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ABSTRACT

This dissertation studies the problem of discovering and using semantics forstructured and semi-

structured data, such as relational databases and XML documents. Semantics is captured in terms

of mappings from a database schema to conceptual schemas/ontologies.

Data semantics lies at the heart of data integration – the problem of sharing data across disparate

sources. To address this problem, database researchers have proposed a host of solutions including

federated databases, data warehousing, mediator-wrapper-based data integration systems, peer-to-

peer data management systems, and more recently data spaces. In the Semantic Web community, the

solution to the problem of providing machine understandable data for better web-wide information

retrieval and exchange is to annotate web data using formal domain ontologies. A central issue in

all of these solutions is the problem of capturing the semantics of the data to be integrated.

This dissertation describes our solutions for discovering semantics for data and using the se-

mantics to facilitate the discovery of schema mappings. First, we develop a semi-automatic tool,

MAPONTO, for discovering semantics for a database schema in terms of a given conceptual model

(hereafter CM). The tool takes as inputs a relational or XML database schema, a CM covering the

same domain as the database, and a set of simple element correspondencesfrom schema elements

to datatype properties in the CM. It then generates a set of logical formulasthat define a mapping

from the schema to the CM. The key is to align the integrity constraints in the schemawith the

semantic constructs in the CM, guided by standard database design principles. Second, we extend

MAPONTO with a semantic approach to finding schema mapping expressions. The approach lever-

ages the semantics of schemas expressed in terms of CMs. We present experimental results demon-

strating that MAPONTO saves significant human effort in discovering the semantics of database

schemas and it outperforms the traditional mapping techniques for building complex schema map-
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ping expressions in terms of both recall and precision. The development of MAPONTO provides a

suite of practical tools for recovering semantics for database-residentdata and generating improved

schema mapping results for data integration.
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Chapter 1

Introduction

This dissertation studies the problem of discovering and using semantics forstructured and semi-

structure data, such as relational databases and XML documents. Data semantics is captured through

mappings from a database schema to domain ontologies/conceptual schemas.In this dissertation,

we will use the term “conceptual model” (abbreviated as CM) to refer to a domain ontology or a

conceptual schema.

1.1 Motivation

To address data integration – the problem of sharing data across disparate sources – database re-

searchers have proposed a host of solutions including federated databases [CE87, SL90], data

warehousing [Kim96, BE97, CD97], mediator-wrapper-based data integration systems [Wie92a,

Ull00], peer-to-peer data management systems [BGK+02, HIST03], and more recently data spaces

[FHM05, HFM06]. A key component of any of these solutions is the definition of mappings be-

tween different data sources which are often heterogeneous and distributed. Thesemappingsre-

solve the structural and semantic heterogeneity between sources and enable information sharing

[Hal05]. Since large amounts of data reside in structured and semi-structured databases, such as re-

lational tables and XML documents, building mappings between database schemas has also become

a very active research area in the database community in the past two decades [BLN86, LNE89,
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SP94, MHH00, NM01a, DDH01, MBR01, PVM+02, MGMR02, DR02, BSZ03, DLD+04, Kol05,

MBDH05]. Despite these efforts, building schema mappings remains a very difficult problem. The

reason is that building schema mappings requires understanding the semantics of schemas. The

semantics of a schema specifies what objects and relationships in the subjectmatter are denoted by

the symbols and structures in the schema. Understanding the semantics of schemas is onlyapprox-

imatedby looking at linguistic, structural, and statistical evidence in schemas and theunderlying

data. For computerized mapping tools, the evidence is often ambiguous and insufficient for discov-

ering the expected mappings.

In this dissertation, we employ conceptual models (CMs) such as ontologies and conceptual

schemas to capture semantics for database schemas, and then use this semantics to improve tradi-

tional schema mapping tools. Capturing and using the semantics of data [Woo75, She95, BM04]

is a long-standing problem in the database community. In the early days, various semantic data

models were proposed to capture more “world knowledge” than the relational model, after the re-

lational model was adopted as the main structure for managing data. Due to performance reasons,

semantic data models did not prevail in building database management systems (DBMS); instead

they found a place in the database design process. Databases were often first described in terms of

some kind of semantic data model, e.g., Entity-Relationship model, and then converted into the syn-

tactic structures manipulated by the underlying DBMS. The semantics of data in adatabase system

was distributed into its operational environment, i.e., its database administrator and its application

programs. This had worked well for a closed and relatively stable operational environment. For in-

tegrating and exchanging data in an ever-more distributed, dynamic, and open environment, legacy

data that is inherent in this practice becomes the major obstacle since the semantics of legacy data

are often inaccessible, hindering the creation of mappings between different databases.

Recently, the Semantic Web was proposed for improving information gatheringand integration

on the Web [BLHL01]. Data on the Semantic Web promises to be machine-understandable by

being attached through semantic annotations. These annotations can be based on formal ontologies

with, hopefully, widely accepted vocabulary and definitions. Similarly, we believe that annotating

database-resident data with ontologies or conceptual schemas will also improve data integration and
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exchange across disparate databases. This dissertation will consider atool for annotating (capturing

semantics for) relational and XML databases, and an approach for using the annotation (semantics)

to improve traditional schema mapping tools.

For our purposes, a conceptual schema is normally designed for a particular application, while

an ontology is intended to describe the kinds of concepts that exist in a domain, without particular

applications in mind. Despite this difference, both are capable of defining semantics of a domain.

Focusing on their commonalities for expressing semantics, we use a generic conceptual modeling

language (CML) with features common to the Unified Modeling Language (UML), the Extended

Entity-Relationship model (EER), and the Web Ontology Language (OWL), for describing a CM.

In order to capture semantics for a database schema with a CM, we need to create mappings

between the database schema and the CM. These mappings can be defined at design time, when

a designer transforms a conceptual model into a database schema (top-downapproach). Alterna-

tively, abottom-upapproach recovers the mapping from a database to a CM, even when theywere

developed independently. Thetop-downapproach leads to a new, yet-to-be-defined, database design

methodology. In this dissertation, we study thebottom-upapproach for recovering the semantics of

legacy data.

Formally, we use formulas of the form:

T (X) → Φ(X,Y ) (1.1)

to represent the mapping from a database schema to a CM, whereT (X) is a formula denoting a

basic organizational unit, e.g., a relational table, in the database schema, and Φ(X,Y ) is a con-

junctive formula over the predicates representing the concepts, relationships, and datatype proper-

ties/attributes in the CM. As usual, variables on the left-hand side (LHS) of theimplication (“→”)

are universally quantified, and variables on the right-hand side (RHS) which do not appear on the

LHS are existentially quantified. Such formulas have been used in both the Information Manifold

data integration system [LSK96] and the DWQ data warehousing system [CGL+01a] to define a

mapping from a relational data source to a CM expressed in terms of a Description Logic. The
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following example illustrates the use of this kind of a mapping formula for expressing a plausible

semantics for a relational table.

Example 1.1.1.The following mapping formula might describe the semantics of the relational table

student(snum, sname, dept) in a relational database schema:

∀snum, sname, dept.

(student(snum, sname, dept) → ∃x1, x2. Student(x1)∧ hasNumber(x1,snum)∧

hasName(x1, sname)∧ Department(x2)∧

hasDeptNumber(x2,dept)∧ registeredIn(x1,x2)).

In the formula, the termstudent(snum, sname, dept) on the LHS of “→” represents the relational

table and its columns. The RHS is a conjunctive formula over predicates that define the concepts

Student and Department, and the attributes and binary relationshipshasNumber, hasName,

hasDeptNumber andregisteredIn. These predicates will come from a CM.

�

It is difficult, time-consuming, and error-prone to manually create the mappingformulas from

a database schema to a CM, especially since the specifier must be familiar with both the intended

semantics of the database schema and the contents of the CM. With a growing demand for in-

formation integration, it becomes essential to make the mapping discovery and definition process

tool-supported. The first problem we will consider in this dissertation is to develop an automatic

tool for creating mappings from database schemas to CMs.

An automatic tool for defining mappings from database schemas to CMs would greatly benefit

to ontology-based information integration [WVV+01], where manual creation of mappings from

data sources to a globally-shared ontology was one of the major bottlenecks. Moreover, the repre-

sentation of semantics for database schemas in terms of CMs provides an opportunity for improving

traditional solutions for a second problem: that of schema mapping.

A schema mapping expression describes a relationship between a source and a target database.

For example, the following is a schema mapping expression from a source relational database with
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two tablesDept(deptNum, mgrNum, location) and Emp(eid, deptNum) to a target relational

database with one tableEmpLoc(eid, mgrNum, location):

∀eid, deptNum,mgrNum, location. (Emp(eid, deptNum) ∧

Dept(deptNum,mgrNum, location) → EmpLoc(eid,mgrNum, location)).

It is extremely difficult to find schema mapping expressions involving multiple relations in both

the source and the target schemas. Traditional schema mapping solutions (e.g., Clio [MHH00]) take

as input a source schema, a target schema, and some additional informationfrom the user. The

task then is to find an association among some elements in the source schema and an association

among some elements in the target schema such that the pair of associations “conform” to the

information supplied by the user. For schemas without explicit semantics, a solution has to look into

the structures and constraints of the schemas for clues. These syntactic clues are often ambiguous

and sometimes give unsatisfactory results. On the other hand, if semantics ofschemas are available,

it is possible to significantly increase the capabilities of traditional schema mapping tools. The other

goal of this dissertation is to then utilize the semantics of schemas expressed in terms of CMs to

produce improved results for schema mapping. The setting is depicted in Figure 1.1. Note that in

order to accommodate a wide range of situations, we do not assume that schemas are inter-related

at the CM level.

Note that the problem of discovering mappings from schemas to CMs is superficially similar to

that of discovering mappings between database schemas. However, the goal of the later is finding

queries/rules for integrating/translating/exchanging data, while mapping schemas to CMs is aimed

at understanding and expressing the semantics of a schema in terms of a given CM. Nevertheless,

both require paying special attentions to various semantic constructs in the schema and CM lan-

guages.

We elaborate on the goals of this dissertation in the next section of this chapter. We present the

challenges and research issues for fulfilling these goals in Section 1.3. InSection 1.4, we overview

the dissertation and illustrate the reasoning processes that underlie our solutions. We summarize the

contributions that are made in this dissertation in Section 1.5. Finally, we outline theorganization
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Source Schema Target Schema?

Find the schema mapping

Semantic Mapping Semantic Mapping

CM 1 CM 2

Figure 1.1: The Problem Setting of Semantic Schema Mapping

of the dissertation in Section 1.6.

1.2 Objectives

The first objective of this dissertation is to develop a tool to discover semantics for database schemas.

Since we use mappings to represent semantics for database schemas, the tool is aimed at automati-

cally discovering semantic mapping from a legacy data source to an existing CM. Given a schema

and a CM, the mapping discovery process shouldinfer the “correct” semantic mapping by system-

atically analyzing various elements in the schema and the CM. Although a fully automated tool may

not be feasible, the solution should require as little human intervention as possible.

Secondly, we aim to develop a framework for using the semantics of database schemas expressed

in terms of mappings to CMs. Within the framework, we want to develop a solution for discovering

direct mappings between database schemas. The solution should take advantage of semantics avail-

able in schemas and in the associated CMs. Compared to traditional schema mapping techniques

proposed in the literature, the solution should improve significantly the traditional techniques. To

embrace broad applicability, the solution should not assume the existence of any direct connection

at the semantic level.
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Finally, we will implement the proposed algorithms and apply them to real world database

schemas and CMs. Through experiments, our goal is to test the performance of our solutions and

gain experience in building semi-automatic mapping discovery tools.

To fulfill these goals, we proceed with the following steps:

1. Identify different mapping discovery problems. Describe the input and output of each prob-

lem and the basic principles underlying proposed solutions. Set up the direction for a solution

to be aimed at.

2. Develop a solution for discovering semantic mappings from relational database schemas to

CMs. Test the solution using practical schemas and CMs.

3. Propose a mapping formalism for connecting XML schemas to CMs. Develop a solution for

discovering semantic mappings from XML schemas to CMs. Test the solution using practical

schemas and CMs.

4. Develop a solution for discovering direct database schema mappings in thepresence of se-

mantic mappings from these schemas to CMs. Test the performance of the solution by com-

paring it to traditional schema mapping techniques.

1.3 Challenges in Building Mappings

Using CMs to explicate semantics of logical schemas requiresmatchingmodeling constructs in

models described in different modeling languages. In general, mapping amodel1 S to a model

T requires deciding not only whether there is an elements in S that corresponds to an element

t in T , but also whether a set of elementsS in S describes the same set of real world objects

and relationships among these objects as described by a set of elementsT in T . This problem is

challenging for several reasons.

First, since semantics of a legacy database have been factored out fromthe running system and

distributed to its operational environment, to know what the data really means, one would have to
1Here, we use the term “model” generically to refer to either a database schema or a CM.



8

talk to the original creators of the database and/or check out carefully theapplications that access

and update the data. In most cases, however, the creators are not available and the database along

with its applications has evolved dramatically. Moreover, understanding the meaning of legacy

applications is a well-known intractable problem, much like the problem of data semantics.

Second, semantics is often inferred from clues in schemas and in CMs. Examples of clues in a

schema are its integrity constraints and its structure. Clues in a CM include connections between

concepts and constraints imposed on the connections. But the information in these clues is often

incomplete. For example, a foreign key constraint in a relational database schema might represent

an ordinary relationship, anISA relationship, an identifying relationship for a weak entity, or an

aggregate relationship. Each one of these has its own specific semantics.

Third, although a CM tends to describe a subject matter more directly and naturally than a

database schema, the size of a CM is often large (e.g., hundreds conceptsand thousands links)

and relationships between concepts are complex and tangled. Given a CM,a simple and intuitive

structure, e.g., a shortest spanning tree, in the CM may not be a good candidate for the semantics of

a schema. (see an example in later chapter). More work on understandingsemantics of schemas in

terms of CMs is needed.

Fourth, even though the semantics of individual schemas in terms of CMs areavailable, finding

the direct mapping from one schema to the other schema faces the same challenges as discovering

semantics for the schemas. For example, anISA hierarchy may be collapsed upward and represented

in a single table in one relational schema, while there could be individual tablesfor each subclass in

the hierarchy in another relational schema. Therefore, subclass tablesin the latter schema need to be

connected by some operators in order to be mapped to the table in the first schema. In general, there

are too many ways to connect tables in a relational schema even when the semantics of individual

tables are present. Worse, a mapping relationship is a pair of connections inrespective schemas. If

the CMs are not inter-related, it is still difficult to find matched pairs of connections at the schema

level. But, hopefully, the CMs would provide more evidence for a better pairing.

Finally, mappings are often subjective, depending on the application. Therefore, users need to
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be involved in the mapping process. Nevertheless, for an automatic tool, human intervention should

be kept at a minimum.

1.4 Overview of the Dissertation

We now offer an overview of the dissertation and outline our solutions to the problem of discovering

semantic mappings from logical schemas to CMs and the problem of discovering schema mappings

between logical schemas. The fundamental problem can be described asfollows: given two models

S andT about the same subject matter, for an associateδS in S, find an associationδT in T such

that δS andδT are “semantically similar” in terms of modeling the subject matter.

As indicated earlier, the problem is inherently difficult to automate, so interactive and semi-

automatic tools are assumed to be the solution. Such a tool, e.g., Clio [MHH00], willemploy a two-

phase process: First, specifysimple correspondencesbetween “atomic elements” in the two models.

There are many schema matching tools that support this phase currently (see Section 2.2). Second,

derive an association among a set of elements inS and an association among a set of elements in

T such that the pair of associations could give rise to a meaningful relationship between the two

models. Several systems that accomplish this have been developed over theyears (see Section 2.1).

Up to the writing of this dissertation, Clio [MHH00] is widely considered as the best tool which

quite successfully derives schema mapping formulas from a set of simple correspondences for the

problem of data exchange [FKMP03].

Inspired by Clio, we will develop the solutions to our problems by also employingthe two-

step process: first, let the user provide a set of simple correspondences between elements in the

two models being mapped, and second, derive a set of candidate mapping formulas for the user

to examine. The element correspondences we consider are simple pairs ofatomic elements that

can be generated by most of existing schema matching tools; for example, a correspondence could

be specified from a table column in a relational schema to a datatype property ina CM. In this

dissertation, we focus on the second step, that is, deriving mappings from simple correspondences

for the problems we consider.
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A mapping between two models consists of a set of relationships between associations in the two

models. An association in a model describes a connection among a set of elements in the model.

Intuitively, a mapping relationship should be an equivalent relationship which means that the two

associations being related are equivalent in terms of modeling a subject matter. More specifically,

for two modelsS andT about the same subject matter, we say that there is a mapping relationship

between an associationδS in S and an associationδT in T if both δS andδT describe the same

set of objects and the same particular connection among objects in the set according to the subject

matter. In regard to a mapping discovery solution, this definition directs us to find semantically

equivalent associations in two models. Unfortunately, with limited information available, an au-

tomatic mapping discovery tool only can approximate the semantically equivalentassociations by

“semantically similar” associations. For example, if a tool recognizes that an association in modelS

describes two entitiesProject andEmployee, and themanagerOf relationship between these two

entities, then it would attempt to discover an association in modelT which also describesProject

andEmployee, and a “semantically similar” relationship tomanagerOf, such ascontactPerson.

The semantic similarity would be supported by the fact that both relationships are functional from

Project to Employee and arepartOf relationships. In this dissertation, we assume that the names

of schema elements are merely syntactic strings indistinguishable in our solutions.

Given a set of correspondences between elements in two models, our solutions thus are to find

δS andδT such that they are “semantically similar”. In measuring the performance of our solutions,

we will test them against real-world applications and use externally provided correct mappings as

“gold standard”. In the next two subsections, we illustrate our solutions bymeans of examples.

In Chapter 2 entitled “Related Work” and the following chapters dedicated to the development

of solutions to our problems, we present the differences between our solutions and the existing

technique in Clio and explain how we advance the state of the art.
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1.4.1 Discovering Semantic Mappings from Database Schemas to CMs

In discovering a semantic mapping from a database schemaS to a CMO, we craft our heuristics

based on a careful study of standard database design process relating the constructs of the schema

modeling language with those of conceptual modeling language. Suppose theschemaS was derived

from a conceptual modelE , then we can use associations inO to estimate the associations inE

from which the basic organization units ofS were derived. The following example illustrates the

reasoning process for discovering a semantic mapping from a relational schema to a CM.

Example 1.4.1.Figure 1.2 shows a relational tableproject(num, supervisor) and the enterprise

CM.

-hasSsn

-hasName
-hasAddress
-hasAge

Employee

-hasDeptNumber

-hasName
-.
-.

Department

works_for

controlssu
p

e
rv

is
io

n


4..* 1..1

1..1
0..1

1..1 0..*

1..*

0..1
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0..1

-hasNumber

-hasName
-.
-.

Worksite

manages

works_on 0..1

project(num, supervisor)

Figure 1.2: Discovering the Semantics of A Table

Suppose we wish to discover the semantics of the tableproject(num, supervisor) with key

num in terms of the enterprise CM. Suppose that by looking at column names and theCM graph,

the user draws the simple correspondences shown as dashed arrows inFigure 1.2. This indicates, for

example, that thenum column corresponds to thehasNumber property of theWorksite concept.

Using prefixesS andO to distinguish tables in the relational schema and concepts in the CM (both

of which will eventually be thought of as predicates), we present the correspondences as follows:

S:project.num!O:Worksite.hasNumber

S:project.supervisor!O:Employee.hasSsn
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The information in the table indicates that for each value ofhasNumber (and hence instance of

Worksite), the tableproject associates at most one value ofhasSsn (instance ofEmployee).

Hence the association betweenWorksite andEmployee induced by theproject table should be

functional fromWorksite to Employee. Consequently, the association will be the manager of

the department controlling the worksite, and our solution will return the composed association

controls−◦manages−, wherecontrols− andmanages− are the inverse ofcontrols andmanages,

respectively.

On the other hand, if both columnsnum andsupervisor were key for theproject table, values

in columnnum were intended to be associated with multiple values in columnsupervisor, and

conversely – otherwise the table would had been specified to have a smaller key. Therefore, a

functional association would likely not reflect a proper semantics of the table. In this case, the

association would be the workers of the department controlling the worksite,and our solution will

return the composed associationcontrols−◦works for−.

At the end, the solution produces a list of plausible mapping formulas, which will include the

following formula, expressing a possible semantics for the table:

S:project(num, supervisor) → O:Worksite(x1), O:hasNumber(x1,num),

O:Department(x2), O:Employee(x3),

O:hasSsn(x3,supervisor), O:controls(x2,x1),

O:manages(x3,x2).

�

We have chosen to flesh out the above reasoning principles in a systematic manner by consider-

ing the behavior of our proposed solution on database schemas designedfrom CMs, e.g., Extended

Entity Relationship (EER) diagrams. Database design methodology is a technique widely covered

in undergraduate database courses. For relational schema, we referto this aser2rel schema de-

sign. One benefit of this approach is that it allows us to prove that our algorithm,though heuristic

in general, is in some sense “correct” for a certain class of schemas. Of course, in practice such

schemas may be “denormalized” in order to improve efficiency, and only parts of the CM may be
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realized in the database. Our solution uses the general principles enunciated above even in such

cases, with relatively good results in practice. In Chapter 4, we focus onthe problem of discovering

semantics for relational schemas. We first identify that the existing techniquein Clio [PVM+02]

does not provide the expected results to our problem. We then proceed to develop a novel solution.

