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Abstract
We present an optimal, combinatorial 1− 1/e approximation algorithm for Maximum Coverage
over a matroid constraint, using non-oblivious local search. Calinescu, Chekuri, Pál and Vondrák
have given an optimal 1−1/e approximation algorithm for the more general problem of monotone
submodular maximization over a matroid constraint. The advantage of our algorithm is that it
is entirely combinatorial, and in many circumstances also faster, as well as conceptually simpler.

Following previous work on satisfiability problems by Alimonti, as well as by Khanna, Mot-
wani, Sudan and Vazirani, our local search algorithm is non-oblivious. That is, our algorithm
uses an auxiliary linear objective function to evaluate solutions. This function gives more weight
to elements covered multiple times. We show that the locality ratio of the resulting local search
procedure is at least 1− 1/e. Our local search procedure only considers improvements of size 1.
In contrast, we show that oblivious local search, guided only by the problem’s objective function,
achieves an approximation ratio of only (n − 1)/(2n − 1 − k) when improvements of size k are
considered.

In general, our local search algorithm could take an exponential amount of time to converge
to an exact local optimum. We address this situation by using a combination of approximate
local search and the same partial enumeration techniques as Calinescu et al., resulting in a clean
(1− 1/e)-approximation algorithm running in polynomial time.
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1 Introduction

Maximum coverage [1,6–9,11,13,16] (also known as Max Cover) is a well-known combinatorial
optimization problem related to Set Cover. Given a universe U , element weights w : U → R+,
a family F ⊂ 22U of subsets of U , and a number n, the problem is to select n sets Si ∈ F
such that w(S1 ∪ · · · ∪ Sn) is as large as possible.

Like many combinatorial optimization problems, maximum coverage is hard to solve
exactly. A straightforward reduction from Set Cover shows that the decision version of
maximum coverage with unit weights (deciding whether there are n sets that span at least
m elements) is NP-complete, so the best we can hope for is an approximation algorithm.

One natural approach is the following heuristic. First pick the set S1 of maximum
weight. Then pick the set S2 that maximizes w(S2 \ S1), and so on. This approach leads
to the well-known greedy algorithm, and yields an approximation ratio of 1− 1/e ≈ 0.632+.
Amazingly, in this setting the greedy algorithm is optimal. Feige [9] used the PCP theorem to
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show that if there exists a polynomial-time algorithm that approximates maximum coverage
within a ratio of 1− 1/e+ ε for some ε > 0 then P = NP.

The present paper deals with a generalized version of maximum coverage, in which
we are given a matroid m over F , and the goal is to find a collection S ⊆ F that covers
elements of maximum weight, subject to the constraint that S ∈ m. We call this problem
maximum coverage over a matroid constraint. If the underlying matroid is the uniform
matroid of rank n, we recover the original problem. Because every maximum coverage
function is monotone submodular, this problem falls under the more general setting of
maximizing monotone submodular functions subject to a matroid constraint. The greedy
algorithm still applies in this general setting, but its approximation ratio is only 1/2, even
when the monotone submodular function is a maximum coverage function. Calinescu,
Chekuri, Pál and Vondrák [5] developed a sophisticated algorithm for a general problem of
monotone submodular maximization over a matroid constraint, which achieves the optimal
approximation ratio of 1− 1/e. Their algorithm first finds a fractional solution using the
continuous greedy algorithm, and then rounds it to an integral solution using pipage rounding.

1.1 Our contribution
We propose a simple algorithm for maximum coverage over a matroid constraint. Like
the continuous greedy algorithm, our algorithm achieves the optimal approximation ratio
of 1 − 1/e. In contrast to the continuous greedy algorithm, however, our algorithm is
combinatorial, in the sense that it only deals with integral solutions. Our approach is based
on non-oblivious local search, a technique first proposed by Alimonti [2] and by Khanna,
Motwani, Sudan and Vazirani [12].

In classical (or, oblivious) local search, the algorithm starts at an arbitrary solution, and
proceeds by iteratively making small changes that improve the objective function, until no such
improvement can be made. The locality ratio of a local search algorithm is minw(S)/w(O),
where S is a solution that is locally-optimal with respect to the small changes considered by
the algorithm, O is a global optimum, and w is the objective function for the problem. The
locality ratio provides a natural, worst-case guarantee on the approximation performance of
the local search algorithm.

In many cases, oblivious local search may have a very poor locality ratio, implying that a
locally-optimal solution may be of significantly lower quality than the global optimum. For
example, for our problem the locality ratio for an algorithm changing a single set at each
step is 1/2. As the locality ratio depends on the type and size of local changes considered,
one approach for improving an algorithm’s performance is simply to consider larger (but
still constant-sized) neighborhoods. Unfortunately, in our case, this technique results in no
asymptotic improvement in the locality ratio. Specifically, we show that the locality ratio
of oblivious local search remains only (n− 1)/(2n− 1− k) when k sets are exchanged. For
constant k, this is only marginally better than the approximation ratio 1/2 achievable using
the greedy algorithm.

Non-oblivious local search adopts a more radical approach by altering the objective
function used to guide the search. We proceed as before, but modify the local search
algorithm to use an auxiliary objective function to decide whether the current solution is an
improvement. By carefully choosing this auxiliary function, we can ensure that poor local
optima with respect to the original objective function are no longer local optima.

