sum of n random vari-
ables X1, . . . , Xn, where for each i = 1, . . . , n, Xi = 1 with
probability ϕi−1/Zm, Xi = −1 with probability 1/Zm, and
Xi = 0 otherwise. By the Bernstein inequality, we have

Pr[Di > 0] ≤ exp
(
− E[Di]2

2(E[D2
i ]+

1
3E[Di])

)
≤ exp

(
− 3E[Di]2

8E[D2
i ]

)
≤ exp

(
− 3n(1−ϕ)(1−ϕi−1)2

8(1−ϕm)

)
≤ exp

(
− 3n(1−ϕ)3

8(1−ϕm)

)

Applying the union-bound gives:

Pr[Di < 0,∀i > 1] ≥ 1− exp
(

logm− 3n(1−ϕ)3
8(1−ϕm)

)
Solving for n and using the bound on m concludes the proof.

We can derive a similar bound for Borda voting.

Theorem 16. If n ≥ Γ(ϕ) lnm, where Γ(ϕ) = (8(1 +
ϕ)2(1 − ϕ)3 + (1 + ϕ))/(1 − ϕ)7, then the highest-ranked
candidate π̂(1) is the Borda winner w.h.p.

Sketch of Proof As before, assume without loss of gener-
ality that the candidates are numbered according to their rank
in π̂. We make use of the following straightforward lemma:

Lemma 17. For every i ≤ m − 1, and 1 ≤ t1 < t2 ≤ m,
ϕ ·Pr[π(t1) = ci, π(t2) = ci+1] = Prπ[π(t2) = ci, π(t1) =
ci+1]

The lemma follows from a simple coupling argument and
the definition of the Mallows distribution. As before, we let
Di = scB(c1) − scB(ci). Lemma 20 implies that the ex-
pected Borda score E[ci] are a non-increasing with i:

Corollary 18. For every 2 < i ≤ m, E[Di] ≥ E[D2].

We proceed as before by bounding the probability that the
score of c1 is lower than the Borda score of some other can-
didate; i.e., that Di < 0 for some i > 2.

We can now bound E[D2] and the k’th moment of D2.

Lemma 19. The following bounds hold for the expectation
E[D2], the second, and the k’th moments of D2:

1. n(1−ϕ)
1+ϕ ≤ E[D2] ≤ n

1+ϕ .

2. n ≤ E[D2
2] ≤ 2n/(1− ϕ)2; and

3. E[|D2|k] ≤ k!n/((1− ϕ)k(1− ϕm−1)(1− ϕm)).

Proof. Using the definition of the Mallows distribution and
Lemma 20 we obtain E[D2] = nϕ−m·ϕ

m+m·ϕm+2−ϕ2m+1

(1+ϕ)(1−ϕm)(ϕ−ϕm) .
By observing that the above expectation is nondecreasing in
m, setting m = 2 and taking the limit m → ∞, we obtain
the first part of the lemma. Also, using the definition of the
Mallows distribution, we have:

E[|D2|k] =
n

Zm · Zm−1

∑
1≤t1<t2≤m

(t2 − t1)k(1 + ϕ)ϕt1+t2−3

=
n(1 + ϕ)(1− ϕ)2

ϕ3(1− ϕm−1)(1− ϕm)

m−1∑
d=1

dkϕd
m−d∑
t1=1

ϕ2t1 (9)

Applying similar methods to Eq.12 gives parts (2) and (3).

In order to use Bernstein’s inequality, we need to find a
constant c such that E[|D2|k] ≤ 0.5 · k!E[D2

2] · ck−2. It can
be verified that c = 2/(1−ϕ)5 satisfies this inequality. Now,
applying Bernstein’s inequality we get:

Pr[D2 < 0] ≤ exp
(
− n(1−ϕ)7

4((1−ϕ)3(1+ϕ)2+(1+ϕ))

)
(10)

Applying Corollary 21 and taking the union bound over the
m candidates gives the bound on n.



Notice that our proof implies an even stronger result, that
for a sufficiently large population of voters, the entire ranking
induced by the Borda scores of the candidates corresponds to
the reference ranking.

Proof. Our proof implies an even stronger result, that for a
sufficiently large population of voters, the ranking induced
by the Borda scores of the candidates corresponds to the ref-
erence ranking. As before, assume without loss of generality
that the candidates are numbered according to their rank in π̂.
We will make use of the following straightforward lemma:

Lemma 20. For every i = 1, . . . ,m − 1, and 1 ≤ t1 <
t2 ≤ m, ϕ · Pr[π(t1) = ci, π(t2) = ci+1] = Prπ[π(t2) =
ci, π(t1) = ci+1]

The lemma follows from a simple coupling argument and
the definition of the Mallows distribution. As before, we let
Di = scB(c1)− scB(ci). As a corollary, Lemma 20 implies
that the expected Borda score E[ci] are a non-increasing with
i. This gives the following corollary

Corollary 21. For every 1 ≤ i < j ≤ m, E[Dj ] ≥ E[Di].