In Chapter 5, we study the problem of discovering semantics for XML schemas. We differentiate

the solution for this problem from that for the problem of relational case. In particular, the solution

for XML schemas will make use of the parent-child hierarchical relationships which carry much

semantics. In addition, the analysis of the occurrence constraints imposed on the parent-child rela-

tionships is one of the aspects that make our solution different from the Clio’s technique for XML

schema mapping [PVM+02], where chase on nested-referential integrity constraints lies at its core.

1.4.2 Discovering Mappings between Database Schemas

Unlike existing approaches for finding mappings between database schemas, our solution assumes

the presence of the semantics of each schema, expressed in terms of a mapping to a CM. Given a

relational schemaS associated with a CM through a semantic mappingΣS and a relational schema

T associated with a CM through a semantic mappingΣT . Let L be the set of correspondences

linking a setL(S) of columns inS to a setL(T ) of columns inT . To find an associationδS

among columns inL(S) and an associationδT among columns inL(T ) such thatδS andδT are

semantically similar in modeling a subject matter, we will leverage the semantics encoded in ΣS

andΣT .

Example 1.4.2. Consider the source relational schema given on the left side of Figure 1.3. It

contains a single tableofficeEquipment(equipID, faxNo, printerName). The semantics of the

source schema is encoded by associating the table with the CM above it. On the right side, there is

a target schema containing three tables:machine(serialNo), faxMachine(serialNo, faxNo), and

printer(serialNo, printerName); the dashed arrows indicate referential integrity constraints over

schema elements. The semantics of these tables are encoded by associating them with the target

CM. Underlined column names mean that the column is part of a primary key of thetable. And we
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use a keywordkey in a CM to indicate that the attribute with this keyword is an identifier for the

entity it is associated with. Let us assume that attributes of entities are single-valued and simple.

OfficeEquipment

equipID: key
faxNo

printerName

Printer

serialNo: key

printerName

Machine

serialNo: key

isaisa

officeEquipment:
    equipID
    faxNo

    printerName

machine
    serialNo

faxMachine
    serialNo
    faxNo

printer
    serialNo

    printerName

v2

SOURCE:

TARGET:

FaxMachine

serialNo: key
faxNo

v
1

Figure 1.3: Discovering the Mapping between Schemas

To discover a mapping between the source and target schemas, the user specifies the simple ele-

ment correspondencesv1 andv2. If the semantics of the target CM indicates that theISA hierarchy

is overlapping, our solution will use theISA links to connect the three entities and generate the

following mapping formula by translating the CM connection into the formula:

M : ∀equipID, faxNo, printerName.(officeEquipment(equipID, faxNo, printerName)

→ machine(serialNo)∧ faxMachine(serialNo,faxNo)∧

printer(serialNo, printerName)).

The solution first finds correspondences between elements in the CMs by lifting up the orig-

inal correspondences at the logical schema level to the CM level. It doesso by following the

semantic mappings from the logical schemas to the CMs. The resulted correspondences indicate

that the attributefaxNo of the entityOfficeEquipment in the source CM corresponds to the at-
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tribute faxNo of the entityFaxMachine in the target CM and the attributeprinterName of the

entity OfficeEquipment in the source CM corresponds to the attributeprinterName of the entity

Printer in the target CM. Next, the solution attempts to find an association in the source CMbe-

tween attributesfaxNo andprinterName and an association in the target CM between attributes

faxNo andprinterName such that the two associations are “semantically similar”. In the source

CM, the two attributes are associated with the single entityOfficeEquipment, while in the target

faxNo andprinterName are associated with entitiesFaxMachine andPrinter, respectively. Since

FaxMachine andPrinter are subclasses ofMachine, theISA hierarchy could be collapsed upward

so that all attributes of subclasses are associated with the superclass. This conceptual transformation

would result in an “semantically equivalent” CM to the source CM. Therefore, the solution maps

the single entity in the source to theISA hierarchy in the target.

�

In contrast, a logical approach that attempts to join all of the target tables together in order to

establish the mapping to the source table [PVM+02] may produce too many join expressions in

general. Therefore, a logical approach usually follows one direction tochain referential constraints

for joining tables. As a result, the expected mapping is very likely not to be discovered (see Example

2.1.1). In Chapter 6, we show a number of scenarios where existing solutions do not discover the

expected mapping expressions. We then propose a semantic approach to improved schema mapping

discovery.

1.5 Contributions of the Dissertation

First, manual creation of mapping formulas expressing semantics of a database schema in terms

of a CM is inefficient and ineffective. Although there are a number of (semi-)automatic tools for

deriving complex mapping formulas between database schemas (e.g., Clio [MHH00, PVM+02]),

it is not clear whether the techniques employed by the schema mapping tools areappropriate to

the problem of discovering semantics for schemas. Second, we observethat existing solutions for

mapping creation often do not provide the underlying meaning of the mapping they are deriving,
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and the user has to delve into the very details of the algorithms to understand theimplications of the

mapping derivation processes. Third, we observe that existing solutionsusually do not provide any

sense of “correctness” about a proposed mapping. It is the user’s responsibility to decide whether

a mapping solution is effective to her scenario. Fourth, since semantics of database schemas are

not available, existing solutions to schema mapping often only explore the information encoded in

schema constraints or carried by the data. It is not clear how to leverage thesemantics encoded

in the semantic mappings from schemas to CMs. Finally, it is not clear whether it isfeasible and

beneficial to use the semantics for deriving schema mappings. By exploringand answering the

above questions, we make the following contributions in this dissertation:

• The problem of data semantics is formulated in terms of mappings and mapping discov-

ery. We take that semantics of data sources can be explicated by setting up semantic map-

pings from the schemas describing data to CMs. We therefore identify a newversion of data

mapping problem: That of discovering mapping formulas expressing semantics of database

schemas from the schemas, interpreting CMs, and simple user inputs – elementcorrespon-

dences.

• We describe the underlying meaning of the mapping we are looking for, and weobserve

that existing solutions to schema mapping discovery do not satisfy our description and the

techniques employed by these solutions ignore important knowledge in data modeling. We

then propose algorithms that are enhanced to take into account information about the schemas,

the CMs, and standard database design guidelines.

• In discovering semantics of database schemas, we identify an important coreclass of prob-

lems that are often encountered in practice. We give formal results proving that the otherwise

heuristic algorithm is correct for this class of problems. Thus a user can easily identify the

effectiveness of the mapping solution for their scenarios.

• Another important contribution of this dissertation is that we demonstrate that the explication

of semantics of database schemas benefits to the long-standing and increasingly important

problem of sharing data across disparate data sources. We study the problem of discovering
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schema mapping expressions using data semantics even though different data sources are not

connected at the semantic level. We suggest that the semantics of database schemas should

be established and maintained for managing information in an open, distributed,and dynamic

environment.

• To test the effectiveness and usefulness of our solutions in practice, we implemented the

algorithms in a prototype tool and applied it to a variety of data sets. We argue,for tools

producing complex artifacts, it may be reasonable to measure success notjust by the number

of cases where the tool produced the exact answer desired, but alsoby the ease with which

incorrect answers can be modified to produce correct ones. Our toolis successful because it

can reduce the amount of human effort required to perform a given task.

1.6 Organization of the Dissertation

The content of this dissertation is organized such that each chapter is relatively self-contained.

Chapters 1, 2, and 3 present the problems and the main ideas for solving these problems in this dis-

sertation, along with relations to existing work. The remaining chapters describe detailed solutions

to specific problems.

In particular, Chapter 2 contrasts our approach with related work in the literature. Chapter 3 in-

troduces some formal notations and describes three specific mapping discovery problems. Chapter

4 studies a solution to the problem of discovering semantics for relational tables and gives evalu-

ation results. Chapter 5 presents a mapping formalism for capturing semanticsfor XML schemas

and develops an algorithm for finding such semantics. This chapter also includes test results of the

algorithm on real data. Chapter 6 proposes a framework for using data semantics for discovering

schema mapping expressions. This chapter studies a semantic solution for generating schema map-

pings and presents the experimental results on mapping performance in comparison with traditional

techniques. Finally, Chapter 7 summarizes the entire work and points to futureresearch directions.

Some of the results have been published in conference proceedings andjournals. Specifically, the

AAAI-2006 paper [AMB06] summarizes solutions for building semantic mappings from databases
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to CMs. The ODBASE-2005 paper [ABM05b] and the JoDS journal paper [ABM06] detail the

solution to discovering semantics of relational tables. The ISWC-2005 paper [ABM05a] presents

an algorithm for discovering semantic mappings from XML schemas to CMs. Finally, the ICDE-

2007 paper [ABMM07] contains results on using data semantics for discovering schema mapping

expressions.



Chapter 2

Related Work

In this chapter we review work that is related to our research on discovering semantic mappings

from database schemas to CMs, also on discovering schema mapping using the semantic mappings.

We will discuss in relevant sections how our work advances the state of theart. We start by re-

viewing previous solutions for discovering mappings in Section 2.1. Most ofthe solutions were

designed for mappings between database schemas. We show why the problem of semantic mapping

in this dissertation is new, and we contrast our solution to previous techniques. Since element cor-

respondences play a critical role in our solution as well as in many previoussolutions, we survey

tools for generating element correspondences in Section 2.2. Mappings are first-class citizens in the

framework of model management. We review this piece of work in Section 2.3. We differentiate

our work on discovering semantics for database schema from the work ondata reverse engineering

in Section 2.4. In Section 2.5, we briefly survey achievements made in query processing over map-

pings. Finally, we discuss conceptual modeling, which is related to the problem of data semantics

in Section 2.6.

2.1 Schema Mapping for Data Integration and Exchange

Most approaches to discovering mappings focused on database schemas, some on ontologies.Schema

mappingis the problem of finding a “meaningful” relationship from asourcedatabase schema to a

19
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targetdatabase schema. The relationship is expressed in terms of logical formulasand the mapping

is often used for data integration, exchange, and translation. The following example is adopted from

the original paper of the Clio schema mapping tool [MHH00]. Figure 2.1 shows a source relational

schemaS containing two tables,address andengineer, and a referential integrity constraintr

between the two tables. The figure also shows a target relational schemaT with a single table,

employee. To translate a data instance ofS to a data instance ofT as guided by the correspon-

dencesv1, v2, v3, andv4, which indicate, for instance, that the data objects under theaddr column

of the address table become the objects under theaddr column of theemployee table, one can

use the following First Order Logic formula to represent a “meaningful” relationship between the

source and the target:

∀id, addr, name, sal.(address(id, addr)∧ engineer(id, name, sal)

→ employee(id, name, sal, addr)).

This mapping can be used to create anemployee tuple by joining together anengineer tuple

and anaddress tuple. Of course, there are other possible mapping formulas between the two

schemas.

id addr

id name sal

address

engineer

employee id name sal addr

Schema S
Schema T

v2 v3 v4

v1

r

Figure 2.1: Deriving Schema Mapping Expressions for Data Exchange

Mappings are fundamental to many applications. To study them in a general, application-

independent way, Madhavan et al. [MB+02] proposed a general framework for mappings between

domain models, where a domain model denotes a representation of a domain in a formal language,

such as a relational schema in the relational formalism. Given two domain modelsT1 (in a lan-

guageL1) andT2 (in L2), a mapping betweenT1 andT2 may include a helper domain modelT3
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(in languageL3), and consists of a set of formulas each of which is over (T1, T2), (T1, T3), or (T2,

T3). A mapping formula over a pair of domain models (T1, T2) is of the forme1 op e2, wheree1

ande2 are expressions overT1 andT2, respectively, andop is a well-defined operator. For example,

bothe1 ande2 can be query expressions over two relational databasesT1 andT2. The query results

of e1 ande2 should be compatible, andop can be a subset relationship between the two queries.

The semantics of the mapping is given by the interpretations of all domain models involved such

that these interpretations together satisfy all the mapping formulas. The authors also propose and

study three properties of mappings:query answerability, concerning whether a mapping is adequate

for answering certain queries;mapping inference, concerning whether a mapping is minimal; and

mapping composition, concerning the composition of two mappings.

The primary use of mapping is fordata integration. Data integration often combines data from

disparate sources and provides users with a unified view of these data [Len02]. The typical architec-

ture of a data integration system consists of a global schema, a set of data sources (local schemas),

and mappings between the sources and the global schema. The sources provide the real data, while

the global schema is an integrated and reconciled view of the real data. There are two ways for

providing the global view: a materialized view [Wid95] and a virtual view [Wie92b]. In the ma-

terialized view approach, a.k.a.data warehousing, source data are integrated and materialized in a

database under the global schema. In the virtual view approach, data remain in the sources. The

global schema is connected through mappings to the source schemas so thatuser queries against

the global view can be answered by reformulating them into queries over source databases. In both

approaches, mappings between the global schema and the source schemas are the main vehicle for

integration.

Formally, a data integration system is a triple〈G,S,M〉, whereG is the global schema in a

languageLG , S is the source schema in a languageLS , andM is the mapping betweenG andS.

The mapping consists of a set of assertions of the formsQS ↪→ QG andQG ↪→ QS , whereQS

andQG are queries of the same arity, respectively over the source schemaS and the global schema

G. The semantics of a mapping is specified by a legal global database satisfying the mapping

with respect to a source database. In particular, there are two basic approaches for specifying the
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mapping: local-as-view (LAV) [LSK96] and global-as-view (GAV) [Ull00].

The mapping in the LAV approach associates to each elements of the source schemaS a query

QG overG. Hence, a LAV mapping consists of a set of assertions of the form:s ↪→ QG . In the GAV

approach, the mapping associates to each elementg in G a queryQS overS. Therefore, a GAV

mapping consists of a set of assertions of the form:g ↪→ QS . From the modeling point of view, the

LAV approach is based on the idea that the content of each source should be characterized in terms

of a view over the global schema, while in the GAV approach the idea is that thecontent of each

element of the global schema should be characterized in terms of a view overthe sources. In prin-

ciple, the LAV approach favors extensibility, while the GAV favors query processing. Examples of

LAV system are Information Manifold [LSK96] and the XML data integration system in [MFK01].

Examples of GAV system are TSIMMIS [GMPQ+97] and Garlic [GHS+95].

To specify the semantics of the operator “↪→” in the mapping formulaQS ↪→ QG , three possibil-

ities have been considered in the literature,sound, complete, andexact. A soundmappingQS ⊆ QG

means that the answers provided by the queryQS is contained in the answers provide by the query

QG . A completemappingQS ⊇ QG means that the answers provided by the queryQS contains the

answers provide by the queryQG . Finally, anexactmapping means that these two set of answers

are equivalent, i.e., both sound and complete.

In general, a mapping formulaQS ↪→ QG relates an expression/queryQS to an expression/query

QG . This is the so-called global-local-as-view (GLAV) approach [FLM99].More precisely, in

a GLAV mapping as introduced in [FLM99],QS is a conjunctive query over the source schema

andQG is a conjunctive query over the global schema. Such a formalism is used in practical data

exchange systems [FKMP03, FKP03, AL05, Kol05], where the mapping iscalled asource-to-target

tuple generating dependency (s-t tgd). In particular, a data exchange setting consists of a source

schemaS, a target schemaT , a set of target dependencies, and a set of s-t tgds. Each s-t tgd is of

the form [FKMP03]

∀x(φS(x) → ∃yψT (x, y)), (2.1)
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whereφS(x) is a conjunction of atomic formulas overS andψT (x, y) is a conjunction of atomic

formulas overT .

Given two database schemas – either a global schema and a source schemain the data integration

setting, or a source schema and a target schema in the data exchange setting, finding the mapping

between the two schemas is a difficult problem. Nevertheless, people have striven to develop tools

for helping users in deriving schema mappings. Example tools are TranSem[MZ98], Clio [MHH00,

PVM+02], HePToX [BCH+05], MQG [KB99], and the XML data integration system presented in

[KX05]. As we said before, such a tool usually adopts a two-step paradigm: First, specify some

simple correspondences between schema elements; there are several tools that support this task, and

we will survey them in the next section. Then derive plausible declarativemapping expressions

for users to select from. The selection process may be assisted using the actual data stored in the

database [YMHF01]. The primary principle of the current solutions to deriving mappings is using

integrity constraints (especially referential integrity constraints) in a schemato assemble “logically

connected elements”. These logical associations, together with the element correspondences, then

give rise to mappings between schemas. We refer to the current solutions as Referential-Integrity-

Constraint-based(abbreviatedRIC-based) techniques.

The following example illustrates how the typical RIC-based technique appeared in Clio [PVM+02]

derives schema mappings.

Example 2.1.1.Figure 2.2 shows a pair of relational schemas which are reproduced from the Figure

1.3.

A dashed arrow represents a referential integrity constraint (RIC), i.e., a foreign key referencing

a key. As shown in the figure, there are two RICs, written textually asr1: faxMachine.serialNo

⊆ machine.serialNo andr2: printer.serialNo ⊆ machine.serialNo. To generate a declarative

mapping expression, the RIC-based Clio technique [PVM+02] employs an extension of the rela-

tional chase algorithm to first assemble logically connected elements into so-called logical rela-

tions/associations. The result of chasing the tablefaxMachine(serialNo, faxNo) using the RICr1

can be represented by the following algebraic expression:
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Figure 2.2: Deriving Schema Mapping by a RIC-based Technique

T1: faxMachine(serialNo, faxNo)./machine(serialNo).

Since no further chase steps can be applied toT1 (i.e.,T1 cannot be expanded further),T1 is a logical

relation. Likewise, the result of chasing the tableprinter(serialNo, printerName) using the RIC

r2 is the logical relation:

T2: printer(serialNo, printerName)./machine(serialNo).

In the source, the logical relation isS1: officeEquipment(equipID, faxNo, printerName).

A mapping is a pair of a source and a target logical relations such that the pair covers some

correspondences specified by the user. The pair〈S1, T1〉 coversv1 and the pair〈S1, T2〉 coversv2.

Therefore, the RIC-based technique generates the following two mappingcandidates in the form of

s-t tgd:

M1: ∀equipID, faxNo, printerName.(officeEquipment(equipID, faxNo, printerName)

→ ∃serialNo. faxMachine(serialNo, faxNo)∧machine(serialNo)).

M2: ∀equipID, faxNo, printerName.(officeEquipment(equipID, faxNo, printerName)

→ ∃serialNo. printer(serialNo, printerName)∧machine(serialNo)).

�
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In principle, an RIC-based technique first looks for logical relations in each schema, and then

pairs up logical relations in different schemas to cover the given correspondences. In contrast, our

solution focuses on discovering a pair of “semantically similar” associations with the assistance of

the semantics of schemas expressed in terms of CMs. As a result, our solutionwould greatly reduce

the number of mapping candidates by eliminating many suspicious pairings.

Schema IntegrationA relevant problem to schema mapping isschema integrationwhich is the

problem of building a database schema by unifying a set of individual schemas, for example, cre-

ating a global schema from a set of local schemas for a data integration system. A commonality

existing in both schema mapping and schema integration is resolving heterogeneity due to different

schemas. The works in [KLK91], [KCGS93], and [SK92] have shed light on classifying a variety

of conflicts causing heterogeneity. Batini [BLN86] presented a comprehensive survey on schema

integration in the late 1980s. Methods surveyed in [BLN86] are a mixture of techniques involving

exploring and resolving conflicts from naming to structures. In contrast, Spaccapietra [SP94] used

theReal World Stateas the semantics of the elements and pieces of structures of schemas for inte-

gration. To measure the “relativism” of data structures, i.e., the ability to structure data in different

ways, Hull [Hul84] introduced the notion ofinformation capacity, and Miller [MIR93] studied the

problem of information capacity preservation in schema integration.

Mapping Adaptation, Composition, and Inversion As mapping becomes a fundamental com-

ponent in modern information management systems, other problems concerning managing and

manipulating mappings are also attracting increasing attention. Specifically, mapping adaptation

[VMP03, YP05] is the problem of maintaining the validity of mappings under schema evolution

by reusing the original mappings. Mapping composition [MH03, FKPT04, NBM05] is concerned

with generating a direct mapping between two data sources by composing the mappings that relate

both data sources to an intermediary data source. Related to mapping composition, inverting map-

pings [Fag06] is aimed at constructing an inverse of a mapping. Finally, mappings are represented

in the form of second-order s-t tgds [FKPT04] for mapping composition,and mappings are nested

[FHH+06] for grouping target instances during the actual data translation process.
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2.1.1 Ontology-Based Information Integration

As ontologies have gained growing attention over the past decade, many people have used an ontol-

ogy as the global schema for a data integration system, building so-calledontology-based informa-

tion integration systems, e.g., Carnot [CHS91], SIMS [AKS96], OBSERVER [MIKS96], Informa-

tion Manifold [LSK96], InfoSleuth [BBB+97], PICSEL [GLR99], and DWQ [CGL+01a]. In these

systems, mappings are specified from data sources to an ontology acting asa global schema. As

in the traditional data integration systems, two types of formalisms for specifyingthe mappings are

commonly used: local-as-view (LAV) and global-as-view (GAV). The LAVformalism relates each

element in sources to a query over the ontology, while the GAV formalism associates each element

of the ontology to a query over the sources. Since an ontology is regarded as a standard concep-

tualization of a domain and tends to be stable, the LAV formalism prevails. Similar to the LAV

formalism in the traditional data integration systems, a typical mapping formula associates an ele-

ment in sources to a conjunctive formula over concepts and relationships inan ontology as shown in

the Formula 1.1. A major difference, however, exists. An ontology is usuallyan object-oriented de-

scription, while a data source often is relational, therefore value-oriented. A reconciliation between

objects and tuples of values sometimes is needed in mapping specification. The DWQ [CGL+01a]

data integration system originally used the notion ofadornmentto express the correspondence be-

tween a tuple of values and the object it represents.