In this paper, we present a non-oblivious local search algorithm for the problem of
maximum coverage over a matroid constraint. Specifically, we construct an auxiliary objective
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function whose locality ratio (for single changes) is slightly larger than 1− 1/e, resulting in
an algorithm whose approximation ratio is the best possible, assuming P 6= NP.

In general, local search algorithms could converge in exponentially many steps. We
address this issue using approximate local search, a technique described systematically by
Schulz, Orlin and Punnen [15]. Approximate local search allows us to bound the running time
of the algorithm at a small cost in the resulting approximation ratio. By employing partial
enumeration, as described by Calinescu et al., we can eliminate this small cost, achieving an
approximation ratio of 1− 1/e.

1.2 Comparison with existing algorithms

Both our algorithm and the one by Calinescu et al. give the same approximation ratio.
The continuous greedy algorithm works on a discretized version of a particular continuous
relaxation of the problem to obtain a fractional solution to the problem. This solution must
then be rounded to an integral solution using the pipage rounding technique, which employs a
submodular minimization algorithm at each step. In contrast, our algorithm always maintains
a current integral solution and requires only simple combinatorial operations that add and
remove elements from this solution. Moreover, our algorithm is extremely simple, and can
be described using only a few lines of pseudocode.

In most settings, our algorithm is also faster. For a fair comparison, we consider versions
of both algorithms that achieve an approximation ratio of at least 1− 1/e. Furthermore, we
analyze the algorithm of Calinescu et al. only in the special case of maximum coverage. In this
setting, it is possible to calculate the continuous relaxation of the objective function exactly,
rather than by random sampling, thus greatly improving the runtime of the continuous
greedy algorithm. Denoting the rank of the matroid by n, the total number of sets by s = |F|,
the maximal size of a set by u, and the sum of the sizes of all sets by U , our algorithm runs
in time Õ(n3s2u), whereas the algorithm by Calinescu et al. runs in time Õ(n2s3u + s7).
For all non-trivial instances of the problem, we must have s > n, and so our algorithm is
indeed considerably faster, assuming that the size u of the largest set does not dominate
both expressions. We stress that this is the case even after the continuous greedy algorithm
has been optimized to compute the maximum coverage function directly, rather than by
sampling as in the general analysis of Calinescu et al. [5].

Another relevant algorithm is described in an earlier paper by the same set of authors [4].
The algorithm presented by Calinescu et al. in that paper is more general than ours, but
less general than their later paper. It applies to monotone submodular functions which are
sums of weighted rank functions of matroids. The continuous greedy algorithm is replaced
with a simple linear program. In the simplest case of a uniform matroid, the running time of
this algorithm (using interior-point methods) is Õ(U3.5 + s7); more complicated matroids
result in even worse running times. When the sets are large, this is considerably slower than
our algorithm.

1.3 Future work

We believe that the approach outlined in this paper can be used to design approximation
algorithms for similar problems. In particular, we are working on generalizing the algorithm
to monotone submodular functions.
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1.4 Paper organization

Section 2 provides a concise overview of existing work related to maximum coverage. In
Section 3 we formally present the problem, discuss the limitations of oblivious local search,
and present our non-oblivious local search algorithm. In Section 4 we give an analysis of the
approximation ratio and runtime for our non-oblivious local search algorithm, and show how
to attain a clean, polynomial time (1 − 1/e)-approximation by using partial enumeration
techniques, as in [5].

For reasons of space, we defer some proofs to the appendix. In the appendix we also discuss
the optimality of our auxiliary objective function, and analyze the standard oblivious local
search in the special case of strongly base orderable matroids, showing that its performance
can be much worse than our non-oblivious local search algorithm. Finally, we show that
the difficulty of finding an exact local optimum is not an artifact of our oblivious non-
oblivious objective function by presenting an instance for which even the oblivious local
search algorithm requires an exponential number of improvements to find an exact local
optimum.

1.5 Acknowledgments

We thank Anupam Gupta for suggesting the problem to us, and Allan Borodin and Roy
Schwartz for helpful discussions.

2 Related work

Maximum coverage was first defined by Hochbaum and Pathria [11] in 1998. In fact, an even
more general problem had been defined earlier by Cornuejols, Fisher and Nemhauser [8] in
1977, in the context of locating bank accounts. Both papers describe the greedy algorithm,
and show that its approximation ratio is 1− (1− 1/n)n ≈ 1− 1/e.

Feige [9], in his seminal paper on the inapproximability of Set Cover, showed that unless
P = NP, it is impossible to approximate maximum coverage to within 1− 1/e+ ε for any
ε > 0. His proof uses PCP techniques, extending earlier work by Lund and Yannakakis [14].

Maximum coverage over a partition matroid was considered by Chekuri and Kumar [6]
under the name maximum coverage with group budget constraints. In this variant, the family
F is partitioned into subfamilies Fi, and the solution must contain at most ni sets from
Fi, and at most n overall. They analyze the performance of the greedy algorithm when the
greedy choices are given by an approximate oracle.

Algorithms for maximum coverage with group budget constraints with the optimal approx-
imation ratio 1−1/e were presented by Srinivasan [16] and by Ageev and Sviridenko [1]. Both
algorithms first formulate the problem as an LP, and then round the solution. Srinivasan’s
approach involves sophisticated sampling. Ageev and Sviridenko’s approach, pipage rounding,
repeatedly simplifies the solution until it becomes integral, without decreasing its value. Both
approaches work in more general settings.