We proceed as before by bounding the probability that the
score of c1 is lower than the Borda score of some other can-
didate; i.e., that Di < 0 for some i > 2. The implication
of Corollary 21 is that Pr[Di < 0] ≤ Pr[D2 < 0] for all
i = 2, . . . ,m.

We now provide bounds for E[D2] and the k’th moment of
D2.

Lemma 22. The following bounds hold for the expectation
E[D2], the second, and the k’th moments of D2:

1. n(1−ϕ)
1+ϕ ≤ E[D2] ≤ n

1+ϕ

2. n ≤ E[D2
2] ≤ 2n/(1− ϕ)2, and more generally:

3. E[|D2|k] ≤ k!n/((1− ϕ)k(1− ϕm−1)(1− ϕm)).

Proof. By definition,

E[D2] = n
∑

t1,t2∈[m]

(t1 − t2)Pr[π(t1) = c1, π(t2) = c2]

= n
∑

1≤t1<t2≤t2

(t2 − t1)(1− ϕ)Pr[π(t1) = c1, π(t2) = c2]

= n(1− ϕ)
∑

1≤t1<t2≤m

(t2 − t1)
ϕt1+t2−3

(
∑m−2
i=0 ϕi)(

∑m−1
i=0 ϕi)

= n
ϕ−m · ϕm +m · ϕm+2 − ϕ2m+1

(1 + ϕ)(1− ϕm)(ϕ− ϕm)
(11)

where the first equality follows from Lemma 20, and the
second one follows from the definition of the Mallows dis-
tribution. By observing that the above expectation is non-
decreasing with the value of m, 3 and plugging m = 2, we
get the lower-bound on E[D2]. The upper-bound on E[D2] is
obtained by taking the limit of m→∞ in Eq.11.

3This observation can be easily proved using the Repeated In-
sertion model CITE DOIGNON here, which is equivalent to the
Mallows distribution.

Now, by definition:

E[|D2|k] =
n

Zm · Zm−1

∑
1≤t1<t2≤m

(t2 − t1)k(1 + ϕ)ϕt1+t2−3

=
n(1 + ϕ)(1− ϕ)2

ϕ3(1− ϕm−1)(1− ϕm)

m−1∑
d=1

dkϕd
m−d∑
t1=1

ϕ2t1 (12)

The lower-bound on the second moment of D2 is obtained by
plugging k = 2, and applying the assumption of m ≥ 2 in
Eq.12 (using the monotonicity of the moment of D2 as done
before for the expectation) :

E[D2
2] ≥ n(1 + ϕ)(1− ϕ)2

ϕ3(1− ϕ)(1− ϕ2)
ϕ3 = n

In order to upper-bound the k’th moment of D2, we extend
the inner and outer sums:

E[|D2|k] ≤ n(1 + ϕ)(1− ϕ)2

ϕ3(1− ϕm−1)(1− ϕm)

∞∑
d=1

dkϕd
∞∑
t1=1

ϕ2t1 =

=
n(1 + ϕ)(1− ϕ)2

ϕ3(1− ϕm−1)(1− ϕm)

ϕ2

1− ϕ2

∞∑
d=1

dkϕd

=
n(1− ϕ)

ϕ(1− ϕm−1)(1− ϕm)

∞∑
d=1

dkϕd

=
n(1− ϕ)

ϕ(1− ϕm−1)(1− ϕm)

∞∑
d=1

k!

(
d+ k − 1

k

)
ϕd

=
n(1− ϕ)

ϕ(1− ϕm−1)(1− ϕm)
· k!ϕ

(1− ϕ)k+1

=
k!n

(1− ϕ)k(1− ϕm−1)(1− ϕm)
(13)

Plugging k = 2 and taking the limitm→∞ gives the upper-
bound on the second moment.

In order to use Bernstein’s inequality, we need to find a
constant c such that

E[|D2|k] ≤ 0.5 · k!E[D2
2] · ck−2

It can be verified that c = 2/(1−ϕ)5 satisfies this inequality.
Now, applying Bernstein’s inequality we get:

Pr[D2 < 0] ≤ exp
(
− E[D2]

2

2(E[D2
2 ]+cE[D2])

)
≤ exp

(
− n2(1−ϕ)2/(1+ϕ)2

2( 2n
(1−ϕ)2

+ 2
(1−ϕ)5

· n
1+ϕ )

)
= exp

(
− n(1−ϕ)7

4((1−ϕ)3(1+ϕ)2+(1+ϕ))

)
(14)

Applying Corollary 21 and taking the union bound over the
m candidates gives the bound on n.