The DWQ system is aimed at integrating data from different sources into a materialized data

warehouse through an ontology. Mappings from data sources and the warehouse to the ontology

enable the automatic creation of the mediator for loading data into the warehouse. The ontology

is described in an enriched Entity-Relationship model. Both sources and the warehouse are linked

to the ontology by adorned mapping formulas. In particular, an adorned mapping formula is an

expression of the form

T (~x) → q(~x, ~y) | α1, ..., αn (2.2)

where the headT (~x) defines a table in a relational source in terms of a nameT , and its arity, i.e.,

the number of columns, the bodyq(~x, ~y) describes the content of the table in terms of an ontology,
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andα1, ..., αn constitutes the adornment in which eachαi is an annotation on variables appearing

in ~x. The bodyq(~x, ~y) is a union of conjunctions of atoms. Each atom is a concept, a relationship,

or an attribute appearing in the ontology. In the adornment, there are two types of annotations. For

eachX ∈ ~x, an annotationX::V specifies the domain of a column of the tableT . For each tuple of

variables~z ⊆ ~x that is used for identifying inT an objectY ∈ ~y mentioned inq(~x, ~y), an annotation

is of the formIdentify([~z], Y ).

Example 2.1.2.Suppose a university ontology contains two concept,Student andProfessor, and

a relationshiphasAdvisor between the two concepts. BothStudent andProfessor as subclasses

of Person inherit three attributes:ssn for social security number,dob for date of birth, andname.

Suppose a data sourceS1 contains the information about the students and their supervisors, in terms

of a relational tablesupervisor(sname, sdob, pname, pdob), wheresname is for student’s name,

sdob for student’s birth date,pname for supervisor’s name, andpdob for supervisor’s birth date.

A data sourceS2 contains the information about the professors and their supervised students, in

terms of a relational tablesupervision(sSsn, pSsn), wheresSsn andpSsn are for student’s and

professor’s social security numbers, respectively. We assume that inthe sourceS1 persons (both

students and professors) are identified by their name and date of birth, while in S2 persons are iden-

tified by their social security number. Using adorned formulas, we can specify the mappings from

the sources to the ontology as follows:
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supervisor(sname, sdob, pname, pdob) → Student(X1), Professor(X2),

hasAdvisor(X1,X2),

name(X1, sname), dob(X1, sdob),

name(X2, pname), dob(X2, pdob)

| sname, pname :: NameString,

sdob, pdob :: Date,

Identify([sname, sdob], X1),

Identify([pname, pdob], X2).

supervision(sSsn, pSsn) → Student(X1), Professor(X2),

hasAdvisor(X1,X2),

ssn(X1, sSsn), ssn(X2, pSsn),

| sSsn, pSsn :: SSNString,

Identify([sSsn], X1),

Identify([pSsn], X2).

�

Aside from the mappings linking data sources and the warehouse to the ontology, there are

other reconciliation correspondences for resolving heterogeneity in creating the mediator in the

DWQ system. Three types of correspondences are used, namely,Conversion, Matching, and

Merging correspondences. As the number of the data sources increases and ontologies become

more complex, it is desirable to have automatic tools for generating the mapping formulas and the

reconciliation correspondences. Such a tool not only is useful for theDWQ integration system, but

also is applicable to a wide variety of scenarios involving mapping databases toCMs. One of the

major contributions of this dissertation is the development of such an automatic tool for discovering

the semantic mapping, similar to the mappings in Example 2.1.2, from a database schema to a CM,

e.g., an ontology.

It is natural to ask whether we can apply the RIC-based techniques to derive the semantic map-

pings from database schemas to CMs, when a CM is viewed as a relational database consisting
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of tables for concepts, attributes, and relationships. Our investigations show that the RIC-based

techniques do not produce the desired results in many cases. This is partlydue to the fact that the

semantic mapping asks for “semantically similar” associations in terms of modeling a subject mat-

ter. Another reason is that the RIC-based techniques sometimes miss desiredassociations in a single

schema. Concrete examples will be shown in following chapters. The bulk ofour work in this dis-

sertation focuses on the problem of discovering such a pair of “semantically similar” associations

for different mapping tasks, based partly on the principles of conceptual modeling.

In addition to tools for schema mapping, a considerable body of work exists for discovering map-

pings between ontologies [KS03a, PS05]. Current ontology mapping tools, however, only focus on

deriving simple correspondences between concepts or between properties, despite ontologies having

more complex structures and capturing more real-world knowledge than database schemas. Exam-

ple tools are PROMPT [NM03], FCA-merge [SM01], IF-Map [KS03b], and GLUE [DMDH02].

Because of the simple form of their mapping results, we classify the tools as finding correspon-

dences and discuss some of them in the next section. Ontology mappings areused in ontology

translation [DMQ03], ontology merging [NM03], and ontology integration [CGL01b].

2.2 Finding Correspondences: Schema and Ontology Matching

To improve the chances of getting more accurate and reliable mappings, many mapping discovery

tools as well as the mapping discovery algorithms developed in this dissertation take a set of element

correspondences as an extra input in addition to the schemas being mapped. The set of element

correspondences can be specified manually by users. More desirable, if correspondences could be

generated automatically by some tools. In this section, we take a glimpse of the body of work

related to finding correspondences, which is referred to asschema matchingor ontology matching.

What we are concerned about is the underlying meaning of a correspondence generated by a schema

matching tool: What does thealgorithm tell us about an element in one schema corresponding to

an element in another schema.

Although schema matchingis also referred to as the problem of identifying semantic relation-
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ships between schemas [RB01, PS05] by some researchers, the major difference from theschema

mappingwe termed in the previous section is that the results of schema matching often area set of

correspondences each of which links a single element in one schema to a single element in another

schema. Sometimes, however, a correspondence may involve a function relating a single element to

several elements [DLD+04], for example,salary = hourly wage × working hours, or vice versa.

In particular, a matcher takes two schemas as input and produces a matchingbetween elements of

the two schemas that correspond “semantically” to each other. Matchers are classified into schema-

and instance-level, element- and structure-level, language- and constraint-level, and individual and

combination methods. It is worth noting that almost all methods proposed so farin the literature

[DNH04, NDH05] are semi-automatic and need the intervention of the user. Just given two database

schemas without other explicit connections between them, few claim that they can fully automati-

cally discover correct matchings without user’s examination on final results.

Specifically, Cupid [MBR01] discovers correspondences between schema elements based on

their names, data types, constraints, and schema structures. Using directed graph as the unifying

internal representation of a spectrum of schemas, Cupid strives to identify the similarity between

elements. This is accomplished in two steps: Linguistic-based matching follows structure-based

matching. The assumption in Cupid about “semantic correspondence” is thatthe names of the

elements convey linguistic similarity and the structures of the representation helpto propagate sim-

ilarity along graph edges. Matching is computed, essentially, by using heuristics. The technique

of Similarity Flooding [MGMR02] converts schemas into directed labeled graphs as well and uses

fixpoint computation to determine the matches between corresponding nodes of the graphs. For

ontologies with rich semantics, Anchor-PROMPT [NM01b] takes as input a set of anchors – pairs

of related terms in two ontologies, producing pairs of other related terms. Anchor-PROMPT also

assumes the structure conveys similarity. The COMA [DR02] does not invent any new matching

algorithm. Instead it develops a framework to combine multiple matchers in a flexibleway. Multi-

ple matching techniques can be plugged in COMA system to produce composite matching results

for input schemas. Hence the “semantic” interpretation of schema elements depends on underlying

matchers. LSD and GLUE [DDH01, DMDH02] are systems that employ machinelearning tech-
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niques to find similar elements. They use multiple learners exploiting various typesof knowledge

about data types, names, instances, structures, and previous matchings. Realizing that evidence

carried by schemas themselves are not sufficient to derive more accurate matching results, Xu et

al. in [XE03b, XE03a] utilize domain ontologies in matching discovery and Madhavan et al. in

[MBDH05] explore a corpus of schemas for evaluating the similarity of a pairof elements.

For light-weight schemas like web service descriptions and web query interfaces, statistical tech-

niques play a critical role in discovering matchings between web services [DHM+04] and matchings

between web interfaces [HC06].

Most of the schema matching tools do not formally define the problem they are dealing with.

They do not state clearly what it means for two elements to be most similar. An exception is

the study presented in [Doa02], where the author makes the assumptions underlying the matching

algorithms explicit. In short, the common underlying assumptions behind many schema matching

tools can be summarized as follows. Given two modelsS andT , that for an elemente1 ∈ S, there

is an elemente2 ∈ T corresponding toe1 means that the real world object represented bye2 has

the highest similarity to the real world object represented bye1, compared to all other real world

objects represented by all other elements inT . The matching results of such a schema matching

tool is in fact an approximation of the true objects in the real world describedby the elements of

domain models and an estimation of the true similarity between objects in real world domains.

2.3 Model Management

Model management [BHP00, BR00, Ber03] is a framework for providinga generic management

facility for formal descriptions of complex application artifacts such as relational database schemas,

XML schemas/DTDs, conceptual models, web interface definitions, web service descriptions, and

workflow diagrams. These formal descriptions are referred to asmodels. A novel feature in model

management is that both models and mappings between models are treated as abstractions that can

be manipulated by model-at-a-time and mapping-at-a-time operators. Here lies theclaim that an

implementation of these abstractions and operators could offer an order-of-magnitude improvement
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in productivity for metadata management. Formally, amodelis defined to be a set of objects, each

of which has properties, has-a relationships, and associations. Amodelis assumed to be identified

by its root object and includes exactly the set of objects reachable from the root by paths of has-a

relationships. Given two modelsM1 andM2, amorphismoverM1 andM2 is a binary relation over

the objects of the two models. That is, it is a set of pairs〈o1, o2〉 whereo1 ando2 are inM1 and

M2, respectively. Amappingbetween modelsM1 andM2 is a model,map12, and two morphisms,

one betweenmap12 andM1 and another betweenmap12 andM2.

The literature suggests six major model management operators,match creating a mapping be-

tween two models,compose combining two successive mappings into one,merge merging two

models into a third model using a mapping between the two models,extract returning a portion of a

model that participates in a mapping,diff returning a portion of a model that does not participating in

a mapping, andconfluence merging two mappings. The first prototype implementing some of the

operators, called Rondo, is presented in [MRB03]. The implementation, however, treats mappings

as syntactic links without rigorous semantics. Therefore, for thematch operator in Rondo, existing

schema matching tools provide a solution. Since merging models such as schema integration lies at

the heart of many metadata applications, the genericmerge operator is studied in [PB03]. The main

contributions are the precise definition of the semantics of themerge operator, the classification of

the conflicts that arise in merging models, and the resolution strategies for conflicts that must be

resolved inmerge. Furthermore, themerge operator along with other four operators,extract, diff,

compose, andconfluence, are studied in [MBHR05] when mappings are specified as executable

statements in some formal languages.

It should be noted that thematch operator in model management can produce both syntactic

links and executable statements depending on the particular application. Our work in this disser-

tation amounts to thematch operator for generating executable mappings. As we have reviewed

in Section 2.1, most previous solutions focus on producing executable mappings between database

schemas by solely exploring evidence in schemas. We now study amatch operator implementation

taking as the input database schemas and CMs, and we further propose asemantic approach for

implementing thematch operator for database schemas.
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2.4 Database Reverse Engineering (DBRE)

Database reverse engineering (DBRE) [Hai98] is another relevant area of research. Even though

there are similarities between this area and the problem we are tackling, there are also important

differences. First, DBRE is aimed at extracting a CM from a logical database schema, while our

work attempts to recover the semantics of a schema using a given CM, though not necessarily

exactly the semantic data model from which the logical schema may have been built. Second,

different from graph construction algorithms in DBRE, the semantics recovery algorithm in our

work heavily employs the graph-theoretic algorithms for discovering “reasonable” connections in

a conceptual model graph. Third, the results of our algorithm are logicalformulas representing

semantics of a database schema, while DBRE produces just a pictorial representation of a conceptual

model, without showing how it links to the database schema.

Since many databases and their operational environments evolve constantly, maintaining these

databases has long been recognized as a painful and complex activity. An important aspect of

database maintenance is the recovery of a CM that represents the meaning of the logical schema.

Database reverse engineering (DBRE) is defined as the process of recovering such a CM by exam-

ining an existing database system to identify the database’s contents and theirinterrelationships.

Approaches to translating a relational database schema into a conceptual schema have appeared

since the beginning of the 1980s [Cas83, DA83, NA87, MM90]. Gradually, four main sources have

been explored for finding evidence to construct a conceptual schema from a logical database: the

structures and integrity constraints of the database schema, the application programs that access the

database, the data instances stored in the database, and the users and designers. Specifically, the

algorithm in [FG92] uses only schema structures and constraints focusingon the subtype/supertype

relationships which are created at an early stage in the algorithm. Andersson’s work in [And94]

reengineers legacy systems, where the only information provided by the DBMS is table names, field

names, indices, and possibly view definitions. Information about functional dependencies, keys, and

inclusion dependencies are deduced by looking into data manipulation statements that can be ex-

tracted from the application code. The approach in [CBS94] analyzes not only the database schema,



34

but also data instances which contain detailed information about the applicationdomain. Addi-

tionally, specific kinds of SQL queries are analyzed in [PKBT94] for helping to build an Extended

Entity-Relationship schema includingISA relationships and aggregates; the techniques of program

understanding which emerged in the Software Engineering field are employed in [HEH+98] to im-

prove understanding the domain semantics of database schemas.

Similar to our problem of discovering semantics of database schemas in terms ofgiven CMs,

DBRE is also difficult to automate and needs human intervention. Since the sources used for deriv-

ing evidence to construct a new conceptual model do not contain sufficient semantic information, the

conceptual models created by many DBRE methods are often closely tied to the existing database

schemas and hence may become, in worst case, just graphical representations of the actual logical

and physical implementations of the databases. To deal with complex DBRE problems more ef-

fectively, researchers have adopted a traditional Computer Science technique: divide and conquer.

In [SdJPA02], the complex problem of dealing with a large database systemis divided into smaller

problems: Relations are directly grouped into elements of a high-level abstract schema, and inter-

mediate conceptual models are constructed for each group. Finally, the intermediate conceptual

models are consolidated into a single conceptual model with missing elements. Moreover, for some

specific types of constructs in logical schemas as well as in conceptual models, specialized reverse

engineering methods are developed. For example, star schemas are reengineered in [KS97], while

n-ary relationships and aggregate relationships are extracted in [Sou96] and [Sou98], respectively.

Most of the DBRE methods we have reviewed are informal. In particular, they rely on various

heuristics to generate elements in a conceptual model from available sources and do not formally

specify the quality of the results. Two possible criteria are “correctness”and “faithfulness”. Cor-

rectness concerns whether an element in the conceptual model extractedfrom a construct of a logi-

cal schema or database represents the intended meaning of the construct.Faithfulness measures the

degree to which all information in the logical schema and database have beenrepresented in the con-

ceptual model and nothing else. The work of [Joh94] proposes a methodfor translating relational

schemas into conceptual schemas. The method decides the correct objecttypes in the conceptual

schemas by interacting with users. Furthermore, it argues that the method proposed is faithful by
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showing that the conceptual schemas produced are able to represent the same information as the

original logical schemas. One of the contributions of this dissertation is that we provide formal re-

sults for a subclass of problems, although the algorithm is necessarily heuristic. The formal results

show that the algorithm is “correct” for the database schemas that were derived from conceptual

models by the standard database design methodology.

2.5 Query Processing Over Mappings

Our work is also related to the study of query processing over mappings. Not only is the ultimate

goal of mapping discovery answering queries against the information systems containing mappings,

but also rewriting queries over mappings is an important step in discovering schema mappings using

semantics of schemas. In this section we review some of the achievements that have been made in

query processing over mappings.

As defined in Section 2.1, a data integration system involves a global schemaG, a source schema

S, and the mappingM betweenG andS. The goal of a data integration system is to provide a

unified view of the data stored in the sources so that queries about the sources can be posed against

the global schema and the queries will be answered by the system which shields users from knowing

the location and detailed description of each source. Query processing ina data integration system

involves different manners in terms of LAV or GAV modeling approaches. In LAV, the problem

of processing a query is traditionally calledview-based query processingwhich is classified into

view-based query rewritingandview-based query answering.

Query rewriting is aimed at reformulating the original query in terms of a queryto the sources in

a query languageLQ, in a way that is independent of the current source databases. Sometimes, no

equivalent rewriting exists in the fixed target query languageLQ. In this case, people are interested

in computing a so-calledmaximally containment rewriting. A rewritten queryQ′ w.r.t. a query

languageLQ is maximally contained in the original query means that there are no other rewritten

queries w.r.t.LQ that containQ′. A comprehensive survey [Hal01] discusses the large body of

work on algorithms for query rewritings. For conjunctive view definitions and conjunctive queries,
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important query rewriting algorithms are the Bucket algorithm [LRO96], the Minicon algorithm

[PH01], and the Inverse rule algorithm [Qia96, DGL00]. For Datalog queries, the rewriting is

also approached by the Inverse rule algorithm [DGL00]. For conjunctive queries with arithmetic

comparisons, an algorithm is developed in [ALM02]. In ontology-based information integration

systems, queries are posed against the ontology which acts as the global schema. Query rewriting

incorporates the reasoning about the ontology [GR04]. Finally, when themapping between XML

data are specified as source-to-target tuple generating dependencies, a variant of the inverse rule

algorithm is developed in [YP04] for rewriting queries posed to the target into queries over the

source.

When developing algorithms that produce rewritten queries, one can ask two questions [Hal00]:

(i) whether the algorithms is sound and complete: given a queryQ and a set of viewsV, is there

an algorithm that will find a rewriting ofQ usingV when one exists; (ii) what is the complexity

of that problem. For the class of queries and views expressed as conjunctive queries, the study in

[LMSS95] shows that when the query does not contain comparison predicates and hasn subgoals,

then there exists an equivalent conjunctive rewriting ofQ usingV only if there is a rewriting with at

most n subgoals. An immediate corollary is that the problem of finding an equivalent rewriting of a

query using a set of views is in NP, because it suffices to guess a rewriting and check its correctness.

Furthermore, the work in [Hal00] also points out that the problem of finding acontained rewriting

is NP-complete.

As we can see, the maximally-contained query rewriting needs to check for query containment.

Here, we refer to the literature on query containment. NP-completeness forconjunctive queries is

established in [CM77].Πp
2- completeness of containment of conjunctive queries with inequalities is

proved in [Klu88, vdM92]. The case of queries with the union and difference operators is studied

in [SY80]. Results of the decidability and undecidability of various classes of Datalog queries with

inequalities are presented in [CV92, vdM92]. The problem of answeringqueries using views is

closely related to the problem to query rewriting. The complexities of answering queries using

views under various view definition languages and query languages aregiven in [AD98].

Query processing through the GAV mappings can be a simple unfolding strategy if there are
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no integrity constraints in the global schema and the views are exact. However, when the global

schema allows integrity constraints, and the views are sound, then query processing in GAV systems

becomes more complex. The simple unfolding algorithm does not retrieve all certain answers in

the presence of integrity constraints of the global schema [CCGL02]. Nevertheless, for foreign

key constraints, all certain answers can be computed [CCGL02] by expanding queries with the

constraints and using the partial evaluation of logic programming, in the case that the language for

expressing both the user query and the queries in the mapping is the one of union of conjunctive

queries.

We will study a semantic approach to discovering schema mapping expressions assuming seman-

tics of schemas are available. The semantics of each schema is specified in terms of a set of semantic

mapping formulas each of which relates a predicate/expression representing a basic organizational

unit in the schema to a conjunctive formula over a CM. The approach first discovers a graphical

connection in the CM graph and then translates the discovered connection into an expression over

the schema. Consider the discovered connection as a query over the CM graph. The translation

problem becomes a query rewriting problem, where special provisions are needed to reconcile the

object identifiers in CM world with tuples in databases.