Calinescu, Chekuri, Pál and Vondrák [5] combined a more sophisticated version of pipage
rounding with the continuous greedy algorithm to obtain an optimal 1− 1/e approximation
algorithm for monotone submodular maximization over a matroid constraint. The continuous
greedy algorithm is a steepest descent algorithm running in continuous time (in practice, a
suitably discretized version is used), producing a fractional solution. This solution is rounded
using pipage rounding.
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Other generalizations of maximum coverage appear in the literature. In budgeted maximum
coverage, each element is provided with a cost, and the sets chosen by the algorithm are
restricted by the total cost of the elements they cover. Khuller, Moss and Naor [13] show that
a greedy approach yields an optimal 1− 1/e approximation algorithm. Cohen and Katzir [7]
generalize this even further, and provide an optimal 1 − 1/e semi-greedy approximation
algorithm.

3 Local search for maximum coverage over a matroid

We consider the problem of maximum coverage over a matroid. The inputs are

A universe U .
Value oracle access to a non-negative weight function w : U → R+.
A family F of subsets of U with |F| = s, maxA∈F |A| = u.
A matroid over F of rank n, given as an independence oracle.

Note that the matroid m has as its ground set the sets F , and so a member of m is a collection
of sets from F . We call the members of m independent sets. We extend w to a function over
subsets A of U by letting w(A) =

∑
u∈A w(u). The goal, then, is to find a collection of sets

S ⊆ F that covers elements in U of maximal weight, subject to the constraint that S ∈ m:

max
S∈m

w(
⋃
S).

Recall that m is a matroid over F if: (1) m 6= ∅, (2) m is downward-closed (if A ∈ m and
B ⊂ A, then B ∈ m), and (3) for all A,B ∈ m with |A| > |B| we have B ∪ {x} ∈ m for some
x ∈ A \B. This last property guarantees that all maximal independent sets of the matroid
have the same cardinality. These sets are called bases, and their common cardinality is called
the rank, denoted in this paper by n.

Our starting point is the oblivious local search algorithm, shown in Algorithm 1. The
algorithm starts from an arbitrary base S (obtained, e.g., by the standard greedy algorithm)
and repeatedly attempts to improve the total weight of all elements covered by S by
exchanging up to k sets in S with k sets not in S, maintaining the matroid constraint. We
call a pair (A,B) a k-exchange for S if A ⊆ S with |A| ≤ k, B ⊆ F \S with |B| = |A|. When
no single k-exchange improves the weight of all elements covered by S, the algorithm returns
S.

Algorithm 1 Oblivious k-LocalSearch
S ← an arbitrary basis in m.
repeat
Sold ← S {Remember previous solution}
Let E be the set of all valid k-exchanges for S
S ← arg max

(A,B)∈E
w
(⋃

(S \A ∪B)
)

until S = Sold {Repeat until no improvement is possible}
return S
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As mentioned in the introduction, the locality ratio of Algorithm 1 is rather poor. Consider
the following set system:

A1 = {x, εA}, A2 = {εB},
B1 = {y}, B2 = {x}.

The elements x, y have unit weight, and the elements εA, εB have some arbitrarily small
weight ε > 0. We consider the partition matroid whose independents sets contain at most
one of {Ai, Bi} for i ∈ {1, 2}. Under this matroid, the base {A1, A2} is a local optimum for
1-exchanges, since replacing A1 by B1 or A2 by B2 both result in a net loss of ε. The global
optimum is {B1, B2}, and the locality ratio is thus (1 + 2ε)/2. Note that the base {A1, A2}
is also produced by the standard greedy algorithm applied to this instance. This shows that
we cannot hope to beat the locality ratio by choosing a greedy starting solution.

We can generalize this example to show that oblivious k-local search has a locality ratio of
at most n−1

2n−k−1 for all k < n. Let the universe U consist of n−1 elements {x1, . . . , xn−1} and
n− k elements {y1, . . . , yn−k}, all of weight 1, and n− 1 elements {ε2, . . . , εn} of arbitrarily
small weight ε > 0. For each 1 ≤ i ≤ n, there are two sets Ai and Bi, defined as follows:

Ai = {εi} for 1 ≤ i ≤ n− 1, An = {x1, . . . , xn−1},
Bi = {xi} for 1 ≤ i ≤ n− 1, Bn = {y1, . . . , yn−k}.

We consider the partition matroid whose independent sets contain at most one of {Ai, Bi} for
each i ∈ [n]. The globally optimal solution is the set B = {Bi}1≤i≤n, which covers elements
of total weight n− 1 + n− k = 2n− k − 1. The set A = {Ai}1≤i≤n is locally optimal under
improvements of size k and covers elements of total weight only (n − 1)(1 + ε), and the
locality ratio is thus (n− 1)(1 + ε)/(2n− k − 1). In order to see that it is, in fact, a local
optimum, note that if we do not replace An with Bn, the remaining replacements can only
decrease the value of the solution. Suppose, then, that we do replace An with Bn. This
replacement reduces the total weight of the covered elements by k − 1. There are only k − 1
remaining exchanges, each of which can increase the total weight of the covered elements by
less than 1. Again, we note that the solution A is also the solution produced by the greedy
algorithm. In the special case of strongly base orderable matroids, the approximation ratio of
oblivious k-local search is, in fact, exactly n−1