6 Empirical Results
The bounds above provide some theoretical justification for
the use of top-k voting; however, they do not prescribe pre-
cise values for the choice of k with respect to specific priors
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Figure 1: Correctness of top-k voting: m = 10, varying k and n.

and election sizes (m,n). In this section we present simula-
tion results for small elections with m = 10 candidates and
n = 100 to 5000 voters to illustrate the probability of correct
winner selection in both plurality and Borda elections using
top-k voting for several values of k (including zero elicita-
tion), under Mallows models with a range of dispersion value
ϕ. In our experiments, we generate 10,000 random pref-
erence profiles for each parameter setting by drawing voter
rankings i.i.d. from the appropriate Mallows model, and mea-
sure the fraction of such profiles in which top-k delivers the
true winning candidate. We assume a candidate availability
probability of p = 0.5 throughout, except for results concern-
ing zero-elicitation (in which all candidates are available).

In all tests of top-k voting with dispersion ϕ < 0.7, winner
prediction was essentially perfect, even with k = 1, regard-
less of the other parameters. As a consequence, we focus
our discussion on values of ϕ ≥ 0.7. Fig. 1 shows the suc-
cess rate (i.e., rate of correct winner selection) of top-k vot-
ing for both plurality and Borda voting, with ϕ = 0.7 and
m = 10, as we vary k and the number of voters. In all cases
top-k converges to the correct prediction, and is near-perfect
when k = 3. With a greater number of voters, performance is
better, but the dependence is slight and almost negligible for
k = 3.

To analyze zero-elicitation, we measured how often the
first-ranked candidate in the mallows reference ranking (i.e.,
the winner under zero-elicitation) is the true election winner
under both plurality and Borda voting. We set m = 10, and
assume p = 1 for simplicity. We vary ϕ and n, and show re-
sults averaged over 10,000 elections for each setting in Fig. 2.
For ϕ ≤ 0.8, predictions are near-perfect for n ≥ 700; and
with ϕ ≤ 0.7, n ≥ 400 suffices for near 100% accuracy.
We note that results are better for Borda than for plurality.
For populations with an extremely high degree of disper-
sion (ϕ = 0.9), the success rate for plurality is only 0.8 at
n = 1000, and the Borda success rate is only 0.92. This is
consistent with the trends suggested by our theoretical bounds
in the sense that the success probability depends exponen-
tially on ϕ, which means that it decreases dramatically for
larger values of ϕ.

We also measured how frequently the entire societal rank-
ing induced by plurality or Borda voting corresponds to the
Mallows reference ranking π̂. This measures the extent to
which π̂, hence zero-elicitation, accurately reflects the entire
societal preference ranking (not just the winner at the top of
the ranking). Results are depicted in Fig. 3. Unsurprisingly,
the probability of complete ranking accuracy is significantly
lower than the probability with which zero-elicitation cor-
rectly forecasts just the winner. However, with n = 1000,
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Figure 2: Correctness of zero-elicitation: m = 10, varying n, ϕ.
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Figure 3: Reconstruction rates of zero-elicitation: m = 10, varying
n, ϕ.

almost perfect reconstruction is achieved for Borda scoring
when ϕ ≤ 0.8. Notice that the difference between plurality
and Borda is even more pronounced than in winner predic-
tion. Under Borda, n = 5000 suffices for accurate assessment
of the entire ranking with zero-elicitation, even for ϕ = 0.9,
while for plurality, results for ϕ = 0.9 are much worse (about
0.6), and even for ϕ = 0.7 do not reach 100%.

7 Conclusions
We have provided a detailed analysis of top-k voting, allow-
ing for the possibility of unavailable candidates, for both plu-
rality and Borda voting. Our theoretical results place bounds
(in some cases tight) on the required values of k needed to de-
termine the correct winner w.h.p., in both a worst-case sense
and an average-case sense under impartial culture. We also
derived conditions under which zero-elicitation admits cor-
rect winner prediction using Mallows models. Our empiri-
cal results further demonstrate that relatively small values of
k work very well in practice. Even zero-elicitation shows
strong promise when preferences exhibit only mild degrees
of correlation in elections with a sufficient number of voters.

There are a number of interesting directions for future re-
search. Extending our analysis to other voting rules is of
great interest. For example, preliminary results suggest that
Copeland exhibits behavior similar to Borda, requiring large
k for impartial culture; do certain voting rules exhibit behav-
ior that is intermediate between plurality and Borda? Extend-
ing our analysis to a richer class of realistic preference dis-
tributions, such as the Plackett-Luce model, or Mallows mix-
tures, is an important next step, as is testing our approach on
real data sets.

A third direction is the investigation of multi-round elicita-
tion protocols [Lu and Boutilier, 2011c], where voting data is



elicited in stages, and the protocol terminates when the win-
ner can be determined with high probability. Such protocols
are adaptive and dynamic, eliciting information in a given
stage conditioned on information gleaned in earlier stages.
An important question is whether it is possible to elicit less
information on average with such a protocol.
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