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When modeling structured outputs like image segmentations, predictions can be improved by ac-

curately modeling structure present in the labels. A key challenge is developing tractable models that

are able to capture complex high level structure like shape. In this work, we study the learning of

a general class of pattern-like high order potential, which we call Compositional High Order Pattern

Potentials (CHOPPs). We show that CHOPPs include the linear deviation pattern potentials of Rother

et al. [27] and also Restricted Boltzmann Machines (RBMs); we also establish the near equivalence of

these two models.

Experimentally, we show that performance is affected significantly by the degree of variability present

in the data sets, and we define a quantitative variability measure to aid in studying this. We then improve

CHOPPs performance in high variability data sets with two primary contributions: (a) developing a loss-

sensitive joint learning procedure, so that internal pattern parameters can be learned in conjunction with

other model potentials to minimize expected loss, and (b) learning an image-dependent mapping that

encourages or inhibits patterns depending on image features. We also explore varying how multiple

patterns are composed and learning convolutional patterns, which have smaller receptive fields and

shared parameters, that are densely tiled over the image. Quantitative results on challenging highly

variable data sets show that the joint learning and image-dependent high order potentials can improve

performance.
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Chapter 1

Introduction

Many tasks in computer vision can be framed as making predictions about complex, structured objects.

For example, image labeling problems like stereo depth estimation, optical flow, and image segmentation

can all be cast as making predictions jointly over many correlated outputs. The modeling frameworks

that have found the most success for this type of problems are those like Conditional Random Fields

(CRFs) and Structural Support Vector Machines (SSVMs), which explicitly model the correlations over

the outputs and make test-time predictions by either exactly or approximately solving a joint inference

task. These formulations are collectively known as structured output learning, or structured prediction,

and are the focus of this work.

A key research issue that arises when working with structured output problems is how to best trade

off expressivity of the model with the ability to efficiently learn and perform inference (make predic-

tions). Traditionally, these concerns have led to the use of overly simplistic models over labelings that

make unrealistic conditional independence assumptions, such as pairwise models with grid-structured

topology. Recently, there have been successful efforts that weaken these assumptions, either by moving

to densely connected pairwise models [12] or by enforcing smoothness in higher order neighborhoods [9].

However, while these approaches can lead to improved performance, they do not capture much higher

level structure in the data, such as information about shape. As we look to build models that more

faithfully represent structure present in the world, it is desirable to explore the use of models capable of

representing this higher level structure.

One promising direction towards incorporating these goals in the structured output setting appears

to be the pattern potentials of Rother et al. [27] and Komodakis & Paragios [11], which are capable of

modeling soft template structures and can dramatically outperform pairwise models in highly structured

settings that arise, for example, when modeling regular textures. Yet despite the clearly powerful

representational ability of pattern potentials, they have not found much success in more realistic settings,

like those found in the PASCAL VOC image labeling task [3].

A model that is appropriate in similar situtations and has also found success modeling textures [8]

is the Restricted Boltzmann Machine (RBM). In fact, our starting observation in this work is that the

similarity is not superficial—mathematically, RBM models are nearly identical to the pattern potentials

of [27]. We will make this claim precise in Chapter 3, leading to the definition of a more general class of

high order potential that includes both pattern potentials and RBMs. We call this class Compositional

High Order Pattern Potentials (CHOPPs). A primary benefit of this observation is that there is a well-
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Chapter 1. Introduction 2

developed literature on learning RBM models that becomes available for learning pattern-like potentials.

In this work we explore augmenting standard CRF models with CHOPPs. Our goal is to not only

learn a tradeoff parameter between the standard and high order parts of the model, but also to learn

internal pattern parameters. We then focus on the question of how effective these potentials are as the

variability and complexity of the image segmentation task increases. We propose a simple method for

assessing the degree of variation in the labels, then show that the performance of a vanilla application

of CHOPPs degrades relative to the performance of standard pairwise potentials as this measure of

variability increases.

We then turn attention to improving vanilla CHOPP-augmented CRFs, and make two primary

suggestions. The first is to incorporate additional parameters in the RBM-based potential that allows

the pattern activities to depend on information in the image. This is analogous to allowing standard

pairwise potentials to vary depending on local image color differences [1] or more advanced boundary

detectors like Pb [20]. The second is to utilize a loss function during training that is tailored to the

metric used for evaluating the labeling results at test time. Our results indicate that jointly training the

CHOPP potentials with the rest of the model improves performance, and training specifically for the

evaluation criterion used at test time (we use an intersection-over-union measure throughout) improves

over a maximum likelihood-based objective. Finally, we explore (a) different forms of compositionality:

the ‘min’ version advocated by Rother et al. [27], which is essentially a mixture model, versus the ‘sum’

version, which is more compositional in nature; and (b) convolutional applications of the high order

potentials versus their global application.

Since this work sits at the interface of structured output learning and RBM learning, we conclude

by suggesting take-aways for both the RBM-oriented researcher and the structured output-oriented

researcher, proposing what each approach has to offer the other and outlining possible directions for

improving the applicability of pattern-based approaches to challenging structured output problems.

Note Much of this work was done jointly with Daniel Tarlow and Richard Zemel, and has been

submitted as a conference paper to CVPR.



Chapter 2

Background & Related Work

2.1 Structured Output Learning

In structured output learning, the goal is to predict a vector of labels y ∈ Y = {0, . . . , C − 1}Dv given

inputs x ∈ X . A standard approach, which is taken by e.g. structural SVMs, is to define an input-

to-output mapping function gλ : X → Y that is governed by parameters λ. Given feature functions

f(x,y), this mapping is constructed implicitly via the maximization of a scoring function, which can

be interpreted as a conditional probability distribution p(y |x;λ): gλ(x) = argmaxy p(y |x;λ), where

p(y |x;λ) ∝ exp
{∑J

j=1 λjfj(y,x)
}

. In practice, we must restrict the form of fj(·) functions in order

to ensure tractability, typically by forcing the function’s value to depend on the setting of only a small

number of dimensions of y. Also, some fj(·) functions may ignore x, which has the effect of adding input-

independent prior constraints over the label space. The result is a log-linear probability distribution

(log p(y |x;λ) is linear in λ), which may be optimized using a variety of methods [33].

Latent Variable Models To increase the representational power of a model, a common approach

is to introduce latent (or hidden) variables h ∈ H = {0, . . . ,H − 1}J . The above formulation can then

be easily extended by defining feature functions f(x,y,h) that may include latent variables, which leads

to a probability distribution p(y,h |x). To make predictions, it is common to either maximize out or

sum out the latent variables:

gλ(x) = argmax
y

max
h∈H

p(y,h |x;λ), or (2.1)

gλ(x) = argmax
y

∑
h∈H

p(y,h |x;λ). (2.2)

The former strategy is employed by latent structural SVMs [37], while the latter is employed by hidden

CRF models [25]. A topic of ongoing investigation is the benefits of each, and alternative strategies that

interpolate between the two [21].

High Order Potentials A related strategy for increasing the representational power of a model is

to allow feature functions to depend on a large number of dimensions of y. These types of interactions

are known collectively as high order potentials and have received considerable attention in recent years.