2n−k−1 , as we show in Section A.3.
Let us examine the first instance above in more detail. Intuitively, the basis {A1, B2} in

our example is better than the basis {A1, A2} since it is of almost equal value to {A1, A2}
but additionally covers element x twice. From a local search perspective, this is an advantage
since it ensures that x will stay covered after the next exchange. In order to improve
the performance of local search, we want to somehow give extra weight to solutions that
offer flexibility in future exchanges, perhaps even at a slight loss in the objective function.
Following this intuition, we employ a function which gives extra weight to elements that are
covered multiple times as an auxiliary objective function. A similar idea appears in Khanna
et al. [12], in the context of the maximum satisfiability problem, and even earlier in similar
work by Alimonti [2]. There, the idea is to give extra weight to clauses which are satisfied by
more than one variable, because these clauses will remain satisfied after flipping the next
variable in the search procedure.

Thus, we seek to modify Algorithm 1 by replacing the oblivious objective function w with
an auxiliary objective function f of the general form:

f(S) =
∑
u∈U

αhu(S)w(u),
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where hu(S) = |{A ∈ S : u ∈ A}| is the number of sets in S that contain element u. By
setting, for example αi > α1 for all i > 1, we can give extra value to solutions that cover
some element more than once. Additionally, note that if we set α0 = 0 and αi = 1 for all
i > 0, we recover the oblivious objective function. We now consider the problem of how
to set the αi. We want to balance two concerns. First, we want to allow the algorithm to
potentially decrease the objective value of the current solution in the short-term, in exchange
for future flexibility. However, in the long-term, we want the algorithm to give enough weight
to the original objective that it produces a reasonable final solution.

There is no immediately compelling reason to assign any weight to elements that have
not been covered at all, so let us set α0 = 0, and examine the above instance in terms of the
remaining αi. We have

f({A1, A2}) = (1 + 2ε)α1, f({A1, B2}) = α2 + εα1,

f({B1, A2}) = (1 + ε)α1, f({B1, B2}) = 2α1.

By setting ε = α2−α1
α1

, the solution {A1, A2} will remain a local optimum, even for the non-
oblivious potential function. The locality ratio (in terms of the original objective function)
will remain 1/2 + ε = 1/2 + α2−α1

α1
. If we set α2 to be too close to α1, there will not be

much improvement in the locality ratio, and if α2 < α1, the locality ratio will decrease.
This confirms our intuition that it is advantageous to give more weight to elements that are
covered multiple times. Alternatively, if we set α2 ≥ 2α1, then the solution {A1, B2} will
become a local optimum, and the locality ratio will become 1/2 + ε/2. This confirms our
intuition that it is bad to give too much extra weight to elements covered multiple times.

By extending a similar analysis to arbitrary instances, we obtain the following values for
αi:

α0 = 0, α1 = 1− 1
e[n] , αi+1 = (i+ 1)αi − iαi−1 −

1
e[n] , (1)

where the constant e[n] is defined as

e[n] =
n−1∑
l=0

1
l! + 1

(n− 1)!(n− 1) .

This choice of αi is optimal, as we show in Section A.2. We note that the sequence e[i], where
i ≥ 2, is decreasing and bounded below by e:

I Lemma 1. For all n ≥ 2 we have e < e[n] and e[n] > e[n+1].

Our coefficients αi satisfy the following properties, which follow directly from their definition.

I Lemma 2. Let βi = αi+1 − αi. Then, the βi satisfy the recurrence relation

β0 = 1− 1
e[n] , βi = iβi−1 −

1
e[n] .

I Lemma 3. For all i < n, βi > 0 and βi+1 ≤ βi.

I Lemma 4. There exists a universal constant C0 such that for all i ≤ n, αi ≤ C0 log i.

Our resulting local search algorithm for maximum coverage over a matroid is given in
Algorithm 2. In addition to using the non-oblivious potential function f described above, we
modify our algorithm to start from a greedy initial solution. This initial solution is a good
starting point, and speeds up the convergence of the algorithm. Our algorithm takes as a
parameter δ, which governs how much an improvement is required to improve the current
solution to be accepted. We describe this aspect of the algorithm in more detail in the next
section.
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Algorithm 2 LocalSearch(δ)
{Greedy algorithm}
S ← ∅
for i = 1→ n do
S ← S + arg max

A∈F :S+A∈m
[f(S +A)− f(S)]

end for
{Local search}
repeat
Sold = S {Remember previous solution}
Let E be the set of all valid 1-exchanges for S
S ← arg max(A,B)∈E f((S \A) ∪B)

until S ≤ (1 + δ)Sold {Repeat until δ-locally optimal}
return Sold

4 Analysis of the non-oblivious local search algorithm

Our analysis makes use of the notion of a δ-approximate local optimum. Formally, we say
that a solution S is a δ-approximate local optimum if (1 + δ)f(S) ≥ f(S′) for all solutions S′
differing from S by a single set. Intuitively, replacing exact local optimality (as in Algorithm
1) with approximate local optimality limits the total number of improvements the algorithm
can make, at a slight cost in the approximation factor. We consider some δ-approximate
local optimum S = {S1, . . . , Sn} and some global optimum O = {O1, . . . , On}. A classical
result of Brualdi [3] shows that for any matroid m we can renumber the sets of O so that for
each i, S−i, Oi := (S \ {Si})∪ {Oi} is a base of m. We suppose that O has been renumbered
so that this is the case, and consider the 1-exchanges that remove Si from S and add Oi to
the result. Local optimality implies that for each i, we have

(1 + δ)f(S) ≥ f(S−i, Oi).