2.6 Conceptual Modeling and Data Semantics

We finally discuss conceptual modeling and data semantics. Conceptual modeling is concerned

with the construction of computer-based symbol structures which model somepart of the real world

directly and naturally [Myl98]. Conceptual modeling originated from several areas in Computer

Science [BMS84]. In Artificial Intelligence, conceptual modeling is concerned with knowledge

representationwhich is the problem of capturing human knowledge so that it can be used bya

software system. In Database, conceptual modeling producessemantic data modelswhich are used

to directly and naturally model an application before proceeding to a logical and physical database

design. In Programming Languages, conceptual modeling is concerned with different forms of

abstractionwhich allow implementation-independent specifications of data, functions, and controls.
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For data management, semantic data models offer more semantic terms and abstraction mecha-

nisms for modeling an application than logical data models. A logical data model usually provides

abstract mathematical symbol structures for hiding the implementation details whichare the con-

cerns of a physical data model. The Entity-Relationship model [Che75] assumes that an application

consists ofentitiesand relationships. Entities and relationships haveattributes. This ontological

assumption is intended to make the Entity-Relationship model more expressive, i.e., capable of cap-

turing more world semantics than the relational model [Cod70]. Specifically, aset of entities having

the same characteristics (the same set of attribute names) are modeled as anentity setin an ER

model. Arelationship setmodels a set of similar relationships. Akeyis a minimal set of attributes

whose values uniquely identify an entity in an entity set. Sometimes, a key may consist of some

attributes of other entities. To specify the occurrence of an entity in a certaintype of relationship,

one can use thecardinality constraints. In order to capture more semantics, the Extended Entity-

Relationship (EER) model [MS92] introduces generalization/specialization relationships between

entity sets and allows relationships to participate in other relationships.

Figure 2.3 is a typical EER diagram which models a university domain. It has four entity sets:

Student, GradStudent, Professor, andCourse and two relationship sets:supervisedBy and

teaches. GradStudent is a subclass ofStudent. In terms of the participations of entities in

the relationships, a student participates in thesupervisedBy relationship at most once, meaning a

student can have at most one supervisor; there is not limitation for a professor to participate in the

same relationship set. On the other hand, a professor must teach at least one course (the minimum

cardinality for participating in theteaches relationship is 1), while a course can be taught by one

professor.

In 1966, Ross Quillian [Qui68] proposed in his PhD thesissemantic networks, a form of directed,

labeled graphs, as a convenient device for modeling the structure of human memory. Nodes of his

semantic network represented concepts (more precisely, word sense).Nodes were related through

links representing semantic relationships, such asISA, has, and other relationships. The semantic

networks were proposed for serving as a general inferential representation for knowledge. The

inference techniques was based on the notion of a spreading activation intersection search – given
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Figure 2.3: An Extended Entity-Relationship Diagram

two words, possible relations between them might be inferred by an unguided, breadth-first search

of the area surrounding the words.

Inferring potential relationships between words by using graphical connections was one of the

important features of semantic networks. Our work on discovering semantics of database schemas

in terms of given CMs was initially inspired by Quillian’s work in semantic networks. In particular,

we have a set of concepts (singled out by the simple correspondences linking elements in a database

schema to attributes of concepts) in a CM. What we want is some “reasonable” connection among

these concepts such that the connection possibly matches the semantics of theschema. A significant

difference is that we attempt to find a connection in a CM tomatchan association (among a set of

elements) in a logical model. This requires not only discovering all potential connections but also

finding those that are “correct”.

The Unified Modeling Language (UML) was proposed by a consortium in the late 1990s and

soon became a standard modeling tool for Object-Oriented software design. The UML class di-

agram models static aspects of an application. For example, a database designer can use a class

diagram modeling the data. A UML class diagram offers the following abstraction mechanisms:

class, association, generalization, and composition. Specifically, a composition specifies apartOf

association. A ”whole” class is made up of component classes. A strong form of aggregation is

composite, where a component in a composite can be part of only one whole.Aggregations and

composites are represented as lines joining the whole and the component with open and filled di-
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amond, respectively, on the whole side. Figure 2.4 shows a UML class diagram for modeling a

university domain. Notice that thememberOf association is also a composition association; car-

dinality constraints are specified at the opposite directions compared to the EER diagram in Figure

2.3.

-snum

Student

-pid

Professor

GradStudent

-cnum

Course

StudentUnion memberOf supervisedBy

teaches

1..1 1..* 0..* 0..1

1..1

1..*

Figure 2.4: A UML Class Diagram

Since most semantic networks lack formal semantics as pointed by Woods [Woo75], there have

been attempts to integrate ingredients from formal logic to semantic models. An earlyexample of

this trend was terminological language such as KL-One [BS85]. Later, thefamily of Description

Logics (DL) grew out of this. Generally speaking, Description Logics are formalisms that represent

the knowledge of an application domain (the “world”) by first defining the relevant concepts of the

domain (its terminology), and then using these concepts to specify propertiesof objects and individ-

uals occurring in the domain (the world description). Elementary descriptionsare atomic concepts

and atomic roles/binary relationships. Complex descriptions can be built fromthem inductively

using concept constructors. Different Description Languages are distinguished by the constructors

they provide. Concept descriptions inAL[U ][E ][N ][C][I] are formed according to the syntax rules

which may allow union (U), full existential quantification (E), number restriction (N ), negation of

arbitrary concept (C), and inverse role (I). The semantics of Description Logics are specified by the

model theory, and algorithms are sought for deciding judgments such as concept subsumption and

consistency [B+02].

DLs are also the underlying formalism of the Semantic Web. The idea behind applying DLs to
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the semantic web is related to the need of representing and reasoning on ontologies. The OWL web

ontology language [MvH04] is intended to define and instantiate web ontologies.

The fundamental concern for all semantic/conceptual models is the abstraction mechanisms. By

definition, abstraction involves suppression of (irrelevant) details. Abstraction mechanisms organize

the data stored in a database, providing semantics and guiding the use of the data. In the follow-

ing, we summarize some common abstraction mechanisms used in the semantic models surveyed

above. A important ingredient of our mapping discovery algorithms is to find “similar” abstraction

mechanisms in different models.

Classification, sometimes calledinstanceOf, classifies instances under one or more generic classes.

Instances of a class share common properties. For example, all instancesclassified under

Person have an address and an age. Some information models allow classification to be

recursive, i.e., classes may themselves be instances of other classes. Telos [MBJK90] and

RDF [KC03] are two such examples.

Generalization, referred to asISA, organizes all classes in terms of a partial order relation deter-

mined by their generality/specificity. Inheritance is a functional inference rule of generaliza-

tion mechanism.

Aggregation, also calledpartOf, views objects as aggregates of their components or parts. A strong

form of aggregation states that a component can be a part of only one aggregate.

As we discussed at the beginning of this dissertation, CMs were mainly used during database

design-time and subsequently converted into logical schemas in the data modelmanipulated by the

underlying DBMS. Since the main focus of a DBMS is performance, a logicalschema uses concise

mathematical structures to represent various abstraction mechanisms in CMs.This had worked fine

for a closed and relatively stable operational environment. In this dissertation, we are interested in

the problem ofrecoveringmappings from logical schemas to CMs and using these mappings for

facilitating data integration and exchange in an open, dynamic, and distributedenvironment. In the

next chapter, we begin with the detailed description of the problem.



Chapter 3

Problem Description

We define the problem of mapping discovery in this chapter. We first describe database schemas

and CMs. Two types of schemas are introduced, relational and XML. Bothare commonly used

for describing data in databases. Next, we identify and describe three specific mapping discovery

problems, namely, mapping from relational schemas to CMs, mapping from XMLschemas to CMs,

and mapping between relational database schemas. These specific problems will be considered in

depth in the chapters that follow.

3.1 Schemas and CMs

A database schema is a description of data in terms of a data model which contains a set of abstract

and high-level constructs for describing an application. Primary examplesof data models include

the relational model, the XML data model, and the object-oriented model. For the purpose of this

dissertation, we will focus on relational schemas, XML schemas, and CMs interms of the generic

CML.

42
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3.1.1 Relational Model and Relational Schema

The basic data description construct of the relational model is relation, which can be thought of as

a set of rows. The schema for a relation or atablespecifies the name of the relation, the name of

each column (or attribute or field), and the type of each column. For example,Figure 3.1 shows a

relation with the following schema:

Employee(empno:Integer, name:String, dept: String, proj: String)

empno name dept proj
288566345 Jones Research & DevelopmentP000234
288566346 Smith Research & DevelopmentP000234
288566348 Smith Marketing P000234
288566359 Alice Finance P000234
288566360 Peter Product P000387

Figure 3.1: A Relational Table

This table contains a set of tuples each of which describes an employee using values under the

specified attributes. Furthermore, we can make the description of the collection of employees more

precise by specifyingintegrity constraints, which are conditions that the tuples in the table must

satisfy. For example, we could require that every employee have a uniqueempno value. A subset

of columns that uniquely identifies a tuple is calledkeyin a table.

A relational schema consists of a set of relational tables. Formally, we use the notationT (K,Y )

to represent a relational tableT with columnsKY , and keyK. For individual columns inY , we

refer to them asY [1], Y [2], . . ., and useXY as concatenation of columns. In the rest of the disserta-

tion, our notational convention for relational schemas is that single column names are either indexed

or appear in lower-case. Given a table such asT above, we use the notationkey(T), nonkey(T) and

columns(T) to refer toK, Y andKY respectively. Other important constraint in the relational

model which plays a critical role in our mapping discovery process is the foreign key constraint.

Specifically, a A foreign key (abbreviated asf.k. henceforth) inT is a set of columns F thatrefer-

encesthe key of tableT ′, and imposes a constraint that the projection ofT onF is a subset of the

projection ofT ′ onkey(T ′).
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3.1.2 XML Data Model and XML Schema

An XML document is typically modeled as a node-labeled graph. For our purpose, we assume that

each XML document is described by an XML schema consisting of a set of element and attribute

type definitions. Specifically, we assume the following countably infinite disjointsets:Ele of el-

ement names,Att of attribute names, andDom of simple type names including the built-in XML

schema datatypes. Attribute names are preceded by a”@” to distinguish them from element names.

Given finite setsE ⊂Ele andA ⊂Att , an XML schemaS = (E,A, τ, ρ, κ) specifies the type of

each element̀ in E, the attributes that̀ has, and the datatype of each attribute inA. Specifically,

an element typeτ is defined by the grammarτ ::= ε|Sequence[`1 : τ1, ...`n : τn]|Choice[`1 :

τ1, .., `n : τn] for `1, .., `n ∈ E, whereε is for the empty type, andSequence andChoice are

complex types. Each element associates an occurrence constraint with twovalues:minOccursin-

dicating the minimum occurrence andmaxOccursindicating the maximum occurrence. (We mark

with * multiply occurring elements.) The set of attributes of an element` ∈ E is defined by the

function ρ : E → 2A; and the functionκ : A →Dom specifies the datatypes of attributes inA.

Each datatype name associates with a set of values in a domainDom. In this dissertation, we do

not consider thesimple type elements(corresponding to DTD’sPCDATA ), assuming instead that

they have been represented using attributes. All attributes aresingle-valued.Furthermore, a special

elementr ∈ E is the root of each XML schema, and we assume that for any two element`i, `j ∈ E,

ρ(`i) ∩ ρ(`j) = ∅.

For example, an XML schema describing articles and authors has the following specification:

E ={article, author, contactauthor, name},

A ={@title, @id, @authorid, @fn, @ln},

τ(article) = Sequence[(author)∗ :τ(author), contactauthor:ε],

τ(author) = Sequence[name:ε],

ρ(article) = (@title), ρ(author) = (@id), ρ(contactauthor) = (@authorid),

ρ(name) = (@fn,@ln), κ(@title) = String,κ(@authorid) = Integer,κ(@id)= Integer,κ(@fn)=

String, κ(@ln)= String, and the elementarticle is the root. Note that for thearticle element,
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contactauthoronly occurs once, whileauthor may occur many times. For theauthor element,

nameoccurs once. This XML schema can be described in the XML Schema Language [FW04] as

shown in Figure 3.2. The XML Schema Language is an expressive language that can also express

key andkeyref constraints.

<xsd:element name=’’article’’ type=’’articleType’’/>
<xsd:complexType name=’’articleType’’>
<xsd:sequence>

<xsd:element name=’’author’’>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=’’name’’ minOccurs=’’1’’

maxOccurs=’’1’’>
<xsd:complexType>
<xsd:attribute name=’’fn’’
type=’’xsd:string’’ use=’’required’’/>

<xsd:attribute name=’’ln’’
type=’’xsd:string’’ use=’’optional’’/>

</xsd:complexType>
</xsd:element>

</sequence>
<xsd:attribute name=’’id’’ type=’’xsd:integer’’
use=’’required’’ />

</xsd:complexType>
</xsd:element>
<xsd:element name=’’contactauthor’’ minOccurs=’’1’’

maxOccurs=’’1’’>
<xsd:complexType>

<xsd:attribute name=’’authorid’’
type=’’xsd:integer’’ use=’’required’’ />

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name=’’title’’ type=’’xsd:string’’
use=’’required’’ />

</xsd:complexType>
</xsd:element>

Figure 3.2: An XML Schema Description

Unlike relational databases where data are stored in relations comprising tuples of values, data in
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XML documents are organized in graph (tree) structures. An XML document X = (N,<, r, λ, η)

over(E,A) consists of a set of nodesN , a child relation< between nodes, a root noder, and two

functions such as:

• a labeling functionλ:N → E ∪ A such that ifλ(v) = ` ∈ E, we say thatv is in the element

type`; if λ(v) = @a ∈ A, we say thatv is an attribute@a;

• a partial functionη:N → Dom for every nodev with λ(v) = @a ∈ A, assigning values in

domainDom that supplies values to simple type names inDom.

An XML documentX = (N,<, r, λ, η) conforms to a schemaS = (E,A, τ, ρ, κ), denoted by

X |= S, if:

1. for every nodev in X with children v1, .., vm such thatλ(vi) ∈ E for i = 1, ...,m, if

λ(v) = `, thenλ(v1),...,λ(vm) satisfiesτ(`) and the occurrence constraints.

2. for ever nodev in X with childrenu1, ..., un such thatλ(ui) = @ai ∈ A for i = 1, ..., n, if

λ(v) = `, thenλ(ui) = @ai ∈ ρ(`), andη(ui) is a value having datatypeκ(@ai).

An XML schema can be viewed as a directed node-labeled graph calledschema graphconsisting

of the following edges: parent-child edgese = ` → `i for elements̀ , `i ∈ E such that ifτ(`)=

Sequence[...`i : τi...] or Choice[...`i : τi...]; and attribute edgese = ` ⇒ α for element̀ ∈ E

and attributeα ∈ A such thatα ∈ ρ(`). For a parent-child edgee = ` → `i, if themaxOccurs

constraint of`i is 1, we show the edge to be functional, drawn as` ⇒ `i. Since attributes are

single-valued, we always draw an attribute edge as` ⇒ α. The schema graph corresponding to the

XML schema in Figure 3.2 is shown in Figure 3.3.

Elements and attributes as nodes in a schema graph are located by path expressions. For our

purposes, we use a simple path expressionQ = ε|`.Q and introduce the notion ofelement tree.

An element treerepresents an XML structure whose semantics we are seeking for. A semantic

mapping from an XML schema to a CM consists of a set of mapping formulas each of which is from

an element tree to a conjunctive formulas in the CM. Anelement treecan be constructed through
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Figure 3.3: An XML Schema Graph

doing a depth first search (DFS), starting from the element node for which we are constructing an

element tree. The DFS process first creates anelement graphand goes as follows. Begin with an

empty element graph and create a new node in the element graph for each unmarked original node

during the traversal of the original schema graph. Mark each node in theschema graph as “visited”

when it is reached at the first time and unmarked when all of its descendent’s have been traversed.

Regular edges are created in the element graph whenever there is a traversal from a DFS parent node

to its unmarked children in the original schema graph. If an already marked node is being traversed,

then a “back” edge (using dashed line) is created in the element graph from the DFS parent to this

marked child. For example, Figure 3.4 (a) shows a schema graph with a cycle. Figure 3.4 (b),

(c), and (d) are the element graphs created by the DFS process startingat the elementscontrols,

employee, andmanager, respectively.

Next, we convert the element graphs into element trees by ignoring or unfolding the back edges

depending on our needs. To unfold a back edge from a node`i to a nodè j , we connect̀ j and

all the contents descending`j until `i to `i and remove the back edge. The occurrence constraint

of the new created edge from̀i to `j is the same as that of the back edge. Figure 3.5 (c) and (d)

are the element trees converted from the element graphs in Figure 3.4 (c) and (d), respectively, by

unfolding the back edges, while Figure 3.5 (b) is the element tree convertedfrom the element graph

in Figure 3.4 (b) by ignoring the back edge. For the sake of simplicity, we specify each element tree

as rooted at the element from which the tree is constructed, ignoring the pathfrom the root to the

element in the original schema graph.
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Figure 3.4: Schema Graph and Element Graphs
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Figure 3.5: Schema Graph and Element Trees

3.1.3 CMs and the CM Graph

In this dissertation, we do not restrict ourselves to any particular language for describing CMs.

Instead, we use a generic conceptual modeling language (CML), which containscommonaspects

of most semantic data models, UML, ontology languages such as OWL, and description logics.

Specifically, the language allows the representation ofclasses/concepts(unary predicates over indi-

viduals),object properties/relationships(binary predicates relating individuals), anddatatype prop-

erties/attributes(binary predicates relating individuals with values such as integers and strings);

attributes are single valued in this dissertation. Concepts are organized in thefamiliar ISA hierar-
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chy, and subclasses of a superclass can be either disjoint or overlapping. Relationships, and their

inverses (which are always present), are subject to constraints suchas specification of domain and

range, plus cardinality constraints, which here allow 1 as lower bounds (called total relationships),

and 1 as upper bounds (calledfunctionalrelationships).

We shall represent a given CM using a labeled directed graph, called anCM graph. We construct

the CM graph from a CM as follows: We create a concept node labeled withC for each concept

C, and an edge labeled withp from the concept nodeC1 to the concept nodeC2 for each object

propertyp with domainC1 and rangeC2; for each suchp, there is also an edge in the opposite

direction for its inverse, referred to asp−. For each attributef of conceptC, we create a separate

attribute node denoted asNf,C , whose label isf , and add an edge labeledf from nodeC toNf,C .

For eachISA edge from a subconceptC1 to a superconceptC2, we create an edge labeled with

ISA from concept nodeC1 to concept nodeC2 with cardinality 1..1 on theC2 side (aC1 must be

aC2), and 0..1 on theC1 side. For the sake of succinctness, we sometimes use UML notations, as

in Figure 3.6, to represent the CM graph. Note that in such a diagram, instead of drawing separate

attribute nodes, we place the attributes inside the rectangle concept nodes;and relationships and

their inverses are represented by a single undirected edge. The presence of such an undirected

edge, labeledp, between conceptsC andD will be written in text as C ---p--- D . It will

be important for our approach to distinguishfunctional edges– ones with upper bound cardinality

of 1, and their composition:functional paths. If the relationship p is functional fromC to D, we

write C ---p->-- D . For expressive CMLs such as OWL, we may also connectC toD by p if

we find an existential restriction stating that each instance ofC is related tosomeinstance oronly

instances ofD by p.

3.2 Mapping Discovery Problems

We now identify and describe the specific mapping discovery problems we consider in this disser-

tation. We first describe the problem of mapping a relational schema to a CM. Second, we define

the problem of discovering a mapping from an XML schema to a CM. We specify a mapping for-
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Figure 3.6: A CM Graph in UML Notation

malism and discuss why the problem is different from the problem for relational schema. Finally,

we describe the problem of discovering mappings between relational schemas and contrast it with

the other two problems.

3.2.1 The Problem of Mapping Relational Schemas to CMs

In this setting, we want to discover a semantic mapping from a relational schemato a CM, given a

set of correspondences. AcorrespondenceT.c !D.f relates columnc of a relational tableT to

an attributef of a conceptD of a CM. Since our algorithms deal with CM graphs, formally a cor-

respondenceL will be a mathematical relationL(T, c,D, f,Nf,D), where the first two arguments

determine unique values for the last three. This means that a table column corresponds to a single

attribute of a concept (complex correspondences associating with multiple attributes can be treated

as union of a set of correspondences each of which associates with a single attribute).

We use formulas in the formT (X) → Φ(X,Y ), as described in Section 1.1, to represent the

semantic mappingfrom a relational schema to a CM, whereT is a table with columnsX (which

become arguments to its predicate), andΦ is a conjunctive formula over predicates representing the

CM.

Problem 1 (R-to-O problem). Given a relational schemaR = 〈T ,∆〉with a set of relational table

T ={T1,...,Tn} and a set of integrity constraints∆, a CMO, and a set of correspondencesL from

columns of tables inT to attributes of concepts inO. For a tableTi(X), find an associationδT in
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the CMO such thatTi(X) andδT are “semantically similar” in terms of modeling a subject matter.