They have been used for several purposes, including modeling higher order smoothness [9], co-occurrences

of labels in semantic image segmentation [13], and cardinality-based potentials [35, 36]. While the

3



Chapter 2. Background & Related Work 4

above examples provide interesting non-local constraints, they do not encode shape-based information

appropriate for image labeling applications. There are other high order models that come closer to this

goal, modeling star convexity [5], connectivity [34, 24], and a bounding box occupancy constraint [17].

However, these still are quite restrictive notions of shape compared to what pattern-based models are

capable of representing.

Learning High Order Potentials In addition to a weighting coefficient that governs the relative

contribution of each feature function to the overall scoring function, the features also have internal

parameters. This is the case in CHOPPs, where internal parameters dictate the target pattern and the

costs for deviating from it. These parameters also need to be set, and the approach we take in this work

is to learn them. We emphasize the distinction between first learning the internal parameters offline

and then learning (or fixing by hand) the trade-off parameters that controls the relative strength of the

high order terms, versus the joint learning of both types of parameters. While there is much work that

takes the former approach [10, 27, 13, 14], there is little work on the latter in the context of high order

potentials. Indeed it is more challenging, as standard learning formulations become less appropriate

(e.g., using a variant on standard SSVM learning for CHOPPs leads to a degeneracy where all patterns

become equivalent), and objectives are generally non-convex.

2.2 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) [29] is a form of undirected graphical model that uses hidden

variables to model high-order regularities in data. It consists of the I visible units v = (x1, . . . , xI)
> that

represent the observations, or data; and the J hidden or latent units h = (h1, . . . , hJ)> that mediate

dependencies between the visible units. The system can be seen as a bipartite graph, with the visibles

and the hiddens forming two layers of vertices in the graph; the restriction is that no connection exists

between units in the same layer.

The aim of the RBM is to represent probability distributions over the states of the random variables.

The pattern of interaction is specified through the energy function:

E(v,h) = −v>Wh− b>v − c>h (2.3)

where W ∈ RI×J encodes the hidden-visible interactions, b = (b1, . . . , bI)
> the input and c ∈ RJ the

hidden self-connections (also known as biases). The energy function specifies the probability distribution

over the joint space [v,h] via the Boltzmann distribution

p(v,h) =
1

Zθ
exp(−Eθ(v,h)) (2.4)

with the partition function Zθ given by
∑

v,h exp(−Eθ(v,h)). Based on this definition, the probability

for any subset of variables can be obtained by conditioning and marginalization.

Learning in RBMs For maximum likelihood learning, the goal is to make the data samples

likely, which entails computing the probability for any input v; this can be derived by performing the

exponential sum over all possibly hidden vectors h: p(v) =
∑

h p(v,h), effectively marginalizing them
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out. For an RBM with I binary visible units, this takes on a particular nice form:

p(x) =
∑
h

1

Zθ
exp(v>Wh + b>v + c>h)

=
1

Zθ
exp

b>v +
∑
j

log
(
1 + exp(v>wj + cj)

) (2.5)

where wj is the jth column in W and each of the terms inside the summation over j is known as a

softplus. The standard approach to learning in RBMs uses an approximation to maximum likelihood

learning known as Contrastive Divergence (CD) [7].

Vision Applications There have been numerous applications of RBM to vision problems. RBMs

are typically trained to model the input data such as an image, and most vision applications have

focused on this standard unsupervised training paradigm. For example, they have been used to model

object shape [2], images under occlusion [18], and noisy images [32]. They have also been applied in a

discriminative setting, as joint models of inputs and a class [15].

The focus of the RBMs we explore here, as models of image labels, has received relatively little

attention. Note that in this case the visible units of the RBM now correspond to the image labels y.

The closest work to our’s is that of [6]. The RBMs in that work only captured very local or global

patterns in the label field, and did not address shape information as we do, and it also combined the

RBM with a very restricted form of CRF, which greatly simplified inference and learning. [22] also tried

to use RBMs for structured output problems, but the model used in the paper did not have pairwise

connections in the label field, and the actual loss was not considered during training.



Chapter 3

Equating Pattern Potentials and

RBMs

This chapter provides the detailed proof of the equivalence between pattern potentials and RBMs. The

high level idea of the proof is to treat each hidden variable in an RBM as encoding a pattern.

We first introduce the definition of pattern potentials by Rother et al. in [27], a few necessary change

of variable tricks, and two different ways to compose more general high order potentials, “sum” and

“min”.

Then we relates the composite pattern potentials to RBMs. We show in Section 3.2 that minimizing

out hidden variables in RBMs are equivalent to pattern potentials. When there are no constraints on

hidden variables, we recover the “sum” composite pattern potentials; when there is a 1-of-J constraint

on hidden variables, we recover the “min” composite pattern potentials. In Section 3.3, we show that

summing out hidden variables in RBMs approximates pattern potentials, and similarly with and without

constraints on hidden variables would lead us to “min” and “sum” cases respectively.

The RBM formulation offers considerable generality via choices about how to constrain hidden unit

activations. This allows a smooth interpolation between the “sum” and “min” composition strategies.

Also, this formulation allows the application of learning procedures that are appropriate for cases other

than just the “min” composition strategy.

In Chapter 4, we provide a way to unify minimizing out hidden variables and summing out hidden

variables by introducing a temperature parameter in the model.

Notation In this chapter, we use f for pattern potentials and g for the high order potentials

induced by RBMs. Superscripts ‘s’ and ‘m’ on f corresponds to two composition schemes, sum and min.

Superscripts on g correspond to two types of constraints on RBM hidden variables, and subscripts on g

correspond to minimizing out or summing out hidden variables.

3.1 Pattern potentials

In [27], a basis pattern potential for a clique of binary variables ya is defined as

f(ya) = min{d(ya) + θ0, θmax} (3.1)

6



Chapter 3. Equating Pattern Potentials and RBMs 7

where d : {0, 1}|a| → R is a deviation function specifying the penalty for deviating from a specific pattern.

The pattern potential penalizes configurations of ya that deviates from the pattern, and the penalty is

upper bounded by θmax while θ0 is a base penalty.

For a specific pattern Y, the deviation function d(ya) is defined as1

d(ya) =
∑
i∈a

abs(wi)(yi 6= Yi) (3.2)

where abs() is the absolute value function. This is essentially a weighted hamming distance of ya from

Y. Since ya and Y are both binary vectors, we have the following alternative formulation

d(ya) =
∑

i∈a:Yi=1

(−wi)(1− yi) +
∑

i∈a:Yi=0

wiyi

=
∑
i∈a

wiyi +
∑

i∈a:Yi=1

(−wi) (3.3)

wi specifies the cost of assigning yi to be 1. wi > 0 when Yi = 0 and wi < 0 when Yi = 1.

We can subtract constant θmax from Eq. 3.1 to get

f(ya) = min

{∑
i∈a

wiyi +
∑

i∈a:Yi=1

(−wi)− θ, 0

}
(3.4)

Making the change of variables w′i = −wi, c = θ +
∑
i∈a:Yi=1 wi, we can rewrite the above equation as

f(ya) = min

{
−c−

∑
i∈a

w′iyi, 0

}
(3.5)

This formulation is useful for establishing connections with RBMs as shown later in this section.