Summing over all n such inequalities we obtain the inequality

n(1 + δ)f(S) ≥
n∑
i=1

f(S−i, Oi). (2)

The main difficulty of the analysis lies in the fact that inequality (2) is given in terms of
the non-oblivious potential function f , but we wish to derive an approximation guarantee for
the original objective function w. In order to put f and w on common ground, we make the
following definitions.

For any two subsets L,G ⊂ [n], we define EL,G to be the set of elements that belong to
the sets Si for i ∈ L, and Oj for j ∈ G, and no other sets in S and O. The sets EL,G thus
form a partition of U . Then, for all integers l, c, g ≥ 0 such that 1 ≤ l + c+ g ≤ n, we define

xl,c,g =
∑
L,G:
|L|=l+c,
|G|=g+c,
|L∩G|=c

w(EL,G).

In words, xl,c,g is the total weight of elements that belong to exactly l + c of the sets Si,
exactly g + c of the sets Oj , exactly c of them sharing indices. We call the variables xl,c,g
symmetric variables.
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We can express all the quantities we are interested in using the symmetric variables xl,g,c:

f(S) =
∑
l+c≥1

αl+cxl,c,g =
∑
l,c,g

αl+cxl,c,g (since α0 = 0),

n∑
i=1

f(S−i, Oi) =
∑
l,c,g

(lαl+c−1 + gαl+c+1 + (n− l − g)αl+c)xl,c,g,

w
(⋃

S
)

=
∑
l+c≥1

xl,c,g,

w
(⋃

O
)

=
∑
g+c≥1

xl,c,g.

The only expression which is not immediate is the one for
∑n
i=1 f(S−i, Oi). We derive it as

follows: consider an element u ∈ EL,G for some sets L,G. In S, the element u appears in |L|
sets. If i ∈ L ∩G or i /∈ L ∪G, it also appears in |L| sets in (S−i, Oi). Finally, if i ∈ L \G,
it appears in |L| − 1 sets in (S−i, Oi). If i ∈ G \ L, it appears in |L|+ 1 sets in (S−i, Oi).

I Theorem 5. If S is a δ-approximate local optimum, then
(1 + C0δn logn)w(

⋃
S) ≥ (1− 1/e[n])w(

⋃
O), for some universal constant C0.

Proof. Reformulating inequality (2) in terms of our symmetric notation and simplifying, we
obtain

0 ≤
∑
l,c,g

((l + g + δn)αl+c − lαl+c−1 − gαl+c+1)xl,c,g. (3)

Similarly, reformulating the statement of the theorem in terms of our symmetric notation,
we obtain

0 ≤ (1 + C0δn logn)
∑
l+c≥1

xl,c,g −
(

1− 1
e[n]

) ∑
g+c≥1

xl,c,g. (4)

Since we have xl,c,g ≥ 0 for all l, c, g, in order to prove the lemma, it suffices to show that the
coefficient of any term xl,c,g in (3) is at most its coefficient in (4). We consider three cases,
and simplify expressions using the fact that α0 = 0. In the first, suppose that g = c = 0. We
must show that for all 1 ≤ l ≤ n,

(l + δn)αl − lαl−1 ≤ 1 + C0δn logn. (5)

In the next case, suppose that l = c = 0. We must show that for all 1 ≤ g ≤ n,

−gα1 ≤ −
(

1− 1
e[n]

)
. (6)

Finally, we must show for l, g, c such that l + c 6= 0, g + c 6= 0, and 1 ≤ l + c+ g ≤ n,

(l + g + δn)αl+c − lαl+c−1 − gαl+c+1 ≤
1
e[n] + δC0n logn. (7)

We now verify each of these inequalities, using the properties of αi stated in Lemmas 2, 3,
and 4. For (5), we have

(l + δn)αl − lαl−1 = lβl−1 + δnαl = βl + 1
e[n] + δnαl

≤ β0 + 1
e[n] + δnαl = 1 + δnαl ≤ 1 + C0δn logn.
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Inequality (6) follows directly from the fact that g ≥ 1 and α1 = 1− 1
e[n] . For inequality (7),

we consider two cases. First, suppose g = 0 and so c ≥ 1. Then, we have

(l + δn)αl+c − lαl+c−1 ≤ lβl + δnαl+c = βl+1 + 1
e[n] − βl + δnαl+c

≤ 1
e[n] + δnαl+c ≤

1
e[n] + C0δn logn.

If g ≥ 1, then we have

(l + g + δn)αl+c − lαl+c−1 − gαl+c+1 = lβl+c−1 − gβl+c + δnαl+c

≤ lβl+c−1 − βl+c + δnαl+c = 1
e[n] − cβl+c + δnαl+c ≤

1
e[n] + C0δn logn.

This completes the proof of Theorem 5. J

We obtain the following corollary by setting

δ = ε

C0n logn
(
1− 1

e[n] − ε
) = O

(
ε

n logn

)
:

I Corollary 6. Algorithm LocalSearch(C1ε/(n logn)) is a (1 − 1/e[n] − ε)-approximation
algorithm, for some universal constant C1 and all ε > 0.