The input of problem 1 (R-to-O problem) is a relational schema, a CM, and aset of correspon-

dences from columns of tables in the schema to attributes of concepts in the CM.A relational table

stores attribute values organized into tuples, while a CM specifies concepts,attributes of concepts,

and relationships between concepts. A close relationship between relational schemas and CMs is in-

duced by the standard database design methodology which consist of a set of principles that convert

a conceptual description into a logical schema. Our solution is to find an association/subgraph in

the CM graph by examining the structures and integrity constraints in the schema. The goal is that

after converting the association/subgraph into a table by the standard design methodology, the table

is indistinguishable from the original table under consideration in the schema interms of structures

and constraints.

The output of problem 1 is a set of mapping formulas. These candidate formulas need to be

examined by the user. Of course, it is desirable that the candidate list is “complete” meaning that

it contains all expected formulas and that the list is as short as possible so that user would spend

the minimum amount of effort to examine the list. To evaluate the performance of our solution, we

manually create mapping formulas for each tested dataset in our experiments.These manually create

mapping formulas serve as the “gold standard” for testing the achievement of semantic similarity.

We compare the results generated by the solution with these correct formulas. We check how many

correct ones are contained in the candidate list. Furthermore, if an expected formula is not generated

by the solution, we measure how much effort has to be put into correcting an“incorrect” one into a

correct one. We choose the above method because it is sufficient to quantify the effectiveness and

usefulness of the solution.

3.2.2 The Problem of Mapping XML schemas to CMs

In this setting, we attempt to discover a semantic mapping from an XML schema to a CM, given

a set of simple correspondences. AcorrespondenceP.@c!D.f relate the attribute”@c” of an
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element̀ reached by the simple pathP to the datatype propertyf of the classD in the CM. A

simple pathP is always relative to the root of the tree. For example, we can specify the following

correspondences for the element tree in Figure 3.5 (c):

employee.@eid1!Employee.hasId,

employee.manager.@mid!Employee.hasId.

employee.manager.employee.@eid2!Employee.hasId

whereEmployee is a concept in a CM andhasId is an attribute of the conceptEmployee. As in

the relational case, formally, a correspondenceL will be a mathematical relationL(P , @c, D, f ,

Nf,D), where the first two arguments determine unique values for the last three.

We now turn to the mapping language relating a formula representing an elementtree with

a conjunctive formula in a CM. On the XML side, the basic components areattribute formulas

[AL05], which are specified by the syntaxα ::= `|`(@a1 = x1, ..,@an = xn), where` ∈ E,

@a1, ..,@an ∈ A; E andA are element names and attribute names, respectively, while variables

x1, .., xn are the free variables ofα. Tree-pattern formulas over an XML schemaS = (E,A, τ, ρ, κ)

are defined byψ ::= α|α[ϕ1, .., ϕn], whereα ranges over attribute formulas over(E,A). The free

variables of a tree formulaψ are the free variables in all the attribute formulas that occur in it. For

example,employee(@eid1 = x1)[manager(@mid = x2)[employee(@eid2 = x3)]] is the tree

formula representing the element tree in Figure 3.5 (c).

A mapping formulabetween an element tree and a CM then has the formΨ(X) → Φ(X,Y ),

whereΨ(X) is a tree formula in the XML schema andΦ(X,Y ) is a conjunctive formula in the CM.

For example, given a CM containing a conceptEmployee, with an attributehasId, and a functional

propertyhasManager (whose inverse ismanages, which is not functional), the following map-

ping formula ascribes a semantics of the element tree in Figure 3.5 (c):
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employee(@eid1 = x1)[

manager (@mid = x2)[

employee (@eid2=x3) ]] → Employee(Y1),hasId(Y1, x1), Employee(Y2),

hasId(Y2, x2), hasManager(Y1, Y2),

Employee(Y3), hasId(Y3, x3),manages(Y2, Y3).

Since we maintain the unique name assumption for attributes, we can drop the variable namesxis,

and just use attribute names in formulas. The variablesYjs are implicitly existentially quantified

and refer to individuals in the CM.

Problem 2 (X-to-O problem). Given an XML schemaS = (E,A, τ, ρ, κ), a CMO, and a set of

correspondencesL from attributes of elements inS to attributes of concepts inO. For an element

treeT , find an associationδT in the CMO such thatT andδT are “semantically similar” in terms

of modeling a subject matter.

The input of the X-to-O problem is an XML schema, a CM, and a set of correspondences from

attributes of elements in the schema to datatype properties of concepts in the CM.An XML doc-

ument stores attribute values organized into a graph, while a CM specifies concepts, attributes of

concepts, and relationships between concepts. As for the relational case, our solution for discover-

ing the semantic mapping from an XML schema to a CM also exploits the principles that convert

a CM into a “good” XML schema. Focusing on semantics discovery, we assume the input XML

schema has been transformed into element tree(s).

We now discuss the differences between the X-to-O problem and the R-to-O problem. Much

research has focused on converting and storing XML data into relationaldatabases [STH+99]. It is

natural to ask whether we could utilize the mapping algorithm we have developed for the R-to-O

problem by first converting XML DTDs/schemas into relational tables or by applying the mapping

algorithm directly to XML schemas. Unfortunately, this approach does not work. First of all, the

algorithms that generate a relational schema from an XML DTD/schema use backlinks and system
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generatedids in order to record the nested structure, and these confuse the algorithmsfor the R-to-O

problem, which rely heavily on key and foreign key information for semanticsof real world objects.

Secondly, an XML schema is a rooted graph (tree) structure. Much semantics are encoded in the

parent-child links as well as the occurrence constraints imposed on the links. The principles for

designing an XML schema from a CM is different from that for designing arelational schema from

a CM; therefore, when we seek for “semantically similar” associations in XMLschemas and CMs,

the algorithm will be different from that for relational schemas and CMs. Thirdly, the outputs are

different and need different treatments. One relates a tree formula to a conjunctive formula, while

other relates a table as an atomic formula to a conjunctive formula. Finally, and most generally,

the X-to-O problem is different from the R-to-O problem because XML schemas and relational

schemas are heterogeneous domain models subscribing to different modeling languages. Although

they may describe the same subject matter, they use different modeling constructs for different

purposes. A particular algorithm for one model often does not producedesired results for another

model because the algorithm has been designed for exploiting specific modeling constructs. We

believe that an effective tool for discovering semantics of different models has to employ different

algorithms geared to particular modeling languages.

The output of problem 2 is a set of candidate mapping formulas. We use manually created

“correct” mapping formulas for each tested dataset to evaluate the performance of the solution. The

performance is measured in terms of recall, precision, and labor savings.

3.2.3 The Problem of Mapping Database Schemas to Database Schemas

In this setting, we want to discover semantic mapping from a source relationalschemaS to a

target relational schemaT , given a set of correspondences from columns ofS to columns ofT .

A correspondenceR.c!T.f will relate the columnc of the tableR in S to the columnf of the

tableT in T . For the setL of correspondences between the schemaS and the schemaT , we use

L(S) andL(T ) to denote the sets of columns linked byL in S andT , respectively.

The goal of schema mapping is to find an association among columns inL(S) and an association
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among columns inL(T ) such that the pair of associations are semantically similar in terms of

modeling a subject matter. For relational schemas, we use join algebraic expressions for associations

among columns as shown in the following example:

S1: gradStudent(sno, sname, pid)./professor(pid, pname, area).

Given a pair of algebraic expressions, one could derive mapping formulas in the form s-t tgd and

multiple mapping expressions could be derived. For example, suppose we have another algebraic

expression which is a single table

T1: student(sno, name, advisor, area),

and we want to derive mapping formula from the pair〈S1, T1〉 given the correspondences

v1: gradStudent.sno!student.sno,

v2: gradStudent.sname!student.name,

v3: professor.pname!student.advisor,

v4: professor.area!student.area.

Here are three possibilities:

M1: ∀sno, sname, pid.(gradStudent(sno, sname, pid) → student(sno, name, , )).

M2: ∀sno, sname, pid, pname, area.(gradStudent(sno, sname, pid)∧

professor(pid, pname, area) → student(sno, sname, pname, area)).

M3: ∀pid, pname, area.(professor(pid, pname, area) → student( , , pname, area)).

The mapping expressionM1 covers the correspondencesv1 andv2, M2 coversv1, v2, v3, andv4,

andM3 coversv3 andv4. Since the derivation depends on usage of the mapping and other con-

straints, we will leave it open and specify a mapping as a 3-tuple〈E1, E2, LM 〉, whereE1 andE2

are algebraic expressions in the source and target, respectively, andLM is a set of correspondences

that are covered by the pair of expressions. Specifically, a correspondence linking a source column

c to a target columnf is covered by a pair〈E1, E2〉 of expressions, ifc appears inE1 andf appear

in E2.
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Problem 3 (R-to-R problem). Given a relational schemaS associated with a CMGS through

a semantic mappingΣS and a relational schemaT associated with a CMGT through a semantic

mappingΣT . LetL be the set of correspondences linking a setL(S) of columns inS to a setL(T )

of columns inT . For an algebraic expressionE1 connecting columns inL(S), find an algebraic ex-

pressionE2 connecting columns inL(T ) such thatE1 andE2 are “semantically similar” in terms

of modeling a subject matter.

By our solution to the problem 1 (R-to-O problem), we assume that the semantic mappings relate

each table in the schemas to a semantic tree in the respective CM graphs, and with each column we

can associate a (unique) concept node in a graph through associationsfrom columns to attribute

nodes. Consequently, the setL(S) of columns gives rise to a setCS of concept nodes in the graph

GS . Likewise, the setL(T ) gives rise to a setCT of concept nodes in the graphGT . We call the

semantic trees which contain nodes inCS andCT pre-selected s-trees. Our mapping discovery pro-

cess consists of two major steps: (1) finding a conceptual subgraph (hereafter CSG)DS connecting

nodes inCS and a CSGDT connecting nodes inCT such thatDS andDT are “semantically similar”

(we have stripped off the attribute nodes temporarily); (2) restoring the attribute nodes used to iden-

tify the concept nodes and translatingDS into an algebraic expressionE1 andDT into an algebraic

expressionE2. The pair〈E1, E2〉 is returned as a mapping candidate if it covers the set ofL or a

subset ofL.

Compared to the R-to-O and X-to-O problems, the R-to-R problem uses the results of the R-to-O

problem for improving traditional schema mapping solutions. To evaluate the performance of our

solution to the R-to-R problem, we compare the results of our solution to that of the traditional

RIC-based techniques. The comparison is made against the manually created mapping formulas as

the “correct” ones. The performance is measured in terms of recall and precision.



57

3.3 Summary

In this chapter, we first presented database schemas and CMs. A database schema is a description

of data in terms of a data model. In this dissertation, we focus on two commonly used database

schemas, the relational schema describing data in terms of the relational model and the XML schema

describing data in terms of the XML data model. We create a CM graph from a CMdescribed in

a generic CML language. Next, we defined three specific mapping discovery problems, the R-to-O

problem, the X-to-O problem, and the R-to-R problem. We specified the inputs,outputs, principles

for the solutions, and evaluation methods for these problems. In the next three chapters, we develop

solutions for these specific problems and evaluate the solutions using comprehensive sets of test

data drawn from a variety of application domains.



Chapter 4

Discovering Semantic Mappings from

Relational Schemas to CMs

We now begin to develop a solution for discovering semantic mappings from relational schemas

to CMs. We first describe the problem in Section 4.1. Next, we present an intuitive progression

of ideas underlying our approach in Section 4.2. In the two sections that follow, we provide a

mapping inference algorithm in Section 4.3 and report on the prototype implementation of these

ideas and experimental results in Section 4.4. In Section 4.5, we discuss the issues of generating

GAV mapping formulas from the LAV formulas produced by our solution. Finally, we discuss the

limitations of our solution and future work in Section 4.6 and summarize the chapterin Section 4.7.

4.1 The Problem

We use formulas in the formT (X) → Φ(X,Y ) to represent semantic mappings from relational

schemas to CMs. A semantic mapping formula relatesT (X), a single predicate representing a

table in a relational schema, toΦ(X,Y ), a conjunctive formula over the predicates representing the

concepts and relationships in a CM.

Recall that manual creation of mapping formulas is difficult, time-consuming anderror-prone,

58
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Figure 4.1: Relational table, CM, and Correspondences.

we propose a tool that assists users in specifying mapping formulas. In order to improve the ef-

fectiveness of our tool, we expect the tool user to providesimple correspondencesbetween atomic

elements used in the database schema (e.g., column names of tables) and those inthe CM (e.g.,

datatype property/attribute names of concepts). Given the set of correspondences, the tool is ex-

pected to reason about the database schema and the CM, attempting to find “semantically similar”

pairs of associations. At last, it generates a list of candidate formulas foreach table in the relational

database. Ideally, one of the formulas is the correct one — capturing user intention underlying given

correspondences. The following example illustrates the input/output behavior of the tool proposed.

Example 4.1.1.Figure 4.1 contains the enterprise CM we have demonstrated in Chapter 1. Suppose

we wish to discover semantics of a relational tableEmployee(ssn,name, dept, proj) with keyssn

in terms of the enterprise CM. Suppose that by looking at column names of the table and the CM

graph, the user draws the simple correspondences shown as dashed arrows in Figure 4.1. This

indicates, for example, that thessn column corresponds to thehasSsn property of theEmployee

concept. Using prefixesT andO to distinguish tables in the relational schema and concepts in the

CM, we represent the correspondences as follows:
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T :Employee.ssn!O:Employee.hasSsn

T :Employee.name!O:Employee.hasName

T :Employee.dept!O:Department.hasDeptNumber

T :Employee.proj!O:Worksite.hasNumber

Given the above inputs, the tool is expected to produce a list of plausible mapping formulas, which

would hopefully include the following formula, expressing a possible semantics for the table:

T :Employee(ssn, name, dept, proj) → O:Employee(x1), O:hasSsn(x1,ssn),

O:hasName(x1,name), O:Department(x2),

O:works for(x1,x2), O:hasDeptNumber(x2,dept),

O:Worksite(x3), O:works on(x1,x3),

O:hasNumber(x3,proj).

�

An intuitive (but somewhat naive) solution, inspired by early work of Quillian [Qui68], is based

on finding theshortestconnections between concepts. Technically, this involves (i) finding the min-

imum spanning tree(s) (actually Steiner trees1) connecting the “corresponded concepts” — those

that have datatype properties corresponding to table columns, and then (ii)encoding the tree(s) into

formulas. However, in some cases the spanning/Steiner tree may not provide the desired semantics

for a table because of known relational schema design rules.

Example 4.1.2.Consider the relational tableProject(name, supervisor), where the columnname

is the key and corresponds to the attributeO:Worksite.hasName, and columnsupervisor corre-

sponds to the attributeO:Employee.hasSsn in Figure 4.1. The minimum spanning tree consisting

of Worksite, Employee, and the edgeworks on probably does not match the semantics of table

Project because there are multipleEmployees working on aWorksite according to the CM cardi-

nality, yet the table allows only one to be recorded, sincesupervisor is functionally dependent on

1A Steiner tree [HRW92] for a setM of nodes in graphG is a minimum spanning tree ofM that may contain nodes
of G which are not inM .
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name, the key. Therefore we must seek a functional connection fromWorksite to Employee, and

the connection will be the manager of the department controlling the worksite. �

Since our approach is directly inspired by the Clio project [MHH00, PVM+02], which developed

a successful tool that infers mappings from one set of relational/XML schemas to another, given

just a set of correspondences between their respective attributes, it isnatural to ask whether Clio’s

current solution is sufficient for the problem. To apply Clio’s technique, we could view the present

problem as extending Clio to the case where the source schema is a relationaldatabase while the

target is a CM. The next example, however, shows that Clio’s solution does not produce the desired

results.

Example 4.1.3.We can view the CM in Figure 4.1 as a relational schema made of unary tables for

the concepts and binary tables for the attributes and relationships. Specifically, there are three unary

tablesEmployee(x1), Department(x2), andWorksite(x3) for the three concepts. Moreover, for

the attributes of the concepts and the relationships between concepts, thereare a number of binary

tables including

hasSsn(x1, ssn), hasName(x1, name), works for(x1, x2),

hasDeptNumber(x2, dept), hasNumber(x3, proj), andworks on(x1, x3)...

The obvious foreign key constraints are from binary to unary tables, e.g.,

works for.x1⊆Employee.x1,

works for.x2⊆Department.x2...

Then one could in fact try to apply directly the Clio’s current algorithm to the problem.

Recall that Clio’s current algorithm works by taking each table and using achase-like algorithm

to repeatedly extend it with columns that appear as foreign keys referencing other tables. Such

“logical relations” in the source and target are then connected by queries. In this particular case,

this would lead to logical relations such as
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Employee(x1)./works for(x1, x2)./Department(x2),

Employee(x1)./works on(x1, x2)./Department(x2),

Employee(x1)./hasSsn(x1),

Employee(x1)./hasName(x1),

hasDeptNumber(x2)./Department(x2),

hasNumber(x3)./Worksite(x3).

The desired mapping formula in Example 4.1.1 would not be produced because none joinshasSsn(x1, ssn)

andhasDeptNumber(x2, dept) through some intermediary, which is part of the desired formula.

The fact thatssn is a key for the tableS:Employee, leads us to prefer a many-to-one relation-

ship, such asworks for, over some many-to-many relationship which could have been part of the

CM (e.g.,O:previouslyWorkedFor); Clio does not differentiate the two. So the work to be pre-

sented here analyzes the key structure of the tables and the semantics of relationships (cardinality,

IsA) to eliminate/downgradeunreasonableoptions that arise in mappings to CMs. Furthermore,

our principles of mapping inference exploit largely the knowledge of database design in seeking

“semantically similar” associations.

�

In this dissertation, we use ideas of standard relational schema design from ER diagrams in order

to craft heuristics that systematically uncover the connections between the constructs of relational

schemas and those of CMs. We propose a tool to generate “reasonable”trees connecting the set

of concepts in a CM which have attributes participating in the given correspondences. In contrast

to the graph theoretic results which show that there may be too many minimum spanning/Steiner

trees among a set of concept nodes in a CM (for example, there are already 5 minimum spanning

trees connectingEmployee, Department, andWorksite in the very simple graph in Figure 4.1),

we expect the tool to generate only a small number of “reasonable” trees.These expectations are

born out by our experimental results, in Section 4.4.
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4.2 Principles of Mapping Discovery

Given a tableT , and correspondencesL to a CM provided by a person or a tool, let the setCT consist

of those concept nodes which have at least one attribute corresponding to some column ofT , i.e.,

D such that there is at least one tupleL( , , D, , ). Our task is to find meaningful associations

between concepts inCT . Attributes can then be connected to the result using the correspondence

relation: for any nodeD, one can imagine having edgesf to M , for every entryL( , , D, f,M).

The primary principle of our mapping discovery algorithm is to look forsmallest“reasonable” trees

connecting nodes inCT . We will call such a tree asemantic tree.

As mentioned before, the naive solution of finding minimum spanning trees or Steiner trees does

not give good results, because it must also be “reasonable”. We aim to describe more precisely this

notion of “reasonableness”.

Consider the case whenT (c, b) is a table with keyc, corresponding to an attributef on concept

C, andb is a foreign key corresponding to an attributee on conceptB. Then for each value ofc

(and hence instance ofC), T associates at most one value ofb (instance ofB). Hence the semantic

mapping forT should be some formula that acts as a function from its first to its second argument.

The semantic trees for such formulas look like functional edges in the CM, and hence are more

reasonable. For example, given tableDep(dept,ssn, ...), and correspondences

T :Dep.dept !O:Department.hasDeptNumber,

T :Dep.ssn !O:Employee.hasSsn,

from the table columns to attributes of the CM in Figure 4.1, the proper semantic tree usesmanages−

(i.e.,hasManager) rather thanworks for− (i.e.,hasWorkers).

Conversely, for tableT ′(c, b), wherec andb are as above, an edge that is functional fromC toB,

or fromB to C, is likely not to reflect a proper semantics since it would mean that the key chosen

for T ′ is actually a super-key – an unlikely error. (In our example, consider a table T (ssn, dept),

where both columns are foreign keys.)

To deal with such problems, our algorithm works in two stages: first connects the concepts
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corresponding to key columns into askeleton tree, then connects the rest of the corresponded nodes

to the skeleton by functional edges (whenever possible).

We must however also deal with the assumption that the relational schema and the CM were

developed independently, which implies that not all parts of the CM are reflected in the database

schema. This complicates things, since in building the semantic tree we may need to go through

additional nodes, which end up not corresponding to columns of the relational table. For example,

consider again the tableProject(name, supervisor) and its correspondences mentioned in Exam-

ple 4.1.2. Because of the key structure of this table, based on the above arguments we will prefer

the functionalpathcontrols−.manages− (i.e.,controlledBy followed byhasManager), passing

through nodeDepartment, over the shorter path consisting of edgeworks on, which is not func-

tional. Similar situations arise when the CM contains detailedaggregationhierarchies (e.g.,city

part-of township part-ofcounty part-ofstate), which are abstracted in the database (e.g., a table

with columns forcity andstate only).