[27] proposed two ways to compose more general high order potentials from basis pattern potentials

defined above. One is to take the sum of different pattern potentials

fs(ya) =

J∑
j=1

min{dj(ya) + θj , θmax}

=

J∑
j=1

min{dj(ya) + θ′j , 0}+ const (3.6)

and the other is to take the minimum of them, to get

fm(ya) = min
1≤j≤J

{dj(ya) + θj} (3.7)

In both cases, dj(.)’s are J different deviation functions, and θj ’s are base penalties for different patterns.

In the “min” case, we can also fix one deviation function to be 0 (e.g. by setting all weights wi = 0), to

get a constant threshold.

Using the change of variable tricks introduced above, we can rewrite the “sum” composite pattern

1Note that in [27], there is also a factor θ in this definition (d(ya) is given by the product of factor θ and the sum), but
actually the θ factor can always be absorbed in wi’s to get this equivalent formulation.
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potential as

fs(ya) =

J∑
j=1

min

{
−cj −

∑
i∈a

wijyi, 0

}
(3.8)

where we ignored the constant term, and rewrite the “min” composite pattern potential as

fm(ya) = min
1≤j≤J

{
−cj −

∑
i∈a

wijyi

}
(3.9)

3.2 Minimizing out hidden variables in RBMs

We start from minimizing hidden variables out. The probability distribution defined by a binary RBM

is given by

p(y,h) =
1

Z
exp (−E(y,h)) (3.10)

where the energy

E(y,h) = −
I∑
i=1

J∑
j=1

wijyihj −
I∑
i=1

biyi −
J∑
j=1

cjhj (3.11)

Minimizing out the hidden variables, the equivalent high order potential is

gmin(y) = min
h

−
J∑
j=1

(
cj +

I∑
i=1

wijyi

)
hj

 (3.12)

When there is no constraint on hidden variables, i.e. they are independent binary variables, the mini-

mization can be factorized and moved inside the sum

gucmin(y) =

J∑
j=1

min

{
−cj −

I∑
i=1

wijyi, 0

}
(3.13)

The superscript “uc” is short for “unconstrained”. This is exactly the same as the “sum” composite

pattern potentials in Eq. 3.8.

When we put a 1-of-J constraint on hidden variables, i.e. forcing
∑J
j=1 hj = 1, the minimization

becomes

g1ofJmin (y) = min
1≤j≤J

{
−cj −

I∑
i=1

wijyi

}
(3.14)

This is exactly the same as the “min” composite pattern potentials in Eq. 3.9.

3.3 Summing out hidden variables in RBMs

The key observation that relates the pattern potentials and RBMs with hidden variables summed out is

the following approximation,

min{x, 0} ≈ − log(1 + exp(−x)) (3.15)

It is easy to see that when x is a large positive value, the right hand side will be close to 0 and when x

is a large negative value, the right hand side will be linear in x. This is illustrated in Fig 3.1 (a).
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-log(1+exp(-x))

min{x, 0}

-log(1+exp(-x1)+exp(-x2))

min{0, x1, x2}

(a) (b)

Figure 3.1: (a) − log(1 + exp(−x)) is a smoothed approximation to min{x, 0}; (b) − log(1 + exp(−x1) +
exp(−x2)) is a smoothed approximation to min{x1, x2, 0}.

With this approximation, we can rewrite the basis pattern potential in Eq. 3.5 as

f(ya) ≈ − log

(
1 + exp

(
c+

∑
i∈a

w′iyi

))
(3.16)

On the other hand, summing out hidden variables in an RBM with no constraints on hidden variables,

the marginal distribution becomes

p(y) =
1

Z
exp

(
I∑
i=1

biyi

)
J∏
j=1

(
1 + exp

(
cj +

I∑
i=1

wijyi

))
(3.17)

Eq. 2.5 is another equivalent form of this. Therefore the equivalent high order potential induced by

summing out the hidden variables is

gucsum(y) = −
J∑
j=1

log

(
1 + exp

(
cj +

I∑
i=1

wijyi

))
(3.18)

which is exactly a sum of potentials in the form of Eq. 3.16.

Now we turn to the “min” case. We show that the composite pattern potentials are equivalent to

RBMs with a 1-of-J constraint on hidden variables and hidden variables summed out, up to the following

approximation

min{x1, x2, ..., xJ , 0} ≈ − log

1 +

J∑
j=1

exp(−xj)

 (3.19)

This is a high dimensional extension to Eq. 3.15. The 2-D case is illustrated in Fig 3.1 (b).

We use the definition of “min” composite pattern potentials in Eq. 3.7, but fix dJ(ya) to be 0, to

make a constant threshold on the cost.

Then we can subtract constant θJ from the potential and absorb θJ into all other θj ’s (with the same

change of variable tricks) to get

fm(xa) = min

{
−c1 −

∑
i∈a

wi1yi, ...,−cJ−1 −
∑
i∈a

wi,J−1yi, 0

}
(3.20)
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Composition Scheme Operation on RBM
Constraint on h

for Pattern Potentials Minimizing out h Summing out h

Min min1≤j≤J

{
−cj −

∑I
i=1 wijyi

}
− log

(
1 +

∑J−1
j=1 exp

(
cj +

∑
i∈a wijyi

))
1-of-J

Sum
∑J

j=1 min
{
−cj −

∑I
i=1 wijyi, 0

}
−
∑J

j=1 log
(
1 + exp

(
cj +

∑I
i=1 wijyi

))
None

Table 3.1: Equivalent compositional high order potentials by applying different operations and con-
straints on RBMs. Minimizing out hidden variables results in high order potentials that are exactly
equivalent to pattern potentials. Summing out hidden variables results in approximations to pattern
potentials. 1-of-J constraint on hidden variables corresponds to the “min” compositional scheme. No
constraints on hidden variables corresponds to “sum” compositional scheme.

Using the approximation, this high order potential becomes

fm(xa) ≈ − log

1 +

J−1∑
j=1

exp

(
cj +

∑
i∈a

wijyi

) (3.21)

In an RBM with J hidden variables, the 1-of-J constraint is equivalent to
∑J
j=1 hj = 1. With this

constraint, the energy (Eq. 3.11) can be transformed into

E(y,h) = −
I∑
i=1

biyi −
J−1∑
j=1

(
cj − cJ +

I∑
i=1

(wij − wiJ)yi

)
hj −

(
cJ +

I∑
i=1

wiJyi

)

= −
I∑
i=1

(bi − wiJ)yi −
J−1∑
j=1

(
cj − cJ +

I∑
i=1

(wij − wiJ)yi

)
− cJ (3.22)

We can therefore use a new set of parameters b′i = bi − wiJ , c′j = cj − cJ and w′ij = wij − wiJ , and get

E(y,h) = −
I∑
i=1

b′iyi −
J−1∑
j=1

(
c′j +

I∑
i=1

w′ijyi

)
hj (3.23)

We ignored the constant cJ because it would cancel out when we normalize the distribution. Note that

now the set of J−1 hidden variables can have at most one on, and they can also be all off, corresponding

to the case that the Jth hidden variable is on.