Since e > e[n], the same proof shows that if we replace e[n] by e in the definition of the
sequence αi, then the resulting approximation ratio is 1− 1/e− ε.

Now, we turn to the run-time of Algorithm 2. First, we note that by keeping track of
how many times each element of U is covered by the current solution, we can compute the
change in f due to adding or removing a set from the solution using only O(u) value oracle
calls. The initial greedy phase takes time O(nsu). Each iteration of the local search phase
requires ns calls to the independence oracle for m and O(nsu) calls to the value oracle for w.
Thus, each iteration can be completed in time O(nsu). We now bound the total number of
improvements that the algorithm can make.

I Lemma 7. For any δ > 0, Algorithm LocalSearch(δ) makes at most O(δ−1) improvements.

Proof. Let Ŝ be the solution produced by the initial greedy phase of LocalSearch(δ), and
let Ô = arg maxS∈m f(S). Then, LocalSearch(δ) makes at most log1+δ(f(Ô)/f(Ŝ)) improve-
ments. Because the sequence of coefficients αi is increasing and concave, for any S ⊆ T ⊂ F
and A ∈ F \ T we must have 0 ≤ f(T +A)− f(T ) ≤ f(S +A)− f(S), and so f is monotone
submodular. Thus, the classical result of Fischer, Nemhauser, and Wolsey [10] implies that
the greedy algorithm is a 2-approximation for maximizing f , so 2f(Ŝ) ≥ f(Ô). Algorithm
LocalSearch(δ) can therefore make at most log1+δ 2 = log 2

log(1+δ) = O(δ−1) improvements. J

By setting ε = 1/e[n] − 1/e, we would obtain a clean (1− 1/e)-approximation algorithm.
However, since 1− 1/e[n] is very close to 1− 1/e, the resulting δ would be superpolynomial
in n, and so we would not obtain a polynomial-time algorithm. Instead, we use a partial
enumeration technique described by Khuller et al. [13]. Effectively, we try to “guess" a single
set in the optimal solution, and then run LocalSearch on a contracted instance containing
this set. We then iterate over all possible guesses.

I Definition 8. Let I = 〈U,w,F ,m〉 be an instance of maximum coverage, where U is the
universe, w is the weight function, F is a family of subsets of U , and m is a matroid defined
over F .
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Let A ∈ F . The contracted instance I|A = 〈U |A, w|A,F|A,m|A〉 is defined as follows:

U |A = U,

w|A = u 7→

{
w(u) u /∈ A,
0 u ∈ A,

F|A = F −A,
m|A = m/A = {S ⊂ F : S +A ∈ m}.

Note that the definition of w|A directly implies that

w|A
(⋃

S
)

= w
(⋃

S \A
)

= w
(⋃

S ∪A
)
− w(A). (8)

We can now formulate the new algorithm. Algorithm Approx simply runs LocalSearch(δ)
on the instance I|A for each A ∈ F , and returns the best resulting solution of the original
instance I.

Algorithm 3 Approx(δ)
for A ∈ F do
Let SA be the result of running LocalSearch(δ) on instance I|A

end for
A← arg maxA∈F w(

⋃
SA ∪A)

return SA +A

I Theorem 9. If LocalSearch(δ) has an approximation ratio of θ on matroids of rank n− 1
then Approx(δ) has an approximation ratio of 1/n+ (1− 1/n)θ on matroids of rank n.

Proof. Let O be some optimal solution, and A ∈ O be a set of maximum weight in O.
Submodularity implies that w(O) ≤

∑
B∈O w(B) ≤ nw(A), and so w(A) ≥ w(O)/n. Since

O −A ∈ m|A, we have w|A(
⋃
SA) ≥ θ · w|A(

⋃
O \A). From identity (8) we then have

w
(⋃

SA ∪A
)

= w(A) + w|A
(⋃

SA

)
≥ w(A) + θ · w|A

(⋃
O \A

)
= (1− θ)w(A) + θ · w

(⋃
O
)

≥
(

1− θ
n

+ θ

)
w
(⋃

O
)
. J

I Corollary 10. For some universal constant C2 and all n ≥ 3, Algorithm Approx(C2/(n2 logn))
has an approximation ratio of at least 1− 1/e.

Proof. Let C2 = 3C1, where C1 is the constant defined in Corollary 6. The corollary implies
that LocalSearch(C2/(n2 logn)) has an approximation ratio of 1−1/e[n−1]−1/3n. Theorem 9
implies that the approximation ratio of Approx(C2/(n2 logn)) is

1
n

+
(

1− 1
n

)(
1− 1

e[n−1] −
1

3n

)
≥ 1− 1

e[n−1] +
1

e[n−1] − 1
3

n
≥ 1− 1

e
,

using the fact that e[n−1] ≤ e[2] = 3. J

Our final algorithm Approx(C2/(n2 logn)) makes s calls to LocalSearch. Each of these calls
makes at most O(n2 logn) improvements, each taking time O(nsu). The final runtime is
thus Õ(n3s2u).
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A Appendix

A.1 Proofs Omitted From Section 3
I Lemma 1. For all n ≥ 2 we have e < e[n] and e[n] > e[n+1].

Proof. For the first claim, note that

e[n] − e =
n−1∑
k=0

1
k! + 1

(n− 1)!(n− 1) −
∞∑
k=0

1
k! = 1

(n− 1)!(n− 1) −
∞∑
k=n

1
k!