We have chosen to flesh out the above principles in a systematic manner by considering the be-

havior of our proposed algorithm on relational schemas designed from Entity Relationship diagrams

— a technique widely covered in undergraduate database courses [RG02]. (We refer to thiser2rel

schema design.) One benefit of this approach is that it allows us to prove that our algorithm,though

heuristic in general, is in some sense “correct” for a certain class of schemas. Of course, in practice

such schemas may be “denormalized” in order to improve efficiency, and, as we mentioned, only

parts of the CM may be realized in the database. Our algorithm uses the general principles enunci-

ated above even in such cases, with relatively good results in practice. Also note that the assumption

that a given relational schema was designed from some ER conceptual model does not mean that

given CM is this ER model, or is even expressed in the ER notation. In fact, our heuristics have to

cope with the fact that it is missing essential information, such as keys for weak entities.

To reduce the complexity of the algorithms, which essentially enumerate all trees, and to reduce

the size of the answer set, we modify a CM graph by collapsing multiple edges between nodesE and

F , labeledp1, p2, . . . say, into at most three edges, each labeled by a string of the form′pj1 ; pj2 ; . . .
′:

one of the edges has the names of all functions fromE to F ; the other all functions fromF to E;
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and the remaining labels on the third edge. (Edges with empty labels are dropped.) Note that there

is no way that our algorithm can distinguish between semantics of the labels on one kind of edge,

so the tool offers all of them. It is up to the user to choose between alternative labels, though the

system may offer suggestions, based on additional information such as heuristics concerning the

identifiers labeling tables and columns, and their relationship to property names.

4.3 Semantic Mapping Discovery Algorithms

As mentioned, our algorithm is based in part on the relational database schema design methodology

from ER models. We introduce the details of the algorithm iteratively, by incrementally adding

features of an ER model that appear as part of the CM. We assume that thereader is familiar with

basics of ER modeling and database design [RG02], though we summarize theideas.

4.3.1 ER0: An Initial Subset of ER notions

We start with a subset, ER0, of ER that supports entity setsE (called just “entity” here), with at-

tributes (referred to byattribs(E)), and binary relationship sets. In order to facilitate the statement

of correspondences and theorems, we assume in this section that attributesin the CM have globally

unique names. (Our implemented tool does not make this assumption.) An entity is represented as

a concept/class in our CM. A binary relationship set corresponds to two properties in our CM, one

for each direction. Such a relationship is calledmany-manyif neither it nor its inverse is functional.

A strong entityS has some attributes that act as identifier. We shall refer to these usingunique(S)

when describing the rules of schema design. Aweak entityW has insteadlocalUnique(W ) at-

tributes, plus a functional total binary relationshipp (denoted asidRel(W )) to an identifying owner

entity (denoted asidOwn(W )).

Example 4.3.1.An ER0 diagram is shown in Figure 4.2, which has a weak entityDependent and

three strong entities:Employee, Department, andProject. The owner entity ofDependent is

Employee and the identifying relationship isdependents of. Using the notation we introduced,

this means that
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Figure 4.2: An ER0 Example.

localUnique(Dependent) =deName, idRel(Dependent)= dependents of ,

idOwn(Dependent)= Employee. For the owner entityEmployee,

unique(Employee)= hasSsn.

�

Note that information about multi-attribute keys cannot be represented formally in even highly

expressive CM languages such as OWL. So functions likeunique are only used while describing the

er2rel mapping, and are not assumed to be available during semantic inference. The er2rel design

methodology (we follow mostly [MM90, RG02]) is defined by two components. To begin with,

Table 4.1 specifies a mappingτ(O) returning a relational table scheme for every CM componentO,

whereO is either a concept/entity or a binary relationship. (For each relationship exactly one of the

directions will be stored in a table.)

In addition to the schema (columns, key, f.k.’s), Table 4.1 also associates witha relational table

T (V ) a number of additional notions:

• ananchor, which is the central object in the CM from whichT is derived, and which is useful

in explaining our algorithm (it will be the root of the semantic tree);

• a formula for the semantic mapping for the table, expressed as a formula with headT (V )

(this is what our algorithm should be recovering); in the body of the formula, the function

hasAttribs(x, Y ) returns conjunctsattrj(x, Y [j]) for the individual columnsY [1], Y [2], . . .

in Y , whereattrj is the attribute name corresponded by columnY [j].

• the formula for a predicateidentifyC(x, Y ), showing how objectx in (strong or weak) entity
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ER Model object O Relational Table τ (O)

Strong Entity S columns: X

primary key: K

Let X=attribs(S) f.k.’s: none

Let K=unique(S) anchor: S

semantics: T (X) → S(y),hasAttribs(y, X).

identifier: identifyS(y, K) → S(y),hasAttribs(y, K).

Weak Entity W columns: ZX

let primary key: UX

E = idOwn(W ) f.k.’s: X

P = idrel(W ) anchor: W

Z=attribs(W ) semantics: T (X, U, V ) → W (y), hasAttribs(y, Z), E(w),P (y, w),

X = key(τ(E)) identifyE(w, X).

U =localUnique(W ) identifier: identifyW (y, UX) → W (y),E(w), P (y, w), hasAttribs(y, U),

V = Z − U identifyE(w, X).

Functional columns: X1X2

Relationship F primary key: X1

E1 --F->- E2 f.k.’s: Xi referencesτ(Ei),

let Xi = key(τ(Ei)) anchor: E1

for i = 1, 2 semantics: T (X1, X2) → E1(y1),identifyE1
(y1, X1), F (y1, y2), E2(y2),

identifyE2
(y2, X2).

Many-many columns: X1X2

Relationship M primary key: X1X2

E1 --M-- E2 f.k.’s: Xi referencesτ(Ei),

let Xi = key(τ(Ei)) semantics: T (X1, X2) → E1(y1),identifyE1
(y1, X1), M(y1, y2),E2(y2),

for i = 1, 2 identifyE2
(y2, X2).

Table 4.1:er2rel Design Mapping.

C can be identified by values inY 2.

Note thatτ is defined recursively, and will only terminate if there are no “cycles” in theCM (see

[MM90] for definition of cycles in ER).

Example 4.3.2.Whenτ is applied to conceptEmployee in Figure 4.2, we get the table

T :Employee(hasSsn, hasName, hasAddress, hasAge),

with the anchorEmployee, and the semantics expressed by the mapping:

2This is needed in addition tohasAttribs, because weak entities have identifying values spread over several concepts.
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T :Employee(hasSsn, hasName, hasAddress, hasAge) →

O:Employee(y), O:hasSsn(y, hasSsn), O:hasName(y, hasName),

O:hasAddress(y, hasAddress), O:hasAge(y, hasAge).

Its identifier is represented by

identifyEmployee(y, hasSsn) → O:Employee(y), O:hasSsn(y, hasSsn).

In turn,τ(Dependent) produces the table

T :Dependent(deName, hasSsn, birthDate,...),

whose anchor isDependent. Note that thehasSsn column is a foreign key referencing thehasSsn

column in theT :Employee table. Accordingly, its semantics is represented as:

T :Dependent(deName, hasSsn, birthDate,...) → O:Dependent(y), O:Employee(w),

O:dependents of(y, w),

identifyEmployee(w, hasSsn),

O:deName(y, deName),

O:birthDate(y, birthDate) ...

and its identifier is represented as:

identifyDependent(y, deName, hasSsn) → O:Dependent(y), O:Employee(w),

O:dependents of(y, w),

identifyEmployee(w, hasSsn),

O:deName(y, deName).

τ can be applied similarly to the other objects in Figure 4.2.τ(works for) produces the table

works for(hasSsn, hasDeptNumber).

τ(participates) generates the table

participates(hasNumber, hasDeptNumber).
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Please note that the anchor of the table generated byτ(works for) is Employee, while no

single anchor is assigned to the table generated byτ(participates).

�

The second step of theer2rel schema design methodology suggests that the schema generated

by τ can be modified by (repeatedly)merginginto the tableT0 of an entityE the tableT1 of some

functional relationship involving the same entityE (which has a foreign key reference toT0). If the

semantics ofT0 is T0(K,V ) → φ(K,V ), and ofT1 is T1(K,W ) → ψ(K,W ), then the semantics

of table T=merge(T0,T1) is, to a first approximation,

T (K,V,W ) → φ(K,V ), ψ(K,W ). (4.1)

And the anchor ofT is the entityE. (We defer the description of the treatment of null values which

can arise in the non-key columns ofT1 appearing inT .) For example, we could merge the table

τ(Employee) with the tableτ(works for) in Example 4.3.2 to form a new table

T :Employee2(hasSsn, hasName, hasAddress, hasAge, hasDeptNumber),

where the columnhasDeptNumber is an f.k. referencingτ(Department). The semantics of the

table is:

T :Employee2(hasSsn, hasName, hasAddress, hasAge, hasDeptNumber)→

O:Employee(y), O:hasSsn(y, hasSsn), O:hasName(y, hasName),

O:hasAddress(y, hasAddress), O:hasAge(y, hasAge), O:Department(w),

O:works for(y, w), O:hasDeptNumber(w, hasDeptNumber).

Please note that one conceptual model may result in several different relational schemas, since

there are choices in which direction a one-to-one relationship is encoded (which entity acts as a

key), and how tables are merged. Note also that the resulting schema is in Boyce-Codd Normal

Form, if we assume that the only functional dependencies are those that can be deduced from the

ER schema (as expressed in FOL).
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In this subsection, we assume that the CM has no so-called “recursive” relationships relating an

entity to itself, and no attribute of an entity corresponds to multiple columns of any table generated

from the CM. (We deal with these in Section 4.3.3.) Note that by the latter assumption, we rule out

for now the case when there are several relationships between a weak entity and its owner entity,

such ashasMet connectingDependent andEmployee, because in this caseτ(hasMet) will need

columnsdeName,ssn1,ssn2, with ssn1 helping to identify the dependent, andssn2 identifying

the (other) employee they met.

Now we turn to the algorithm for finding the semantics of a table in terms of a givenCM. It

amounts to finding the semantic trees between nodes in the setCT singled out by the correspon-

dences from columns of the tableT to attributes in the CM. As mentioned previously, the algorithm

works in several steps:

1. Determine a skeleton tree connecting the concepts corresponding to keycolumns; also deter-

mine, if possible, a unique anchor for this tree.

2. Link the concepts corresponding to non-key columns using shortest functional paths to the

skeleton/anchor tree.

3. Link any unaccounted-for concepts corresponding to other columnsby arbitrary shortest paths

to the tree.

To flesh out the above steps, we begin with the tables created by the standard design process.

If a table is derived by theer2rel methodology from an ER0 diagram, then Table 4.1 provides

substantial knowledge about how to determine the skeleton tree. However,care must be taken when

weak entities are involved. The following example describes a right process to discover the skeleton

and the anchor of a weak entity table.

Example 4.3.3.Consider table

T :Dept(number,univ, dean),

with foreign key (f.k.)univ referencing table
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-hasUnivName
-hasAddres

University

-hasDeptNumber
-.

Department

-hasName

-hasBoD

Employee

belongsTo

0..* 0..1 0..*1..1 1..* -hostName
-.

Host

hasServerAt

president dean

1..11..1

0..10..1

Dept( number,univ , dean), univ and dean are f.k.s.

Figure 4.3: Finding Correct Skeleton Trees and Anchors.

T :Univ(name, address)

and correspondences shown in Figure 4.3.

We can tell thatT :Dept represents a weak entity since its key has one f.k. as a subset (re-

ferring to the strong entity on whichDepartment depends). To find the skeleton and anchor of

the tableT :Dept, we first need to find the skeleton and anchor of the table referenced bythe f.k.

univ. The answer isUniversity. Next, we should look for a total functional edge (path) from the

correspondent ofnumber, which is conceptDepartment, to the anchor,University. As a result,

the link Department ---belongsTo-->- University is returned as the skeleton, and

Department is returned as the anchor. Finally, we can correctly identify thedean relationship as

the remainder of the connection, rather than thepresident relationship, which would have seemed

a superficially plausible alternative to begin with.

Furthermore, suppose we need to interpret the table

T :Portal(dept,univ, address)

with the following correspondences:

T :Portal.dept!O:Department.hasDeptNumber

T :Portal.univ!O:University.hasUnivName

T :Portal.address!O:Host.hostName,
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where not only is{dept,univ} the key but also an f.k. referencing the key of tableT :Dept. To

find the anchor and skeleton of tableT :Portal, the algorithm first has to recursively work on the

referenced table. This is also needed when the owner entity of a weak entityis itself a weak entity.

�

Figure 4.4 shows the functiongetSkeleton which returns a set of (skeleton, anchor)-pairs, when

given a tableT and a set of correspondencesL from key(T ). The function is essentially a recursive

algorithm attempting to reverse the functionτ in Table 4.1. In order to accommodate tables not

designed according toer2rel, the algorithm has branches for finding minimum spanning/Steiner

trees as skeletons.

In order forgetSkeleton to terminate, it is necessary that there be no cycles in f.k. references in

the schema. Such cycles (which may have been added to represent additional integrity constraints,

such as the fact that a property is total) can be eliminated from a schema by replacing the tables in-

volved with their outer join over the key.getSkeleton deals with strong entities and their functional

relationships in step (1), with weak entities in step (2.b), and so far, with functional relationships

of weak entities in (2.a). In addition to being a catch-all, step (2.c) deals with tables representing

many-many relationships (which in this section have keyK = F1F2), by finding anchors for the

ends of the relationship, and then connecting them with paths that are not functional, even when

every edge is reversed.

To find the entire semantic tree of a tableT , we must connect the concepts that have attributes

corresponding to the rest of the columns, i.e.,nonkey(T ), to the anchor(s). The connections should

be (shortest) functional edges (paths), since the key determines at mostone value for them; however,

if such a path cannot be found, we use an arbitrary shortest path. ThefunctiongetTree, shown in

Figure 4.5, achieves this goal.

The following example illustrates the use ofgetTree when we seek to interpret a table using a

different CM than the one from which it was originally derived.
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Function getSkeleton(T,L)
Input: tableT , correspondencesL for key(T )
Output: a set of (skeleton tree, anchor) pairs
Steps:
Supposekey(T ) contains f.k.sF1,. . . ,Fn referencing tablesT1(K1),..,Tn(Kn);

1. If n ≤ 1 and onc(key(T ))a is just a singleton set{C}, then return
(C, {C}).b/*T is likely about a strong entity: base case.*/

2. Else, letLi={Ti.Ki!L(T, Fi)}/*translate corresp’s thru f.k. reference.*/;
compute (Ssi, Anci) = getSkeleton(Ti, Li), for i = 1, .., n.

(a) If key(T ) = F1, then return (Ss1, Anc1). /*T looks like the table for the

functional relationship of a weak entity, other than its identifying relationship.*/

(b) If key(T )=F1A, where columnsA are not part of an f.k. then/*T is

possibly a weak entity*/

if Anc1 = {N1} andonc(A) = {N} such that there is a (shortest)
total functional pathπ from N to N1, then return (combinec(π,
Ss1), {N}). /*N is a weak entity. cf. Example 4.3.3.*/

(c) Else supposekey(T ) has non-f.k. columnsA[1], . . . A[m], (m ≥ 0);
let Ns={Anci, i = 1, .., n} ∪ {onc(A[j]), j = 1, ..,m}; find skele-
ton treeS′ connecting the nodes inNs where any pair of nodes inNs

is connected by a (shortest) non-functional path; return(combine(S′,
{Ssj}), Ns). /*Deal with many-to-many binary relationships; also the default ac-

tion for non-standard cases, such as when not finding identifying relationship from a

weak entity to the supposed owner entity. In this case no unique anchor exists.*/

aonc(X) is the function which gets the setM of concepts having attributes corresponding to the
columnsX.

bBoth here and elsewhere, when a conceptC is added to a tree, so are edges and nodes forC ’s
attributes that appear inL.

cFunctioncombine merges edges of trees into a larger tree.

Figure 4.4: ThegetSkeleton Function

Example 4.3.4. In Figure 4.6, the table

T :Assignment(emp,proj, site)

was originally derived from a CM with the entityAssignment shown on the right-hand side of the

vertical dashed line. To interpret it by the CM on the left-hand side, the function getSkeleton, in

Step 2.c, returnsEmployee ---assignedTo--- Project as the skeleton, and no single

anchor exists. The set{Employee, Project} accompanying the skeleton is returned. Subsequently,
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Function getTree(T,L)
Input: tableT , correspondencesL for columns(T )
Output: set of semantic treesa

Steps:

1. LetLk be the subset ofL containing correspondences fromkey(T );
compute(S′, Anc′)=getSkeleton(T ,Lk).

2. If onc(nonkey(T )) − onc(key(T )) is empty, then return (S′, Anc′). /*if all

columns correspond to the same set of concepts as the key does, then return the skeleton

tree.*/

3. For each f.k.Fi in nonkey(T ) referencingTi(Ki):
let Li

k = {Ti.Ki!L(T, Fi)}, and compute (Ss′′i , Anc
′′
i )=

getSkeleton(Ti,Li
k). /*recall that the functionL(T, Fi) is derived from a corre-

spondenceL(T, Fi, D, f, Nf,D) such that it gives a conceptD and its attributef (Nf,D is

the attribute node in the CM graph.)*/

find πi=shortest functional path fromAnc′ to Anc′′i ; let S =
combine(S′, πi, {Ss

′′
i }).

4. For each columnc in nonkey(T) that is not part of an f.k., letN =
onc(c); find π=shortest functional path fromAnc′ to N ; updateS :=
combine(S, π). /*cf. Example 4.3.4.*/

5. In all cases above asking for functional paths, use a shortest pathif a func-
tional one does not exist.

6. ReturnS.
aTo make the description simpler, at times we will not explicitly account for thepossibility of

multiple answers. Every function is extended to set arguments by element-wise application of the
function to set members.

Figure 4.5: ThegetTree Function

the functiongetTree seeks for the shortest functional link from elements in{Employee, Project}

to Worksite at Step 4. Consequently, it connectsWorksite to Employee via works on to build the

final semantic tree.

�

To get the logic formula from a tree based on correspondenceL, we provide the procedure

encodeTree(S,L) shown in Figure 4.7, which basically assigns variables to nodes, and connects

them using edge labels as predicates.
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-employee

-project

-site

Assignment

-projNumber

Project

-empNumber

Employee

works_on

1..* 0..*

1..*

-siteName

Worksite

assignedTo

1..1

Assignment( emp,proj,site)

derived from

Figure 4.6: Independently Developed Table and CM.

Function encodeTree(S,L)
Input: subtreeS of CM graph, correspondencesL from table columns to attributes
of concept nodes inS.
Output: variable name generated for root ofS, and conjunctive formula for the
tree.
Steps:SupposeN is the root ofS. Let Ψ = true.

1. If N is an attribute node with labelf

• find d such thatL( , d, , f,N) = true;

• return(d, true)./*for leaves of the tree, which are attribute nodes, return the corre-

sponding column name as the variable and the formulatrue.*/

2. If N is a concept node with labelC, then introduce new variablex; add con-
junctC(x) toΨ; for each edgepi fromN toNi /*recursively get the subformulas.*/

• let Si be the subtree rooted atNi,

• let (vi, φi(Zi))=encodeTree(Si, L),

• add conjunctspi(x, vi) ∧ φi(Zi) to Ψ;

3. Return(x,Ψ).

Figure 4.7: TheencodeTree Function

Example 4.3.5.Figure 4.8 is the fully specified semantic tree returned by the algorithm for the table

T :Dept(number,univ, dean)

in Example 4.3.3. TakingDepartment as the root of the tree, functionencodeTree generates the

following formula:
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University Department Employee

belongsTo dean

hasUnivName hasDeptNumber hasName

hasUnivName hasNamehasDeptNumber

Figure 4.8: Semantic Tree ForDept Table.

Department(x), hasDeptNumber(x, number), belongsTo(x, v1),

University(v1), hasUnivName(v1, univ), dean(x, v2),

Employee(v2), hasName(v2, dean).

As expected, the formula is the semantics of the tableT :Dept as assigned by theer2rel designτ .

�

Now we turn to the properties of the mapping discovery algorithm. In order to be able to make

guarantees, we have to limit ourselves to “standard” relational schemas, since otherwise the al-

gorithm cannot possibly guess the intended meaning of an arbitrary table. For this reason, let us

consider only schemas generated by theer2rel methodology from a CM encoding an ER diagram.

We are interested in two properties. The first property is a sense of “completeness”: the algorithm

finds the correct semantics (as specified in Table 4.1). The second property is a sense of “sound-

ness”: if for such a table there are multiple semantic trees returned by the algorithm, then each of the

trees would produce an indistinguishable relational table according to theer2rel mapping. (Note

that multiple semantic trees are bound to arise when there are several relationships between 2 enti-

ties which cannot be distinguished semantically in a way which is apparent in thetable (e.g., 2 or

more functional properties fromA toB). To formally specify the properties, we have the following

definitions.

A homomorphismh from the columns of a tableT1 to the columns of a tableT2 is a one-to-one

mappingh: columns(T1)→columns(T2), such that (i)h(c) ∈ key(T2) for everyc ∈ key(T1); (ii)

by convention, for a set of columnsF , h(F [1]F [2] . . .) is h(F [1])h(F [2]) . . .; (iii) h(Y ) is an f.k.
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of T2 for everyY which is an f.k. ofT1; and (iv) ifY is an f.k. ofT1, then there is a homomorphism

from thekey(T ′
1) of T ′

1 referenced byY to thekey(T ′
2) of T ′

2 referenced byh(Y ) in T2.