Summing out h, we get

p(y) =
1

Z
exp

(
I∑
i=1

b′iyi

)1 +

J−1∑
j=1

exp

(
c′j +

I∑
i=1

w′ijyi

) (3.24)

The constant 1 comes from the Jth hidden variable. The equivalent high-order potential for this model

is then

g1ofJsum (y) = − log

1 +

J−1∑
j=1

exp

(
c′j +

I∑
i=1

w′ijyi

) (3.25)

which has exactly the same form as Eq. 3.21.

Our results in this section are summarized in Table 3.1.



Chapter 4

The CHOPP-Augmented CRF

Understanding the equivalence between RBMs and pattern potentials leads us to define a more general

potential — Compositional High Order Pattern Potential (CHOPP)

fT (y) = −T log

∑
h

exp

 1

T

J∑
j=1

(
cj +

I∑
i=1

wijyi

)
hj

 (4.1)

where T is a temperature parameter. The sum over h is a sum over all possible configurations of hidden

variables. As did by Schwing et al. in [28], introducing a temperature parameter can smoothly interpolate

minimization and summation.

Setting T = 1, this CHOPP becomes

fT=1(y) = − log

∑
h

exp

 J∑
j=1

(
cj +

I∑
i=1

wijyi

)
hj

 (4.2)

this is the equivalent RBM high order potential with hidden variables summed out. When there is no

constraint on h, the above potential becomes

fucT=1(y) = −
J∑
j=1

log

(
1 + exp

(
cj +

I∑
i=1

wijyi

))
(4.3)

When there is a 1-of-J constraint on h, the above potential is

f1ofJT=1 (y) = − log

 J∑
j=1

exp

(
ci +

I∑
i=1

wijyi

) (4.4)

Setting T → 0, the CHOPP becomes

fT→0(y) = min
h

−
J∑
j=1

(
cj +

I∑
i=1

wijyi

)
hj

 (4.5)

this is exactly the same as the high order potential induced by an RBM with hidden variables minimized

out, and therefore equivalent to composite pattern potentials as shown in Section 3.2. When there are

11
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no constraints on hidden variables we will get the “sum” composite pattern potentials, while adding a

1-of-J constraint will give us the “min” composite pattern potentials.

Therefore, by using a temperature parameter T , CHOPPs can smoothly interpolate summing out

hidden variables (usually used in RBMs) and minimizing out hidden variables (used in Rother et al.[27]).

On the other hand, by using extreme sparsity (the 1-of-J constraint), it interpolates the “sum” and “min”

composition schemes.

Though this uniform formulation is nice, one problem with it is that it is not straight-forward to

find a joint distribution of y and h that would lead to this high order potential of y given in Eq. 4.1

by summing out or minimizing out h. This is because we actually introduced the parameter T after

summing out h. However, the case T = 1, which is equivalent to an RBM, does not have this problem

and is still an approximation to the pattern potentials as shown in Chapter 3. In the following discussion,

we stay in a probabilistic framework and always fix T = 1. The model for other T values would be an

interesting direction to explore in the future.

In this section, we show how to augment standard pairwise CRFs with this type of CHOPPs and

describe inference and learning algorithms. We do not enforce any constraint on hidden variables in the

following discussion, but it is possible to derive the inference and learning algorithms for the case where

we have a soft sparsity or hard 1-of-J constraints on hidden variables.

4.1 Model

We augment a standard pairwise CRF by directly adding the CHOPP to the energy function along with

a bias term. For a labeling y, given input image x, the conditional distribution is defined as

p(y|x) =
1

Z(x)
exp

λu∑
i

fi(yi|x) +
∑
k

λpk

∑
i,j

fkij(yi, yj |x)

+
∑
i

biyi +
∑
j

log

(
1 + exp

(
cj +

∑
i

wijyi

)) (4.6)

where fi(yi|x) are unary potentials, fkij(yi, yj |x) are K different types of pairwise potentials, λu and λpk
are trade-off parameters for unary and pairwise potentials respectively, and wij , bi, cj are RBM param-

eters. To simplify notation, for a given x we can denote ψu(y) = λu
∑
i fi(yi|x) for unary potentials,

ψp(y) =
∑
k λ

p
k

∑
i,j f

k
ij(yi, yj |x) for pairwise potentials, and b, c and W for RBM bias vectors and the

weight matrix. As mentioned above, we do not enforce any constraint on hidden variables, so we got

the CHOPP in the above form.

This is equivalent to the marginal distribution of y with a vector of binary hidden variables h summed

out from the joint distribution

p(y,h|x) =
1

Z(x)
exp

ψu(y) + ψp(y) +
∑
i

biyi +
∑
ij

wijyihj +
∑
j

cjhj

 (4.7)
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Given y, the distribution of h factorizes, and we have

p(hj = 1|y,x) = σ

(
cj +

∑
i

wijyi

)
(4.8)

where σ is the logistic function σ(x) = 1
1+exp(−x) .

Given h, the distribution of y becomes a pairwise MRF with only unary and pairwise potentials

p(y|h,x) ∝ exp
(

(b + Wh)
>
y + ψu(y) + ψp(y)

)
(4.9)

where (b + Wh)>y + ψu(y) is the new unary potential.

These factorization properties are very useful in inference and learning.

One way to make this model even more expressive is to make the RBM energy also conditioned on the

input image x. The current formulation of CHOPPs is purely unconditional, but knowing some image

evidence can help the model determine which pattern should be active. We achieve this by making the

hidden biases c a function of the input image feature vector φ(x). The simplest form of this is a linear

function c(x) = c0 + W>
0 φ(x), where c0 and W0 are parameters. Then the joint distribution of y and

h becomes

p(y,h|x) =
1

Z(x)
exp

(
ψu(y) + ψp(y) + b>y + y>Wh + φ(x)>W0h + c0h

)
(4.10)

where φ(x) acts as extra input to the RBM and W0 is the weight matrix for it. The conditional RBM

in [22] used a similar formulation where both the biases for y and h are conditioned on image evidence

but there is no CRF part in the model.

Another variant of the current formulation is to make the RBM convolutional which entails shrinking

the window of image labels y on which a given hidden unit depends, and devoting a separate hidden

unit to each application of one of these feature functions to every possible location in the image [16, 23].

These can be trained by tieing together the weights between y and hidden variables h at all locations

in an image. This significantly reduces the number of parameters in the model, and may have the effect

of making the CHOPPs capture more local patterns.

4.2 Inference

The task of inference is to find the y that maximize the log probability log p(y|x) for a given x. Direct

optimization is hard, but we utilize a variational lower bound:

log p(y|x) = Eq [log p(y,h|x)] +H(q) + KL(q||p)

≥ Eq [log p(y,h|x)] +H(q) (4.11)

where q(h) is any distribution of h, H(q) is the entropy of q and KL(q||p) is the Kullback-Leibler

divergence between q and posterior distribution p(h|y,x).

We can use the EM algorithm to optimize the lower bound of the log probability in Eq. 4.11. Starting

from an initial labeling y, we alternate the following E step and M step:

In the E step, we fix y and maximize the bound with respect to q, which is achieved by setting
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q(h) = p(h|y,x). We can compute this distribution efficiently using Eq. 4.8.