>
1

(n− 1)!(n− 1) −
1
n!

∞∑
k=0

1
nk

= 1
(n− 1)!(n− 1) −

1
n!

n

n− 1 = 0.
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For the next claim,

e[n+1] − e[n] = 1
n! + 1

n!n −
1

(n− 1)!(n− 1) = n(n− 1) + n− 1− n2

n!n(n− 1) = −1
n!n(n− 1) . J

I Lemma 2. Let βi = αi+1 − αi. Then, the βi satisfy the recurrence relation

β0 = 1− 1
e[n] , βi = iβi−1 −

1
e[n] . (9)

Furthermore, they are in fact equal to

βi = i!
(

1− 1
e[n]

i∑
k=0

1
k!

)
. (10)

Proof. Clearly β0 = α1 − α0 = 1− 1
e[n] . In general, we have

βi = αi+1 − αi = i(αi − αi−1)− 1
e[n] = iβi−1 −

1
e[n] .

Using this recurrence relation, we can prove formula (10) by induction. It is immediate in
the case i = 0. For i > 0, we have

βi = iβi−1 −
1
e[n] = i(i− 1)!

(
1− 1

e[n]

i−1∑
k=0

1
k!

)
− i! 1

i!e[n]

= i!
(

1− 1
e[n]

i∑
k=0

1
k!

)
. J

I Lemma 3. For all i < n, βi > 0 and βi+1 ≤ βi.

Proof. The inequality βi > 0 follows directly from (10) and the fact that
∑i
k=0

1
k! < e[n] for

all i < n. For the second claim, if i = 0, then we have β1 = β0 − 1
e[n] < β0. If i ≥ 1, we note

that:

βi+1 − βi = iβi −
1
e[n] = i · i!

(
1− 1

e[n]

i∑
k=0

1
k!

)
− 1
e[n] ≤ i · i!

(
1− 1

e[i+1]

i∑
k=0

1
k!

)
− 1
e[i+1] ,

where the last line follows from the fact that e[n] ≤ e[i+1] for all 1 ≤ i ≤ n − 1. Now, set
a = 1

i·i! and b =
∑i
k=0

1
k! . We have e[i+1] = a+ b, and the final expression above is equal to:

1
a
− 1
a
· b

a+ b
− 1
a+ b

= a+ b− b− a
a(a+ b) = 0. J

I Lemma 4. There exists a universal constant C0 such that for all i ≤ n, αi ≤ C0 log i.

Proof. The recurrence (9) and Lemma 3 imply that:

βi−1 =
βi + 1

e[n]

i
≤
β0 + 1

e[n]

i
= 1
i
.

We obtain the bound on αi by summing:

αi =
i−1∑
k=0

βk ≤
i∑

k=1

1
k

= log i+O(1). J
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A.2 Optimality of f

The analysis of LocalSearch depends intimately on the exact values of the constants αi used to
define the function f . Theorem 5 shows that the locality ratio of LocalSearch(0) is 1− 1/e[n].
We proceed to show that our choice of values for the constants αi is optimal.

I Theorem 11. The locality ratio of LocalSearch(0) is at most 1− 1/e[n] for any setting of
the αi.

Proof. Consider the following instances of maximum coverage over a matroid, given in terms
of the symmetric variables xl,c,g:

x
(l)
l,0,1 = α1, x

(l)
0,0,1 = (l + 1)αl − lαl−1 − αl+1, for 1 ≤ l ≤ n− 1,

x
(n)
n−1,1,0 = α1, x

(n)
0,0,1 = (n− 1)αn − (n− 1)αn−1.

The values of x(l)
0,0,1 are chosen to maximize w(

⋃
O) while maintaining local optimality,

according to inequality (3). The locality ratio in each instance is given by α1
α1+x(l)

0,0,1
. Let θ be

the minimum of all these expressions, an upper bound on the locality ratio of the algorithm.
Without loss of generality, assume that α1 = θ. We deduce from each line an inequality
x

(l)
0,0,1 ≤ 1− θ. In particular,

−α1+
n−1∑
l=1

x
(l)
0,0,1

l! +
x

(n)
0,0,1

(n− 1)(n− 1)! ≤ −θ+(1−θ)
[
n−1∑
l=1

1
l! + 1

(n− 1)(n− 1)!

]
= (1−θ)(e[n]−1)−θ.

The left-hand side is a linear combination of the αi in which (as we shall show) the total
coefficient of each αi is zero. We deduce that θ ≤ 1− 1/e[n].

Put x(0)
0,0,1 = −α1. Each αi for 1 ≤ i ≤ n − 2 appears in three expressions x(j)

0,0,1 for
j = i− 1, i, i+ 1, with total coefficient

− 1
(i− 1)! + i+ 1

i! − i+ 1
(i+ 1)! = −i+ i+ 1− 1

i! = 0.

The coefficients of αn−1 and αn are, respectively,

− 1
(n− 2)! + n

(n− 1)! −
n− 1

(n− 1)(n− 1)! = −(n− 1)2 + n(n− 1)− (n− 1)
(n− 1)(n− 1)! = 0,

− 1
(n− 1)! + (n− 1)

(n− 1)(n− 1)! = (n− 1)− (n− 1)
(n− 1)(n− 1)! = 0. J

A.3 Oblivious local search on SBO matroids
Algorithm 1, oblivious k-local search, is far inferior than our algorithm for maximum coverage
over a matroid constraint. In Section 3 we presented an instance on which its approximation
ratio is only (n−1)/(2n−1−k). This approximation ratio is tight for strongly base orderable
matroids. These matroids satisfy the additional property that for any two bases S,O, there
is a permutation π : S → O such that for each T ⊂ S, the set S \ T ∪ {π(A) : A ∈ T} is a
basis.