Definition 4.3.1. A relational tableT1 is isomorphic to another relational tableT2, if there is a

homomorphism fromcolumns(T1) to columns(T2) and vice versa.

Informally, two tables are isomorphic if there is a bijection between their columns which pre-

serves recursively the key and foreign key structures. These structures have direct connections with

the structures of the ER diagrams from which the tables were derived. Since theer2rel mappingτ

may generate the “same” table when applied to different ER diagrams (considering attribute/column

names have been handled by correspondences), a mapping discoveryalgorithm with “good” prop-

erties should report all and only those ER diagrams.

To specify the properties of the algorithm, suppose that the correspondenceLid is the identity

mapping from table columns to attribute names, as set up in Table 4.1. The following lemma states

the interesting property ofgetSkeleton.

Lemma 4.3.1. Let CM graphG encode an ER0 diagramE . Let T= τ(C) be a relational table

derived from an objectC in E according to theer2rel rules in Table 4.1. GivenLid from T to G,

andL′ = the restriction ofLid to key(T), thengetSkeleton(T, L′) returns(S,Anc) such that,

• Anc is theanchor of T (anchor(T )).

• If C corresponds to a (strong or weak) entity, thenencodeTree(S,L′) is logically equivalent

to identifyC .

Proof. The lemma is proven by using induction on the number of applications of the function

getSkeleton resulting from a single call on the tableT .

At the base case, step 1 ofgetSkeleton indicates thatkey(T ) links to a single concept inG.

According to theer2rel design, tableT is derived either from a strong entity or a functional rela-

tionship from a strong entity. For either case,anchor(T ) is the strong entity, andencodeTree(S,

L′) is logically equivalent toidentifyE , whereE is the strong entity.
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For the induction hypothesis, we assume that the lemma holds for each table thatis referenced

by a foreign key inT .

On the induction steps, step 2.(a) identifies that tableT is derived from a functional relationship

from a weak entity. By the induction hypothesis, the lemma holds for the weak entity. So does it

for the relationship.

Step 2.(b) identifies thatT is a table representing a weak entityW with an owner entityE. Since

there is only one total functional relationship from a weak entity to its owner entity, getSkeleton

correctly returns the identifying relationship. By the induction hypothesis, we prove that formula

encodeTree(S, L′) is logically equivalent toidentifyW .

�

We now state the desirable properties of the mapping discovery algorithm. First, getTree finds

the desired semantic mapping, in the sense that

Theorem 4.3.1.Let CM graphG encode an ER0 diagramE . Let tableT be part of a relational

schema obtained byer2rel derivation fromE . GivenLid fromT to G, then some treeS returned by

getTree(T, Lid) has the property that the formula generated byencodeTree(S,Lid) is logically

equivalent to the semantics assigned toT by theer2rel design.

Proof. SupposeT is obtained by merging the table for a entityE with tables representing functional

relationshipsf1, . . . , fn, n ≥ 0, involving the same entity.

Whenn = 0, all columns will come fromE, if it is a strong entity, or fromE and its owner

entiti(es), whose attributes appear inkey(T). In either case, step 2 ofgetTree will apply, returning

the skeletonS. encodeTree then uses the full original correspondence to generate a formula where

the attributes ofE corresponding to non-key columns generate conjuncts that are added toformula

identifyE . Following Lemma 1, it is easy to show by induction on the number of such attributes that

the result is correct.

Whenn > 0, step 1 ofgetTree constructs a skeleton tree, which representsE by Lemma 1. Step

3 adds edgesf1, . . . , fn from E to other entity nodesE1, . . . , En returned respectively as roots of

skeletons for the other foreign keys ofT . Lemma 1 also shows that these translate correctly. Steps
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4 and 5 cannot apply to tables generated according toer2rel design. So it only remains to note that

encodeTree creates the formula for the final tree, by generating conjuncts forf1, . . . , fn and for

the non-key attributes ofE, and adding these to the formulas generated for the skeleton subtrees at

E1, . . . , En.

This leaves tables generated from relationships in ER0 — the cases covered in the last two rows

of Table 1 — and these can be dealt with using Lemma 1.

�

Note that this result is non-trivial, since, as explained earlier, it would notbe satisfied by the

current Clio algorithm [PVM+02], if applied blindly toE viewed as a relational schema with unary

and binary tables. SincegetTree may return multiple answers, the following converse “soundness”

result is significant.

Theorem 4.3.2. If S′ is any tree returned bygetTree(T, Lid), with T , Lid, and E as above in

Theorem 4.3.1, then the formula returned byencodeTree(S′, Lid) represents the semantics ofsome

tableT ′ derivable byer2rel design fromE , whereT ′ is isomorphic toT .

Proof. The theorem is proven by showing that each tree returned bygetTree will result in tableT ′

isomorphic toT .

For the four cases in Table 4.1,getTree will return a single semantic tree for a table derived from

an entity (strong or weak), and possibly multiple semantic trees for a (functional) relationship table.

Each of the semantic trees returned for a relationship table is identical to the original ER diagram

in terms of the shape and the cardinality constraints. As a result, applyingτ to the semantic tree

generates a table isomorphic toT .

Now supposeT is a table obtained by merging the table for entityE with n tables representing

functional relationshipsf1, . . . , fn fromE to somen other entities. The recursive callsgetTree in

step 3 will return semantic trees, each of which represent functional relationships fromE. As above,

these would result in tables that are isomorphic to the tables derived from theoriginal functional

relationshipsfi, i = 1...n. By the definition of themerge operation, the result of merging these

will also result in a tableT ′ which is isomorphic toT . �
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We wish to emphasize that the above algorithms has been designed to deal even with schemas

not derived usinger2rel from some ER diagram. An application of this was illustrated already in

Example 4.3.4 Another application of this is the use of functional paths instead of just functional

edges. The following example illustrates an interesting scenario in which we obtained the right

result.

Example 4.3.6.Consider the following relational table

T(personName, cityName, countryName),

where the columns correspond to, respectively, attributespname, cname, andctrname of concepts

Person, City andCountry in a CM. If the CM contains a path such thatPerson -- bornIn

->- City -- locatedIn ->- Country , then the above table, which is not in 3NF and was

not obtained usinger2rel design (which would have required a table forCity), would still get the

proper semantics:

T(personName, cityName, countryName) → Person(x1), City(x2),

Country(x3), bornIn(x1,x2),

locatedIn(x2,x3),

pname(x1,personName),

cname(x2,cityName),

ctrname(x3,countryName).

If, on the other hand, there was a shorter functional path fromPerson to Country, say an edge

labeledcitizenOf, then the mapping suggested would have been:

T(personName, cityName, countryName) → Person(x1), City(x2),

Country(x3), bornIn(x1,x2 ),

citizenOf(x1,x3), ...

which corresponds to theer2rel design. Moreover, hadcitizenOf not been functional, then once

again the semantics produced by the algorithm would correspond to the non-3NF interpretation,

which is reasonable since the table, having onlypersonName as key, could not store multiple

country names for a person. �
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4.3.2 ER1: Reified Relationships

It is desirable to also have n-ary relationship sets connecting entities, and toallow relationship sets

to have attributes in an ER model; we label the language allowing us to model such aspects by ER1.

Unfortunately, these features are not directly supported in most CMLs, such as OWL, which only

have binary relationships. Since binary decomposition of an n-ary relationship cannot be always

carried out [SJ95], such notions must instead be represented by“reified relationships” [DP02] (we

use an annotation♦ to indicate the reified relationships in a diagram): concepts whose instances

represent tuples, connected by so-called “roles” to the tuple elements. So,if Buys relatesPerson,

Shop andProduct, through rolesbuyer, source andobject, then these are explicitly represented

as (functional) binary associations, as in Figure 4.9. And a relationship attribute, such as when the

buying occurred, becomes an attribute of theBuys concept, such aswhenBought.

Person

-whenBought

Buys Shop

product

buyer source

object
1..1

0..*

1..11..1 0..* 0..*

Figure 4.9: N-ary Relationship Reified.

Unfortunately, reified relationships cannot be distinguished reliably fromordinary entities in

normal CMLs based on purely formal, syntactic grounds, yet they need tobe treated in special ways

during semantic recovery. For this reason we assume that they can be distinguished onontological

grounds. For example, in Dolce [GGM+02], they are subclasses of top-level conceptsQuality and

Perdurant/Event. For a reified relationshipR, we use functionsroles(R) andattribs(R) to retrieve

the appropriate (binary) properties.

Theer2rel designτ of relational tables for reified relationships is an extension of the treatment

of binary relationships, and is shown in Table 4.2. As with entity keys, we areunable to capture in
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ER model object O Relational Table τ (O)

Reified Relationship R columns: ZX1 . . . Xn

if there is a functional primary key: X1

roler1 for R f.k.’s: X1, . . . , Xn

E1 --<- r1 ->-- R anchor: R

--- rj ->-- Ej semantics: T (ZX1 . . . Xn) → R(y),Ei(wi), hasAttribs(y, Z), ri(y, wi),

let Z=attribs(R) identifyEi
(wi, Xi), . . .

Xi=key(τ(Ei)) identifier: identifyR(y, X1) → R(y), E1(w), r1(y, w),

whereEi fills role ri identifyE1
(w, X1).

Reified Relationship R columns: ZX1 . . . Xn

if r1, . . . , rn are roles ofR primary key: X1 . . . Xn

let Z=attribs(R) f.k.’s: X1, . . . , Xn

Xi=key(τ(Ei)) anchor: R

whereEi fills role ri semantics: T (ZX1 . . . Xn) → R(y),Ei(wi), hasAttribs(y, Z), ri(y, wi),

identifyEi
(wi, Xi), . . .

identifier: identifyR(y, . . . Xi . . .) → R(y), . . . Ei(wi), ri(y, wi),

identifyEi
(wi, Xi),...

Table 4.2:er2rel Design for Reified Relationship.

CM situations where some subset of more than one roles uniquely identifies therelationship [JS96].

Theer2rel designτ on ER1 also admits themerge operation on tables generated byτ . Merging

applies to an entity table with other tables of some functional relationships involving the same entity.

In this case, the merged semantics is the same as that of merging tables obtained by applyingτ to

ER0, with the exception that some functional relationships may be reified.

To discover the correct anchor for reified relationships and get the proper tree, we need to modify

getSkeleton, by adding the the following case between steps 2(b) and 2(c).

• If key(T )=F1F2 . . . Fn and there exist reified relationshipR with n rolesr1, . . . , rn pointing

at the singleton nodes inAnc1, . . . , Ancn respectively,

– then letS = combine({rj}, {Ssj}), and return(S, {R}).

getTree should compensate for the fact that ifgetSkeleton finds areified version of a many-

many binary relationship, it will no longer look for an unreified one in step 2c. So after step 1. we

add
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• if key(T ) is the concatenation of two foreign keysF1F2, andnonkey(T) is empty, compute

(Ss1,Anc1) and (Ss2, Anc2) as in step 2. ofgetSkeleton; then findρ=shortest many-many

path connectingAnc1 toAnc2;

– return (S′) ∪ (combine(ρ, Ss1, Ss2))

In addition, when traversing the CM graph for finding shortest paths in both functions, we need

to recalculate the lengths of paths when reified relationship nodes are present. Specifically, a path of

length 2 passing through a reified relationship node should be counted as apath of length 1, because

a reified binary relationship could have been eliminated, leaving a single edge.3 Note that a semantic

tree that includes a reified relationship node is valid only if all roles of the reified relationship have

been included in the tree. Moreover, if the reified relation had attributes of itsown, they would show

up as columns in the table that are not part of any foreign key. Therefore, a filter is required at the

last stage of the algorithm:

• If a reified relationshipR appears in the final semantic tree, then so must all its role edges.

And if one suchR has as attributes the columns of the table which do not appear in foreign

keys or the key, then all other candidate semantics need to be eliminated.

The previous version ofgetTree was set up so that with these modifications, roles and attributes

to reified relationships will be found properly.

If we continue to assume that no more than one column corresponds to the sameentity attribute,

the previous theorems hold for ER1 as well. To see this, consider the following two points. First,

the tree identified for any table generated from a reified relationship is isomorphic to the one from

which it was generated, since the foreign keys of the table identify exactly the participants in the

relationship, so the only ambiguity possible is the reified relationship (root) itself. Second, if an

entity E has a set of (binary) functional relationships connecting to a set of entities E1,. . .,En,

then merging the corresponding tables withτ(E) results in a table that is isomorphic to a reified

relationship table, where the reified relationship has a single functional rolewith filler E and all

other role fillers are the set of entitiesE1,. . .,En.
3A different way of “normalizing” things would have been to reify even binary associations.
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4.3.3 Replication

We next deal with the equivalent of the full ER1 model, by allowing recursive relationships, where

a single entity plays multiple roles, and the merging of tables for different functional relationships

connecting the same pair of entity sets (e.g.,works for andmanages). In such cases, the mapping

described in Table 4.1 is not quite correct because column names would be repeated in the multiple

occurrences of the foreign key. In our presentation, we will distinguishthese (again, for ease of

presentation) by adding superscripts as needed. For example, if entity set Person, with keyssn, is

connected to itself by thelikes property, then the table forlikes will have schemaT [ssn1, ssn2].

During mapping discovery, such situations are signaled by the presence of multiple columns

c andd of tableT corresponding to the same attributef of conceptC. In such situations, we

modify the algorithm to first make a copyCcopy of nodeC, as well as its attributes, in the CM

graph. Furthermore,Ccopy participates in all the object relationsC did, so edges for this must

also be added. After replication, we can setonc(c) = C andonc(d) = Ccopy, or onc(d) = C

andonc(c) = Ccopy (recall thatonc(c) retrieves the concept corresponded to by columnc in the

algorithm). This ambiguity is actually required: given a CM withPerson and likes as above, a

tableT [ssn1, ssn2] could have two possible semantics:likes(ssn1, ssn2) and likes(ssn2, ssn1),

the second one representing the inverse relationship,likedBy. The problem arises not just with

recursive relationships, as illustrated by the case of a tableT [ssn, addr1, addr2], wherePerson

is connected by two relationships,home andoffice, to conceptBuilding, which has anaddress

attribute.

The main modification needed to thegetSkeleton andgetTree algorithms is that no tree should

contain two or more functional edges of the formD --- p ->-- C and its replicateD

--- p ->-- Ccopy , because a functionp has a single value, and hence the different columns

of a tuple corresponding to it will end up having identical values: a clearly poor schema.

As far as our previous theorems, one can prove that by making copies ofan entityE (sayE and

Ecopy), and also replicating its attributes and participating relationships, one obtainsan ER diagram

from which one can generate isomorphic tables with identical semantics, according to theer2rel
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mapping. This will hold true as long as the predicate used forboth E andEcopy isE( ); similarly,

we need to use the same predicate for the copies of the attributes and associations in whichE and

Ecopy participate.

Even in this case, the second theorem may be in jeopardy if there are multiple possible “identi-

fying relationships” for a weak entity, as illustrated by the following example.

Example 4.3.7. An educational department in a provincial government records the transfers of

students between universities in its databases. A student is a weak entity depending for identifica-

tion on the university in which the student is currently registered. A transfered student must have

registered in another university before transferring. The tableT :Transferred(sno,univ, sname)

records who are the transferred students, and their name. The tableT :previous(sno,univ, pUniv)

stores the information about thepreviousUniv relationship. A CM is depicted in Figure 4.10. To

-sno

-sname

TransferredStudent

-name

-address

University
registerIn

previousUniv

1..11..*

0..* 1..1

TransferredStudent( sno,univ ,sname )

Figure 4.10: A Weak Entity and Its Owner Entity.

discover the semantics of tableT :Transferred, we link the columns to the attributes in the CM as

shown in Figure 4.10. One of the skeletons returned by the algorithm for theT :Transferred will

be TransferredStudent --- previousUniv ->-- University . But the design re-

sulting from this according to theer2rel mapping is not isomorphic tokey(Transferred), since

previousUniv is not the identifying relationship of the weak entityTransferredStudent.

�

From above example, we can see that the problem is the inability of CMLs suchas UML and

OWL to fully capture notions like “weak entity” (specifically, the notion of identifying relationship),

which play a crucial role in ER-based design. We expect such cases to be quite rare though – we
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certainly have not encountered any in our example databases.

4.3.4 Extended ER: Adding Class Specialization

The ability to represent subclass hierarchies, such as the one in Figure 4.11 is a hallmark of CMLs

and modern so-called Extended ER (EER) modeling.

-ss#

Person

-college

Faculty

-csrId

Course

Assist. ProfessorProfessor Lecturer

teach

coord

1..* 0..1

0..1

1..*

Figure 4.11: Specialization Hierarchy.

Almost all textbooks (e.g., [RG02]) describe several techniques for designing relational schemas

in the presence of class hierarchies

1. Map each concept/entity into a separate table following the standarder2rel rules. This ap-

proach requires two adjustments: First, subclasses must inherit identifyingattributes from a

single super-class, in order to be able to generate keys for their tables. Second, in the table

created for an immediate subclassC ′ of classC, its key key(τ(C ′)) should also be set to

reference as a foreign keyτ(C), as a way of maintaining inclusion constraints dictated by the

ISA relationship.

2. Expand inheritance, so thatall attributes and relations involving a classC appear on all its

subclassesC ′. Then generate tables as usual for the subclassesC ′, though not forC itself.

This approach is used only when the subclasses cover the superclass.
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3. Some researchers also suggest a third possibility: “Collapse up” the information about sub-

classes into the table for the superclass. This can be viewed as the result of merge(TC , TC′),

whereTC(K,A) andTC′(K,B) are the tables generated forC and its subclassC ′ according

to technique (1.) above. In order for this design to be “correct”, the technique in [MM90]

requires thatTC′ not be the target of any foreign key references (hence not have any relation-

ships mapped to tables), and thatB be non-null (so that instances ofC ′ can be distinguished

from those ofC).

The use of the key for the root class, together with inheritance and the useof foreign keys to also

check inclusion constraints, make many tables highly ambiguous. For example,according to the

above, tableT (ss#, crsId), with ss# as the key and a foreign key referencingT ′, could represent

at least

(a)Faculty teachCourse

(b) Lecturer teachCourse

(c) Lecturer coordCourse.

This is made combinatorially worse by the presence of multiple and deep hierarchies (e.g., imagine

a parallelCourse hierarchy), and the fact that not all CM concepts are realized in the database

schema, according to our scenario. For this reason, we have chosen todeal with some of the ambi-

guity by relying on users, during the establishment of correspondences. Specifically, the user is sup-

posed to provide a correspondence from columnc to attributef on the lowest class whose instances

provide data appearing in the column. Therefore, in the above example of tableT (ss#, crsId),

ss# should be set to correspond toss# on Faculty in case (a), while in cases (b) and (c) it should

correspond toss# onLecturer. This decision was also prompted by the CM manipulation tool that

we are using, which automatically expands inheritance, so thatss# appears on all subclasses.

Under these circumstances, in order to deal appropriately with designs (1.) and (2.) above, we

do not need to modify our earlier algorithm in any way, as long as we first expand inheritance in

the graph. So the graph would showLecturer -- teaches; coord ->- Course in the
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above example, andLecturer would have all the attributes ofFaculty.

To handle design (3.), we add to the graph an actual edge for the inverseof the ISA rela-

tion: a functional edge labeledalsoA, with lower-bound0; e.g., Faculty --- alsoA ->--

Lecturer . It is then sufficient to allow ingetTree for functional paths between concepts to

includealsoA edges; e.g.,Faculty can now be connected toCourse through pathalsoA followed

by coord. ThealsoA edge is translated into the identity predicate, and it is assigned cost zero in

evaluating a functional path mixed withalsoA edge and other ordinary functional edges.4

In terms of the properties of the algorithm we have been considering so far, the above three

paragraphs have explained that among the answers returned by the algorithm will be the correct

one. On the other hand, if there are multiple results returned by the algorithm, as shown in Example

4.3.7, some semantic trees may not result in isomorphic tables to the original table,if there are more

than one total functional relationships from a weak entity to its owner entity.

4.3.5 Outer Joins

As we have cautioned earlier, the definition of the semantic mapping forT = merge(TE , Tp),

whereTE(K,V ) → φ(K,V ) andTp(K,W ) → ψ(K,W ), was not quite correct. The formula

T (K,V,W ) → φ(K,V ), ψ(K,W ) (4.2)

describes a join onK, rather than a left-outer join, which is what is required ifp is a non-total

relationship. In order to specify the equivalent of outer joins in a perspicuous manner, we will use

conjuncts of the form

dµ(X,Y )eY , (4.3)

which will stand for the formula

µ(X,Y ) ∨ (Y = null ∧ ¬∃Z.µ(X,Z)), (4.4)

4It seems evident that ifB ISA C, andB is associated withA via p, then this is a stronger semantic connection
betweenC andA than ifC is associated toD via aq1, andD is associated toA via q2.
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indicating that null should be used if there are no satisfying values for the variablesY . With this

notation, the proper semantics for merge is

T (K,V,W ) → φ(K,V ), dψ(K,W )eW . (4.5)

In order to obtain the correct formulas from trees,encodeTree needs to be modified so that

when traversing a non-total edgepi that is not part of the skeleton, in the second-to-last line of the

algorithm we must allow for the possibility ofvi not existing.