In the M step, we fix q and find the y that maximizes the bound. H(q) now becomes a constant

since q is fixed, so we only need to maximize Eq[log p(y,h|x)], which is essentially

(b + WEq[h])
>
y + ψu(y) + ψp(y) (4.12)

plus some constants that do not depend on y. This is again just a set of unary potentials plus pairwise

potentials, so we can use standard optimization methods for pairwise CRFs to find an optimal y. In

the experiments, we use graph cuts for this step. If the CRF inference algorithm used in the M step is

exact, this algorithm will find a sequence of y’s that monotonically increase the log probability, and is

guaranteed to converge.

In [22], the authors used mean-field to do inference on a similar model. We can also use mean-

field here, where we estimate an approximation q(y,h) to the conditional joint distribution p(y,h|x).

We assume q(y,h) factorizes into q(y)q(h), which would naturally lead to the factorization of q(h) =∏
j q(hj). The update formula for q(h) would be the same as the E-step in the above EM algorithm.

However, unlike in [22], q(y) is not easy to estimate because of the pairwise connections in the CRF part

of the model. We can further assume q(y) also factorizes as q(y) =
∏
i q(yi), then update each q(yi)

based on all its neighbors in each iteration of the mean-field inference. The final prediction is made by

independently find the yi’s that maximizes each q(yi). This will be one of the things to explore in future

works.

Remarks on LP Relaxation Inference The CHOPP in Eq. 4.6 is a sum over J terms and each

of these terms is a high order potential. It is possible to use modern methods for MAP inference based

on linear program (LP) relaxations [30]. In fact, we tried this approach, formulating the “marginal

MAP” problem as simply a MAP problem with high order potentials, then using Dual Decomposition

to solve the LP relaxation. The key computational requirement is a method for finding the minimum

free energy configuration of visibles for an RBM with a single hidden unit, which we were able to do

efficiently. However, we found that the energies achieved by this approach were worse than those achieved

by the EM procedure described above. We attribute this to looseness in the resulting LP relaxation.

This hypothesis is also supported by the results reported by Rother et al. [27], where ordinary belief

propagation outperformed LP-based inference, which tends to occur when LP relaxations are loose.

Going forward, it would be worthwhile to explore methods for tightening LP relaxations [31].

More details about this can be found in Appendix A.

4.3 Learning

Here we fix the unary and pairwise potentials and focus on learning the parameters in the RBM. CD

style learning is the usual way to train RBMs. We can use CD to maximize the conditional likelihood of

data under our model. However we found that CD does not work very well because it is only learning

the shape of the distribution in a neighborhood around the ground truth (by raising the probability of

the ground truth and lowering the probability of everything else). In practice, when doing prediction

using the EM algorithm on test data, inference does not generally start near the ground truth. In fact,

it typically starts far from the ground truth (we use the prediction by a model with only unary and

pairwise potentials as the initialization, which is not bad, but still far from ground truth), and the model
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has not been trained to move the distribution from this region of label configurations towards the target

labels.

Instead, we train the model to minimize expected loss. For any image x and the ground truth labeling

y∗, we have a loss `(y,y∗) ≥ 0 for any y. The expected loss is defined as L =
∑

y p(y|x)`(y,y∗), where

p(y|x) is the marginal distribution attained by summing out h. The expected loss for a dataset is simply

a sum over all individual data cases. The following discussion will be for a single data case to simplify

notation.

Taking the derivative of the expected loss with respect to model parameter θ, which can be b, c or

W (c0 and W0 as well if we use the conditioned RBMs), we have

∂L

∂θ
= Ey

[
(`(y,y∗)− Ey[`(y,y∗)])Eh|y

[
−∂E
∂θ

]]
(4.13)

where Ey[.] is the expectation under p(y|x) and Eh|y[.] is the expectation under p(h|y,x).

E(y,h) = −ψu(y)− ψp(y)− b>y − y>Wh− c>y (4.14)

is the energy function, and Eh|y[−∂E∂θ ] is easy to compute.

Using a set of samples {yn}Nn=1 from p(y|x), we can compute an unbiased estimation of the gradient

∂L

∂θ
≈ 1

N − 1

∑
n

(
`(yn,y∗)− 1

N

∑
n′

`(yn
′
,y∗)

)
Eh|yn

[
−∂E
∂θ

]
(4.15)

This gradient has an intuitive explanation: if a sample has a loss lower than the average loss of the batch

of samples, then we should reward it by raising its probability, and if its loss is higher than the average,

then we should lower its probability. Therefore even when the samples are far from the ground truth,

we can still adjust the relative probabilities of the samples. In the process, the distribution is shifted in

the direction of lower loss.

We sample from the joint distribution p(y,h|x) using Gibbs sampling and discard h to get samples

from p(y|x). Here due to the special model structure, we can use block Gibbs sampling, which sig-

nificantly improves sampling efficiency. We also use several Markov chains for each image to generate

samples, where each chain is initialized at the same initialization as is used for inference. The model

parameters are updated after every sampling step.

The learning algorithm we proposed here is different from both of the two algorithms described in

[22] for similar conditional RBMs, where neither of the two used any information from the loss function.

Both of the two algorithms are optimizing the distribution locally around ground truth, while our method

can optimize the distribution more globally. However, as pointed out in [22], running seperate persistent

chains for each training example would not work well when using minibatches because the states of the

persistent chains would be far from the model distribution after a full pass through the data set since

the model parameters will be changed significantly. But we found in the experiments that the gradient

computed by Eq. 4.15 is usually quite small, probably because the samples are not too far from each

other, so the problems with persistent chains are not that significant here. Additionally, the gradient

estimate still makes some sense even when the yn’s are not samples from p(y|x), where the effect of the

gradient is adjusting the model to assign higher probabilities for the ones with lower loss and do the

opposite for the ones with higher loss. This can also help alleviate the problems caused by persistent
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chains.

More detailed settings for training can be found in Chapter 5.



Chapter 5

Experiments

We evaluate our CHOPP-augmented CRF on synthetic and real data sets. The settings for synthetic

data sets will be explained later. For all the real datasets, we extracted a 107 dimensional descriptor

for each pixel in an image by applying a filter bank, which includes color features (RGB and Lab,

6 features), responses to Gabor filters (5 filter frequencies and 4 filter orientations, which gives us

5× 4× 2 = 40 features), Leung-Malik filters (48 features) and Schmid filters (13 features). We used the

implementation of Leung-Malik and Schmid filterbank from http://www.robots.ox.ac.uk/~vgg/research/

texclass/filters.html. All the filters are applied to the grey scale image. We trained a 2-layer (1 layer

of hidden units) neural network classifier using these descriptors as input and use the log probability of

each class for each pixel as the unary potentials.

For pairwise potentials, we used a standard 4-connected grid neighborhood and the common Potts

model, where fij(yi, yj |x) = pijI[yi 6= yj ] and pij is a penalty for assigning different labels for yi and yj .