I Theorem 12. Algorithm 1 has an approximation ratio of (n− 1)/(2n− 1− k) on strongly
base orderable matroids.
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Proof. Let S = {S1, . . . , Sn} be the local optimum given by the algorithm, and let O =
{O1, . . . , On} be some global optimum. The fact that the matroid is strongly base orderable
ensures that we can label the sets in such a way that for each set of indices I, the matroid
contains S−I ∪ OI = {Si : i /∈ I} ∪ {Oi : i ∈ I}. Local optimality implies that w(

⋃
S) ≥

w(
⋃
S−I ∪

⋃
OI) whenever |I| ≤ k. Summing this over all sets I of cardinality k, we obtain(

n

k

)
w
(⋃

S
)
≥

∑
I⊂[n] : |I|=k

w
(⋃

S−I ∪
⋃
OI

)
.

We prove below the following crucial inequality:∑
I⊂[n] : |I|=k

w
(⋃

S−I ∪
⋃
OI

)
≥
(
n− 2
k

)
w
(⋃

S
)

+
(
n− 1
k − 1

)
w
(⋃

O
)
. (11)

Given this inequality, we deduce that

w
(⋃

S
)
≥

(
n−1
k−1
)(

n
k

)
−
(
n−2
k

)w (⋃O
)

= n− 1
2n− 1− kw

(⋃
O
)
.

We prove (11) by counting the number of times an element x ∈
⋃
S ∪

⋃
O appears on

both sides. Looking at the right-hand side, it is clear that it is enough to consider the case
where x belongs to at most one set Si and at most one set Oj . Denote the weight of x in the
left-hand side by L, and its weight in the right-hand side by R. Our goal is to show that in
all cases, L ≥ R.
If x belongs only to a set Si then

L =
(
n− 1
k

)
≥
(
n− 2
k

)
= R.

If x belongs only to a set Oj then

L =
(
n− 1
k − 1

)
= R.

If x belongs to both Si and Oj for i 6= j then (using Pascal’s identity)

L =
(
n

k

)
−
(
n− 2
k − 1

)
=
(
n− 2
k

)
+
(
n− 1
k − 1

)
= R.

Finally, if x belongs to both Si and Oi then

L =
(
n

k

)
≥
(
n− 2
k

)
+
(
n− 1
k − 1

)
= R. J

A.4 Convergence of oblivious local search
Algorithm LocalSearch stops at an approximate local optimum. This guarantees that its
running time is polynomial. Such a modification is necessary since there are instances
for which the local search algorithm could run through an exponential sequence of local
improvements. It is an intriguing direction for future research to analyze how well different
modifications, such as the best improvement heuristic, are able to bound the running time.

Here, we present an instance which has bad behavior for oblivious 1-local search. Let
s ≥ 1 be an integer, and consider the following instance Is of maximum coverage over a
matroid. The sets are:

Xl = {xl}, Yl = {yl} ∪ {zr : r < l}, Zl = {zl}, 1 ≤ l ≤ s.



16 The Power of Local Search: Maximum Coverage over a Matroid

The matroid is defined by allowing at most one set among {Xl, Yl, Zl} for each l. The weights
are

w(xl) = 1, w(yl) = 2, w(zl) = 3 · 2l−1.

I Theorem 13. Let s ≥ 1 be an integer. There is a sequence σs of length `s = 3 · 2s − s− 2
of bases of Is, starting at {Xl : 1 ≤ l ≤ s} and terminating at {Zl : 1 ≤ l ≤ s}, whose weight
increases by 1 at each step.

Proof. The proof is by induction. For s = 1 the sequence is σ1 = {X1}, {Y1}, {Z1}, of length
`1 = 3.

Suppose the claim is true for s. We prove it for s+ 1. Denote the individual elements of
σs by σs(1), . . . , σs(`s). The new sequence is defined as follows:

σs+1(t) = σs(t) ∪ {Xs+1}, 1 ≤t ≤ `s,
σs+1(`s + t) = {Xl : 1 ≤ l < t} ∪ {Zl : t ≤ l ≤ s} ∪ {Ys+1}, 1 ≤t ≤ s+ 1,
σs+1(`s + s+ 1 + t) = σs(t) ∪ {Zs+1}, 1 ≤t ≤ `s.

The weight increases by 1 at each step during the initial and final parts by induction.
In the middle part, since Zl ⊂ Ys+1, when Zl is changed to Xl the weight increases by
w(xl) = 1. When moving from the initial part to the middle part, the weight increases by
w(ys+1)− w(xs+1) = 1. Finally, when moving from the middle part to the final part, the
weight increases by

w(Zs+1)− w(Ys+1) = w(zs+1)−
s∑
l=1

w(zs)− w(ys) = 3
(

2s −
s∑
t=1

2t−1

)
− 2 = 1.

The length of the sequence is

`s+1 = 2`s + s+ 1 = 2(3 · 2s − s− 2) + s+ 1 = 3 · 2s+1 − s− 3. J
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