Three different ways to define pij yield three pairwise potentials:

(1) Set pij to be constant, this would enforce smoothing for the whole image;

(2) Set pij to incorporate local contrast information by computing RGB differences between pairs of

pixels as in [1], where pij = exp
(
− (Ii−Ij)2

2σ2

)
, Ii, Ij are RGB values for the two pixels and σ is a

parameter controlling the sensitivity to contrast;

(3) Set pij to represent higher level boundary information given by Pb boundary detector [20], more

specifically, we define pij = −max{logPbi, logPbj} where Pbi and Pbj are the probability of bound-

ary for pixel i and j.

For each dataset, we hold out a part of the data to make a validation set, and we use it to choose

hyper parameters, e.g. the number of iterations to run in training. We choose the model that performs

the best on the validation set and report its performance on the test set.

5.1 Data Sets & Variability

Throughout the experiments, we use six synthetic and three real world data sets. To explore data set

variability in a controlled fashion, we generated a series of increasingly variable synthetic data sets. The

datasets are composed of between 2 and 4 ellipses with centers and sizes chosen to make the figures

17

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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V32 = 0.092 V32 = 0.178 V32 = 0.207 V32 = 0.251 V32 = 0.297 V32 = 0.404

Figure 5.1: Randomly sampled examples from synthetic data set labels. Hardness increases from left to
right. Quantitative measures of variability using K = 32 are reported in the bottom row. Variabilities
of Horse, Bird, and Person data sets are 0.176, 0.370, and 0.413.

look vaguely human-like (or at least snowman-like). We then added noise to the generation procedure

to produce a range of six increasingly difficult data sets, which are illustrated in Fig. 5.1 (top row). To

generate associated unary potentials, we added Gaussian noise with standard deviation 0.5. In addition,

we added structured noise to randomly chosen 5-pixel diameter blocks.

The real world data sets come from two sources: first, we use the Weizmann horses and resized all

images as well as the binary masks to 32×32; second, we use the PASCAL VOC 2011 segmentation

data [3] to construct a bird and a person data set. For these, we take all bounding boxes containing the

target class and created a binary segmentation of the inside of the bounding box, labeling all pixels of

the target class as 1, and all other pixels as 0. We then transformed these bounding boxes to be of size

32×32. This gives us a set of silhouettes that preserve the challenging aspects of modeling shape in a

realistic structured output setting. Images in all three real data sets are shown in Section 5.4.

The two PASCAL datasets are challenging due to variability in the images and segmentations, while

the number of images is quite small (214 images for birds and 1169 for person), especially compared to

the settings where RBM models are typically used. When we are only training the trade-off parameters,

this is not a major problem, because the number of parameters is small. But here we also train internal

parameters of high order potentials, which require more data for training to work well. To deal with

this problem, we generated 5 more bounding boxes for each original bounding box by randomly shifting

coordinates by a small amount. We also mirrored all images and segmentations. This augmentation

gives us 12 times as many training examples.

For each data set, we then evaluated variability. To do so, we propose a measure inspired by the

learning procedure suggested by Rother et al. [27]. First, cluster segmentations using K-means clustering

with Euclidean distance as the metric. Then for each cluster and pixel, compute the fraction of cases

for which the pixel is on across all instances assigned to the cluster. This yields qkij , the probability that

pixel ij is assigned label 1 given that it comes from an instance in cluster k. Now define the within

cluster average entropy Hk = − 1
Dv

∑
ij

(
qkij log qkij + (1− qkij) log(1− qkij)

)
, where Dv is the number of

pixels in the image. Finally, the variability measure is a weighted average of within cluster average

entropies: VK =
∑K
k=1 µkH

k, where µk is the fraction of data points assigned to cluster k. We found

K = 32 to work well and used it throughout. We found the quantitative measure matches intuition

about the variability of data sets as shown in Fig. 5.1.
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Horses

Birds

Person

Figure 5.2: Results on (left) synthetic and (right) real data showing test intersection-over-union scores
as a function of data set variability. The y-axis is the difference relative to Unary Only model. Note
that these results are for the pretrained RBM model.

5.2 Performance vs. Variability

Next we report results for a pre-trained RBM model added to a standard CRF (denoted RBM). Here, we

learn the RBM parameters offline and set tradeoff parameters so as to maximize accuracy on the training

set. We compare the Unary Only model to the Unary+Pairwise model and the Unary+Pairwise+RBM

model. Pairwise terms are image dependent, meaning that all 3 types of pairwise potentials are used,

which is denoted by iPW. Fig. 5.2 shows the results as a function of the variability measure described

in the previous section. On the y-axis, we show the difference in performance between the Unary+iPW

and Unary+iPW+RBM models versus the Unary Only model. In all but the Person data set, the

Unary+iPW model provides a consistent benefit over the Unary Only model. For the Unary+iPW+RBM

model, there is a clear trend that as the variability of the data set increases, the benefit gained from

adding the RBM declines.

5.3 Improving on Highly Variable Data

We now turn our attention to the challenging real data sets of Birds and Person and explore methods

for improving the performance of the RBM component when the data becomes highly variable.

Training with Expected Loss The first approach to extending the pretrained RBM+CRF model

that we consider is to jointly learn the internal potential parameters W. Initial experiments with

standard contrastive divergence learning on the Horse data led to poor performance, as the learning was

erratic in the first few iterations and then steadily got worse during training. So here we focus on the

offline pretraining and the expected loss training described in Section 4.3. We use 2 sampling chains1

for each image and use the validation set to do early stopping. The learning rate is fixed and chosen

from {10, 1, 0.1, 0.01} (the gradients are quite small so we tried some large learning rates here) so that

it is small enough to avoid erratic behavior and big enough to make significant updates of the weights

in reasonable time. We denote the resulting RBM models as jRBM to indicate joint training. Results

comparing these approaches on the three real data sets are given in Fig. 5.3, with Unary+iPW results

1We tried 10 sampling chains for each image as well, but it didn’t give us any significant performance boost over 2
sampling chains and it was much slower.
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Method Horse IOU Bird IOU Person IOU

Unary Only 0.5119 0.5055 0.4979
iPW 0.5736 0.5585 0.5094

iPW+RBM 0.6722 0.5647 0.5126
iPW+jRBM 0.6990 0.5773 0.5253

Figure 5.3: Expected loss test results. RBM is a pretrained RBM. jRBM is jointly trained using expected
loss.

Method Bird IOU Person IOU

PW 0.5321 0.5082
iPW 0.5585 0.5094

iPW+jRBM 0.5773 0.5253
iPW+ijRBM 0.5858 0.5252

Figure 5.4: Test results using image-specific hidden biases on the high variability real data sets. PW
uses image-independent pairwise potentials, and iPW uses image-dependent pairwise potentials. jRBM
is jointly trained but image independent. ijRBM is jointly trained and has learned image-dependent
hidden biases.

given as a baseline. We see that training with the expected loss criterion improves performance across

the board.

Image-dependent Hidden Biases Here, we consider learning image-dependent hidden biases as

described in Section 4.1 (modeling hidden biases c as a linear function of some image feature φ(x)). As

inputs, we use the learned unary potentials and the response of the Pb boundary detector [20], both

downsampled to be of size 16×16. We jointly learned the RBM internal parameters using the intersection-

over-union expected loss, as this gave the best results in the previous experiment. We refer to these

jointly trained, image-dependent RBMs with ijRBM. Results are shown in Fig. 5.4. For comparison, we

also train Unary+Pairwise models with a image-independent pairwise potentials (PW) along with the

standard image-dependent pairwise potentials (iPW). In the Bird data, we see that the image-specific

information helps the ijRBM similarly as how image-dependent pairwise potentials improve over image-

independent pairwise potentials. In the Person data, the gains from image-dependent information is

minimal in both cases.

Convolutional Structures Our final experiment explores the convolutional analog to the RBM

models discussed in Section 4.1 . Unfortunately, we were unable to achieve good results. We tried two

variants: (a) a vanilla pre-trained convolutional RBM, and (b) a pre-trained convolutional RBM with

conditional hidden biases as described in Section 4.1. We tried two different patch sizes (8×8, 12×12)

and tiled the images densely. Though the conditional variant outperformed the unconditional variant,

overall results were discouraging—performance was not even as good as the simple Unary+Pairwise

model. This is surprising because a convolutional RBM should in theory be able to easily represent

pairwise potentials, and convolutional RBMs have fewer parameters than their global counterparts, so

overfitting should not be an issue. We believe the explanation for the poor performance is that learning

methods for convolutional RBMs are not nearly as evolved as methods for learning ordinary RBMs,

and thus the learning methods that we have at our disposal do not perform as well. On the bright

side, this can be seen as a challenge to overcome in future work. A few methods developped for tiled

convolutional (not fully convolutional) RBMs achieved good results modeling textures [8][19], which

shows some potential that this may be a good way to go.
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(a) (b)

(c) (d)

Figure 5.5: (a) Images from Bird data set. (b) Ground truth labels. (c) Patterns learned by clustering-
style approach of [27]. (d) Patterns learned by compositional-style learning used in this paper.

Composition Schemes We qualitatively compare patterns learned for the “min” composition

approach presented in [27] using k-means versus the patterns learned by a simple pre-trained RBM,

which are appropriate for “sum” composition. While a quantitative comparison that explores more

degrees of freedom offered by CHOPPs is a topic for future work, we can see in Fig. 5.3 that the filters

learned are very different. As the variability of the data grows, we expect the utility of the “sum”

composition scheme to increase.

5.4 More Experiment Results

5.4.1 Real Data Sets

Images in the three real data sets are shown in Fig. 5.6 and Fig. 5.7.

The original Weizmann horses data set can be found from http://www.msri.org/people/members/

eranb/ and PASCAL VOC data set from http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/.

Our version of the three data sets as well as the 6 synthetic data sets will be available online.

5.4.2 Learned Filters

The learned filters, i.e. weights wij , with a pretrained RBM for each of the three data sets, are shown in

Fig. 5.8. Filters for 6 synthetic data sets are shown in Fig. 5.9 and Fig. 5.10, with hardness level from

easy to hard (0 to 5). For each filter, the weights are positive for bright regions and negative for dark

regions. In other words, filters favor bright regions to be on and dark regions to be off.

We can see the compositional nature of RBMs from these filters. For example, each single horse filter

is actually expressing soft rules like “if the head of a horse is here, then the legs are likely to be there”.

Any single filter would not make too much sense, but only when a few different filters are combined can

we recover a horse.

http://www.msri.org/people/members/eranb/
http://www.msri.org/people/members/eranb/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/
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5.4.3 Prediction Results

Some example segmentations for horse, bird and person data sets are given in Fig. 5.11, Fig. 5.12 and

Fig. 5.13.
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(a) Horse data set, 328 images in total.

(b) Bird data set, 214 images in total.

Figure 5.6: Horse and bird data sets.
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Figure 5.7: Person data set, 1169 images in total.



Chapter 5. Experiments 25

(a) Horse filters (b) Bird filters

(c) Person filters.

Figure 5.8: Filters learned on three real data sets.
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(a) Hardness level 0, 32 hidden variables.

(b) Hardness level 1, 64 hidden variables.

(c) Hardness level 2, 128 hidden variables.

(d) Hardness level 3, 128 hidden variables.

Figure 5.9: Filters learned on synthetic data sets.
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(e) Hardness level 4, 256 hidden variables.

(f) Hardness level 5, 256 hidden variables.

Figure 5.10: Filters learned on synthetic data sets, continued.
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(a) Best (b) Average (c) Worst

Figure 5.11: Prediction results on horse data set. The three categories best, average and worst are
measured by the improvement of Unary+Pairwise+RBM over Unary+Pairwise. Each row left to right:
original image, ground truth, Unary+Pairwise prediction, Unary+Pairwise+RBM prediction.

(a) Best (b) Average (c) Worst

Figure 5.12: Prediction results on bird data set.
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(a) Best (b) Average (c) Worst

Figure 5.13: Prediction results on person data set.



Chapter 6

Discussion & Future Work

We began by precisely mapping the relationship between pattern potentials and RBMs, and generalizing

both to yield CHOPPs, a class of high order potential that includes both as special cases. The main

benefit of this mapping is that it allows the leveraging of complementary work from two mostly distinct

communities. First, it opens the door to the large and highly evolved literature on learning RBMs.

These methods allow efficient and effective learning when there are hundreds or thousands of latent

variables. There are also well-studied methods for adding structure over the latent variables, such as

sparsity. Conversely, RBMs may benefit from the highly developed inference procedures that are more

common in the structured output community e.g. those based on linear programming relaxations. Also

interesting is that pairwise potentials provide benefits that are reasonably orthogonal to those offered

by RBM potentials.

Empirically, our work emphasizes the importance of data set variability in the performance of these

methods. It is possible to achieve large gains on low variability data, but it is a challenge on high

variability data. Our proposed measure for quantitatively measuring data set variability is simple but

useful in understanding what regime a data set falls in. This emphasizes that not all “real” data

sets are created equally, as we see moving from Horse to Bird to Person. While we work with small

images and binary masks, we believe that the high variability data sets we are using preserve the key

challenges that arise in trying to model shape in real image segmentation applications. Note that it

would be straightforward to have a separate set of shape potentials per object class within a multi-label

segmentation setting.

To attain improvements in high variability settings, more sophisticated methods are needed. Our

contributions of training under an expected loss criterion and adding conditional hidden biases to the

model yield improvements on the high variability data. There are other architectures to explore for

making the high order potentials image-dependent. In future work, we would like to explore multiplica-

tive interactions [26]. The convolutional approach appears promising, but it did not yield improvements

in our experiments, which we attribute to the relatively nascent nature of convolutional RBM learning

techniques. A related issue that should be explored in future work is the issue of sparsity in latent

variable activations. We showed in Chapter 3 that this sparsity can be used to control the type of com-

positionality employed by the model (extreme 1-of-J sparsity vs. no sparsity). An interesting direction

for future work is exploring sparse variants of RBMs, which sit in between these two extremes, and other

forms of structure over latent variables like in deep models.
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[12] P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge poten-

tials. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances

in Neural Information Processing Systems (NIPS) 24, pages 118–126, 2011. 1

31



Bibliography 32

[13] L. Ladicky, C. Russell, P. Kohli, and P. Torr. Inference methods for CRFs with co-occurrence

statistics. International Journal of Computer Vision (IJCV), 2011. 3, 4
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Appendix A

Dual Decomposition Inference for

CHOPP-Augmented CRFs

The negative energy function of CHOPP-augmented CRF defined in Eq. 4.6 is a sum of standard pairwise

CRF energy terms and J high order terms. It can be written as

f(y) = ψ(y) +

J∑
j=1

φj(y) (A.1)

where φj(y) = log (1 + exp (cj +
∑
i wijyi)) is the softplus term induced by summing out the jth hidden

variable, and ψ(y) includes everything else, which is just a sum of unary and pairwise potentials.

Dual decomposition inference applies when the function to be maximized can be written as a sum,

where maximizing each individual term in the sum is tractable. We have a few different ways to formulate

Eq. A.1 as a sum:

Form 1 The current formulation is already a sum of J + 1 terms;

Form 2 we can divide ψ(y) equally into J pieces, then the formulation becomes a sum of J terms in

the form of 1
Jψ(y) + φj(y).

We will show later that maximizing each individual term for these formulations are tractable in polyno-

mial time even with the high-order potential φj(y).

Once the inference problem becomes

max
y

∑
j

φ′j(y) (A.2)

34
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we can introduce a set of auxiliary variables δ = {δj}, constructed so that
∑
j δj = 0. So

max
y

∑
j

φ′j(y) = max
y

∑
j

φ′j(y) +

∑
j

δ>j

y


= max

y

∑
j

(
φ′j(y) + δ>j y

)
(A.3)

≤
∑
j

max
y

(
φ′j(y) + δ>j y

)
(A.4)

This bound holds for any δ, therefore

max
y

∑
j

φ′j(y) ≤ min
δ

∑
j

max
y

(
φ′j(y) + δ>j y

)
(A.5)

It is shown in [30] that this bound is tight when all the maximizing configurations of y are consistent

across all the individual terms in the sum. Though this condition is usually not met in practice, the

right hand side can still be a reasonable bound on the original MAP problem. The maximization inside

the sum is easy to deal with, as we will show later, and we can use sub-gradient descent to update δ.

Therefore to minimize the bound, we iterate the two steps until convergence. Then we try to combine

all the y’s we get for each individual term to make a final prediction.

We now focus on two parts in the procedure: (1) maximization of each individual term in the sum;

(2) making the final prediction after inference has converged.

A.1 Maximization of an Individual Term in the Sum

Each individual maximization problem has the following form1

max
y

ψ′(y) + δ>y + log

(
1 + exp

(
c+

∑
i

wiyi

))
(A.6)

where ψ′(y) is a sum of unary and pairwise potentials(for Form 1 it is 0, for Form 2 it is ψ(y)/J). The

softplus function is the hard part for inference. We ignored the subscript j because we are only dealing

with a single term in the sum. Denote h(x) = log(1 + exp(x)) and use convex duality, we have

h(x) = max
λ

[λx− h∗(λ)] (A.7)

where

h∗(x) = max
λ

[λx− h(λ)] = x log x+ (1− x) log(1− x) (A.8)

1We omitted the ψ(y) + δ>y term in Form 1 because it is nothing but a standard CRF inference problem (δ>y is just
a sum of unary potentials) and easy to deal with.
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Therefore the maximization becomes

max
y

{
ψ′(y) + δ>y + max

λ

[
λ

(
c+

∑
i

wiyi

)
− h∗(λ)

]}
(A.9)

= max
λ

{
max
y

[
ψ′(y) + (δ + λw)>y

]
+ λc− h∗(λ)

}
(A.10)

For Form 1, there is nothing in ψ′(y); for Form 2, if we only have unary potentials in ψ′(y) the maxi-

mization over y can be written as maxy(δ′ + λw)>y, where the unary potentials from ψ′(y) have been

absorbed into δ′. In both cases the optimization can be rewritten as

max
λ

[
max
y

(
δ′ + λw

)>
y + λc− h∗(λ)

]
(A.11)

Since y is binary, the optimal yi = I[δ′i + λwi > 0] where I is the indicator function and I[x] = 1 if x is

true and I[x] = 0 otherwise. Each yi would only flip from 1 to 0 or 0 to 1 when λ crosses the break point

−δ′i/wi. The break points divide the real numbers in a few continuous regions and in each region there

is one optimal y for the corresponding λ. Therefore by enumerating all the regions, we get a polynomial

time algorithm to find the optimal y.

If we have pairwise terms for ψ′(y) in Form 2, the optimization would be harder but still solvable in

polynomial time, for example, using the lower linear envelope graph cut algorithm [4].

A.2 Making the Final Prediction

We would not have the problem of making a final prediction if all optimal y’s for each individual term

in the sum agree. However this is usually not the case so we need a “decoding” method to combine all

different y’s and get a final prediction from all the terms and λ’s.

A straight-forward method to combine all the y’s is to use the majority for each yj .

A better way is to utilize the λ’s for each individual term. Note that in Eq. A.7, the λ that makes

the equality holds is given by

λ =
1

1 + exp(−x)
= σ(x) (A.12)

which is the logistic sigmoid function. Substitute x by c+
∑
i wiyi, where y is the optimal y we found

for this term, we then have

λ = σ

(
c+

∑
i

wiyi

)
(A.13)

which is exactly the same as p(h|y) in Eq. 4.8. We can then run one M-step inference to combine all the

terms and get a final prediction of y.

A.3 Experiment Results

We tried dual decomposition inference for a CHOPP-augmented CRF which does not have pairwise

potentials. Form 2 of the above is used to develop the inference algorithm.

We compared the bound given by dual-decompositoin inference with the bound given by the EM

algorithm introduced in Section 4.2. The dual-decomposition bound is quite tight when the number
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Figure A.1: Inference results for an example image, using models with varying number of hidden vari-
ables. The x-axis shows the number of iterations, and the y-axis shows the value of the objective function.
DD-primal (green) is the solution found by taking majority, DD-primal-2 (red) is the solution found by
the introduced decoding method, and DD-dual (blue) is the dual upper bound. We can see that dual
decomposition can find better solutions than EM for small models, while EM is usually better for larger
models, and the dual bound found by dual decomposition becomes extremely loose for larger models.

of hidden variables is small. Sometimes it is even possible to find the global optimal solution using

dual-decomposition. The bound gets looser as the number of hidden variables grows. The bound get

very loose even for small models with only 32 hidden variables. Though the decoding method described

in the section above gives better solutions than the straight-forward majority method, they are still far

worse than EM on large models, which makes it not applicable for practical problems. Fig. A.1 shows

the inference results for an example image using models with varying number of hidden variables.

We also found that better inference does not always lead to better performance. We developed

a branch and bound inference algorithm, which is guaranteed to find the optimal y (in terms of the

energy) for small models and will at least find a better y than both the EM prediction and the dual-

decomposition prediction within a limited time period. However, we found that the solutions given

by branch and bound do not always lead to better performance than EM predictions, evaluated using

the given loss. Part of the reason may be that the EM inference algorithm is better matched with

the learning algorithm, which is actually optimizing an approximation (using Monte Carlo samples) of

the true objective. Therefore it may be beneficial to match the inference algorithm with the learning

algorithm.