4.4 Experimental Evaluation

So far, we have developed the mapping inference algorithm by investigatingthe connections be-

tween the semantic constraints in relational models and that in CMs. The theoretical results show

that our algorithm will report the “right” semantics for most schemas designed following the widely

accepted design methodology. Nonetheless, it is crucial to test the algorithmin real-world schemas

and CMs to see its overall performance. To do this, we have implemented the mapping inference al-

gorithm in our prototype systemMAPONTO, and have applied it on a set of real-world schemas and

CMs. In this section, we describe the implementation and provide some evidencefor the effective-

ness and usefulness of the prototype tool by discussing the set of experiments and our experience.

Implementation. We have implemented theMAPONTO tool as a third-party plugin of the well-

known KBMS Prot́eǵe5 which is an open platform for ontology modeling and knowledge acquisi-

tion. As OWL becomes the official ontology language of the W3C, intended foruse with Semantic

Web initiatives, we use OWL as the CML in the tool. This is also facilitated by the Protéǵe’s OWL

plugin [KFNM04], which can be used to edit OWL ontologies, to access reasoners for them, and

to acquire instances for semantic markup. TheMAPONTO plugin is implemented as a full-size user

interface tab that takes advantage of the views of Protéǵe user interface. As shown in Figure 4.12,

users can choose database schemas and ontologies, create and manipulate correspondences, gener-

5http://protege.stanford.edu
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ate and edit candidate mapping formulas and graphical connections, and produce and save the final

mappings into designated files. In addition, there is a library of other Protéǵe plugins that visualize

ontologies graphically and manage ontology versions. Those plugins sustain our goal of provid-

ing an interactively intelligent tool to database administrators so that they may establish semantic

mappings from the database to CMs more effectively.

Figure 4.12:MAPONTO Plugin of Protege.

Schemas and CMs.Our test data were obtained from various sources, and we have ensured that

the databases and CMs were developed independently. The test data arelisted in Table 4.3. They

include the following databases: the Department of Computer Science database in the University of

Toronto; the VLDB conference database; the DBLP computer science bibliography database; the

COUNTRY database appearing in one of reverse engineering papers [Joh94] (Although thecountry

schema is not a real-world database, it appears as a complex experimentalexample in [Joh94], and

has some reified relationship tables, so we chose it to test this aspect of ouralgorithm); and the

test schemas in OBSERVER [MIKS96] project. For the CMs, our test data include: the academic

department ontology in the DAML library; the academic conference ontologyfrom the SchemaWeb

ontology repository; the bibliography ontology in the library of the Stanford’s Ontolingua server;

and the CIA factbook ontology. Ontologies are described in OWL. For each ontology, the number
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of links indicates the number of edges in the multi-graph resulted from object properties.

Database Schema Number of Number of Ontology Number of Number of

Tables Columns Nodes Links

UTCS Department 8 32 Academic Department 62 1913

VLDB Conference 9 38 Academic Conference 27 143

DBLP Bibliography 5 27 Bibliographic Data 75 1178

OBSERVER Project 8 115 Bibliographic Data 75 1178

Country 6 18 CIA factbook 52 125

Table 4.3: Characteristics of Schemas and CMs for the Experiments.

Results and Experience.To evaluate our tool, we sought to understand whether the tool could pro-

duce the intended mapping formula if the simple correspondences were given. We were especially

concerned with the number of formulas presented by the tool for users to sift through. Further, we

wanted to know whether the tool was still useful if the correct formula was not generated. In this

case, we expected that a user could more easily debug a generated formula to reach the correct one

instead of creating it from scratch. A summary of the experimental results are listed in Table 4.4

which shows the average size of each relational table schema in each database, the average number

of candidates generated, and the average time for generating the candidates. Notice that the number

of candidates is the number of semantic trees obtained by the algorithm. Also, a single edge of an

semantic tree may represent the multiple edges between two nodes, collapsed using ourp; q abbre-

viation. If there arem edges in a semantic tree and each edge hasni (i = 1, ..,m) original edges

collapsed, then there are
∏m

i ni original semantic trees. We show below a formula generated from

such a collapsed semantic tree:

TaAssignment(courseName, studentName) → Course(x1), GraduateStudent(x2),

[hasTAs;takenBy] (x1,x2),

workTitle(x1,courseName),

personName(x2,studentName).

where, in the semantic tree, the nodeCourse and the nodeGraduateStudent are connected by

a single edge with labelhasTAs;takenBy , which represents two separate edges,hasTAs and

takenBy.
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Database Schema Avg. Number of Avg. Number of Avg. Execution

Cols/per table Candidates generated time(ms)

UTCS Department 4 4 279

VLDB Conference 5 1 54

DBLP Bibliography 6 3 113

OBSERVER Project 15 2 183

Country 3 1 36

Table 4.4: Performance Summary for Generating Mappings from RelationalTables to CMs.

Table 4.4 indicates thatMAPONTO only presents a few mapping formulas for users to examine.

This is due in part to our compact representation of parallel edges between two nodes shown above.

To measure the overall performance, we manually created the mapping formulas for all the 36 tables

and compared them to the formulas generated by the tool. We observed that the tool produced

correct formulas for 31 tables. This demonstrates that the tool is able to infer the semantics of many

relational tables occurring in practice in terms of an independently developed CM.

We were also interested in the usefulness of the tool in those cases when theformulas generated

were not the intended ones. For each such formula, we compared it to the manually generated

correct one, and we wanted to know how much effort it would take to “debug” a generated formula

to reach the intended one. We use the number of changes of predicate names in the formula to

measure the effort. For example, for the table

Student(name, office, position, email, phone, supervisor),

the tool generated the following formula

Student(x1), emailAddress(x1,email), personName(x1,name),

Professor(x2), Department(x3), head(x3,x2),

affiliatedOf(x3,x1), personName(x2, supervisor)... (1)

If the intended semantics for the above table columns is

Student(x1), emailAddress(x1,email), personName(x1,name),

Professor(x2), ResearchGroup(x3), head(x3,x2),

affiliatedOf(x3,x1), personName(x2, supervisor)... (2)
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then one can change the predicateDepartment(x3) to ResearchGroup(x3) in formula (1) instead

of writing the entire formula (2) from scratch. Our experience working withthe data sets shows that

at average only about 30% of predicates in a single incorrect formula returned by theMAPONTO tool

needed to be modified to reach the correct formula. This is a significant saving in terms of human

labors.

Tables 4.4 indicates that execution times were not significant, since, as predicted, the search for

subtrees and paths took place in a relatively small neighborhood.

We believe it is instructive to consider the various categories of problematic schemas and map-

pings, and the kind of future work they suggest.

(i) Absence of tables which should be present according toer2rel. For example, we expect the

connectionPerson -- researchInterest --- Research to be returned for the table

AreaOfInterest(name, area).

However,MAPONTO returned

Person -<- headOf --- ResearchGroup -<- researchProject --- Research ,

because there was no table for the conceptResearch in the schema, and soMAPONTO treated it

as a weak entity table. Such problems are caused, among others, by the elimination of tables that

represent finite enumerations, or ones that can be recovered by projection from tables representing

total many-to-many relationships. These pose an important open problem for now.

(ii) Mapping formula requiring selection.The table

European(country, gnp)

means countries which are located in Europe. From the database point of view, this selects tuples

representing European countries. Currently,MAPONTO is incapable of generating formulas involv-

ing the equivalent to relational selection. This particular case is an instanceof the need to express

“higher-order” correspondences, such as between table/column names and CM values. A similar

example appears in [MHH00].

(iii) Non-standard design.One of the bibliography tables had a columns ofauthor and a column
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of otherAuthors for each document.MAPONTO found a formula that was close to the desired one,

with conjunctshasAuthor(d, author), hasAuthor(d, otherAuthors), but not surprisingly, could

not add the requirement thatotherAuthors is really the concatenation of all but the first author.

4.5 Finding GAV Mappings

Arguments have been made that the proper way to connect CMs and databases for the purpose

of information integration is to show how concepts and properties in the CM canbe expressed as

queries over the database – the so-called GAV approach.

To illustrate the idea, consider Example 4.1.1 , from Section 4.1, where the semantic mapping

we proposed was

T :Employee(ssn, name, dept, proj) → O:Employee(x1), O:hasSsn(x1,ssn),

O:hasName(x1,name), O:Department(x2),

O:works for(x1,x2), O:hasDeptNumber(x2,dept),

O:Worksite(x3), O:works on(x1,x3),

O:hasNumber(x3,proj).

In this case, we are looking for formulas which expressO:Department, O:works on, etc. in terms

of T :Employee, etc., as illustrated below.

We note that a strong motivation for mappings between CMs and databases expressed in this

way is that they can be used to populate the CM with instances from the database – a task that is

expected to be important for the Semantic Web.

An essential initial step is dealing with the fact that in the CM (as in object oriented databases),

objects have intrinsic identity, which is lost in the relational data model, where thisnotion is replaced

by external identifiers/keys. For this purpose, the standard approachis to introduce special Skolem

functions that generate these identifiers from the appropriate keys, as in:

O:Employee(ff(ssn)) → T :Employee(ssn, , , ).
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One then needs to express the external identifiers using axioms that relate these Skolem functions

with the appropriate CM attributes:

O:hasSsn(ff(ssn),ssn) → T :Employee(ssn, , , ).

Finally, one can express the associations by using the above identifiers:

O:works on(ff(ssn),gg(dept)) → T :Employee(ssn, ,dept, ).

The following less ad-hoc approach leads to almost identical results, but relies on the logical

translation of the original mapping, found by the algorithms presented earlierin this paper. For

example, the actual semantics of tableT :Employee is expressed by the formula

(∀ssn, name, dept, proj.) (T :Employee(ssn, name, dept, proj) ⇒

(∃x, y, z.) (O:Employee(x)∧ O:hasSsn(x,ssn)∧

O:hasName(x,name) ∧ O:Department(y)∧

O:hasDeptNumber(y,dept) ∧O:works for(x,y)∧

O:Worksite(z) ∧ O:works on(x,z) ∧ O:hasNumber(z,proj))).

The above formula can be Skolemized to eliminate the existential quantifiers to yield6:

(∀ssn, name, dept.) (T :Employee(ssn, name, dept) ⇒

O:Employee(f(ssn, name, dept))∧O:hasSsn(f(ssn, name, dept),ssn)∧

O:hasName(f(ssn, name, dept),name)∧

O:Department(g(ssn, name, dept))∧

O:hasDeptNumber(g(ssn, name, dept),dept)∧

O:works for(f(ssn, name, dept),g(ssn, name, dept))).

This implies logically a collection of formulas, including

6For simplicity, we eliminate henceforth the part dealing with projects.
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(∀ssn, name, dept.) (O:Employee(f(ssn, name, dept)) ⇐

T :Employee(ssn, name, dept)).

((∀ssn, name, dept.) (O:hasSsn(f(ssn, name, dept),ssn) ⇐

T :Employee(ssn, name, dept)).

(∀ssn, name, dept.) (O:works for(f(ssn, name, dept),g(ssn, name, dept)) ⇐

T :Employee(ssn, name, dept)).

Note however that different tables, such as

T :manages(ssn,dept)

say, introduce different Skolem functions, as in :

O:Employee(h(ssn, dept)) ⇐ T :manages(ssn, dept).

O:hasSsn(h(ssn, dept),ssn) ⇐ T :manages(ssn, dept).

Unfortunately, this appears to leave open the problem of connecting the CMindividuals obtained

from T :manages andT :Employee. The answer is provided by the fact thatO:hasSsn is inverse

functional (ssn is a key), which means that there should be a CM axiom

(∀u, v, ssn.) (O:hasSsn(u, ssn) ∧ O:hasSsn(v, ssn) ⇒ u = v).

This implies, among others, that

(∀ssn, name, dept.) (f(ssn, name, dept) = h(ssn, dept)).

So we need to answer queries over the CM using all such axioms.

A final, important connection to make in this case is with the research on answering queries

using views [Hal01]: The semantic mappings found by the earlier algorithms in this paper can be

regarded as view definitions for each relational tables, using conjunctive queries over CM predicates

(“tables”). What we are seeking in this section is answers to queries phrased in terms of the CM

predicates, but rephrased in terms of relational tables, where the data instances reside — which is

exactly the problem of query answering using views. The kind of rules weproposed earlier in this
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section are known as “inverse rules” [Qia96], and in fact Duschka and Levy [DGL00] even deal

(implicitly) with the alias problem we mentioned above by their solution to the query answering

problem in the presence of functional dependencies: keys functionallydetermine the rest of the

columns in the table.

The one difference in our case worth noting is that we are willing to countenance answers which

contain Skolem functions (since this is how we generate object id’s in the CM).

4.6 Discussion

We now discuss the limitations of our solution to the problem of discovering semantic mappings

from relational schemas to CMs. First, the solution essentially infers semantic mappings from sim-

ple correspondences. To prove the “correctness” of the solution forthe limited class of problems,

we assume that the correspondences are correct, meaning that the columnnames in the tables cor-

respond to the attributes of the concepts in the CM from which the column names were derived by

theer2rel methodology. Since automatic schema matching tools often generate inaccurate and ex-

cessive correspondences, if a schema mapping tool is used for generating correspondences, it would

be better to adjust the correspondences before starting the semantic mapping discovery process.

Second, correspondences are assumed to be simple and one-to-one functions from column names

in tables to attributes of concepts in a CM. Nevertheless, sophisticated usersmay want to specify

complex correspondences and let the tool to do the rest job. We leave this as a future work to be

investigated. Third, in regard to our definition of semantic mapping between models, we seek for

“semantically similar” associations in a schema and in a CM for discovering mapping. The guidance

provided by the standard database design principles is appropriate for our situation. Sometimes,

however, people may want to establish mappings that are not necessarily “semantically similar” as

defined in this dissertation. We did not design our solution to deal with this situation.

Fourth, much the semantics of a database schema is encoded in a variety of constructs in the

schema. For example, the data types of columns often imply some meaning to a schema. Our

solution, however, does not take advantage of data types and element names in a schema, nor of
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data types and names of objects (i.e., concept, attribute, and relationship) in aCM. We assume

that there are implicit functions for converting data values in the domains of a schema to data

values in the domains of a CM. Finally, we have limited our mapping formulas to the LAV (or

conversely, GAV) formalism. A more flexible and general formalism would beglobal-local-as-view

(GLAV), meaning a mapping formula would associate a conjunctive formula over the schema with a

conjunctive formula over the CM. This might be possible if the CM would be better for interpreting

a view defined over the schema. Our solution, however, do not generateGLAV mapping formula at

this stage.

We envision a number of future research directions. Numerous additionalsources of knowledge,

including richer CMs, actual data stored in tables, linguistic and semantic relationships between

identifiers in tables and a CM, can be used to refine the suggestions ofMAPONTO, including pro-

viding a rank ordering for them. As in the original Clio system, more complex correspondences

(e.g., from columns to sets of attribute names or class names), should also be investigated in order

to generate the full range of mappings encountered in practice.

4.7 Summary

A semantic mapping relating a relational schema to a CM is a key component of many data integra-

tion systems. Such a mapping also provides precise meaning for data on the Semantic Web. In this

chapter we studied a tool that assists the user in specifying a semantic mappingfrom a relational

schema to a CM. As in many mapping discovery tools, we assume the user provides a set of simple

element correspondences between the relational schema and the CM as anadditional input. The

tool generates a set of logic formulas each of which associates a relational table with a conjunctive

formula over the CM.

Our algorithm relies on information from the database schema (key and foreign key structure)

and the CM (cardinality restrictions,ISA hierarchies). Theoretically, our algorithm infers all and

only the relevant semantics if a relational schema was generated using standard database design

principles. In practice, our experience working with independently developed schemas and CMs
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has shown that significant effort can be saved in specifying the LAV mapping formulas.

In next chapter, we develop a solution to the problem of discovering semantic mapping from an

XML schema to a CM. We explore the semantic information encoded in the nested structure of an

XML schema.



Chapter 5

Discovering Semantic Mappings from

XML Schemas to CMs

In this chapter, we develop a solution for discovering semantic mappings from XML schemas to

CMs. We start by reviewing XML schema and the mapping formalism. We use an example to

illustrate the reason for developing a different algorithm for discoveringsemantic mappings for

XML schemas rather than using the algorithm for relational schemas by converting XML schemas

into relational schemas. Subsequently, we describe the principles and the algorithm in Section 5.2,

and report the results of experimental evaluation in Section 5.3. Finally, We discuss limitations and

future directions in Section 5.4, and summarize the chapter in Section 5.5.

5.1 The Problem

There is much XML data published on the current Web, since XML has become a standard format

for information exchange on the Web. As a syntactic model, XML does not support integration

automatically due to the heterogeneity in structures and vocabularies. In the database area, there

are a number of important database problems requiring semantic mappings between XML data and

CMs. These include XML data integration systems using a global conceptualschema, and peer-

100
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to-peer data management systems [HIMT03]. Furthermore, semantic mappings between XML data

and ontologies play an important part in accommodating XML data to the Semantic Web.

Mappings between XML schemas and CMs could be as simple as value correspondences be-

tween single elements or as complex as logic formulas. In almost all of the applications achieving

accurate information integration, complex logic formulas are required. As for discovering semantic

mapping from relational database schemas to CMs, manual creation of complex mapping formulas

between XML schemas and CMs is also time-consuming and error-prone. Inthis chapter, we pro-

pose a solution that assists users to construct complex mapping formulas between XML schemas

and CMs.

The proposed solution takes three inputs: a CM, an XML schema (actually, itsunfolding into

tree structures that we callelement trees; see Section 3.1.2), and simple correspondences from XML

attributes to CM datatype properties, of the kind possibly generated by already existing schema

matching tools. The output is a list of complex mapping formulas possibly representing the seman-

tics of the XML schemas in terms of the CMs.

A semantic mapping from an XML schema to a CM may consist of a set of mapping formulas

each of which is from an element tree to a conjunctive formulas in the CM. Anelement treecan be

constructed through doing a depth first search (DFS). Amapping formulabetween an element tree

and a CM has the formΨ(X) → Φ(X,Y ), whereΨ(X) is a tree formula in the XML schema and

Φ(X,Y ) is a conjunctive formula in the CM.

There are several proposals in the literature for converting and storingXML data into relational

databases [STH+99, LC00]. A natural question is whether we could utilize the mapping algorithm

we have developed for relational database schemas by converting XML schemas into relational

tables. When we looked into the algorithms for converting XML schemas/DTDs into relational

schemas, we noticed that the resulting relational tables were in fact the flat storage of the hierarchical

data. In order to minimize the fragmentation of the hierarchical data, tuples in tables may have

different meanings because they may come from different levels of the hierarchy. Their positions

are maintained by pointing to different tuples generated from parents or theroot in the original
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hierarchy. Furthermore, each tuple is assigned a newly system-generated id attribute as its identifier.

Consequently, applying the algorithm of discovering semantic mappings fromrelational tables to

CMs would not produce good results because the information about keysand foreign keys, which

are heavily relied on by the algorithm, become the mechanism for hierarchy maintenance. This is

mainly because the goal of converting XML schemas into relational tables is to store and query

XML data in relational databases. The following example illustrates the above point.

Example 5.1.1.We use the example of [STH+99] to show the point. The “hybrid inlining” tech-

nique is proposed by [STH+99] for converting XML schemas/DTDs into relational tables. The

following XML DTD is given by [STH+99] for demonstrating the algorithm.

<!ELEMENT book (booktitle, author)>
<!ELEMENT article(title, author*,contactauthor)>
<!ELEMENT contactauthor EMPTY>
<!ATTLIST contactauthor authorID, IDREF IMPLIED>
<!ELEMENT monograph(title, author, editor)>
<!ELEMENT editor(monograph*)>
<!ATTLIST editor name CDATA #REQUIRED>
<!ELEMENT author(name, address)>
<!ATTLIST authorid ID #REQUIRED>
<!ELEMENT name(firstname?, lastname)>
<!ELEMENT firstname(#PCDATA)>
<!ELEMENT lastname(#PCDATA)>
<!ELEMENT address ANY>

Graphically, Figure 5.1 shows the schema graph created from the above XML DTD. A single-

lined arrow “→” indicates multiple occurrences of a child element, while a double-lined arrow “⇒”

indicates single occurrence of a child element or an attribute. Subsequently,the hybrid inlining

technique generates four relational tables shown in Figure 5.2, where thecolumns are named by the

path from the root element of the table. There are several features to note in the relational tables.

Each table has anID field that serves as the key of that table. All tables corresponding to element

nodes having a parent also have aparentID field that serves as a foreign key. For instance, the

author table has a foreign keyauthor.parentID that joins authors with articles.

Given a bibliographic CM containing conceptsArticle, Author, and a many-to-many relationship

hasAuthor betweenArticle andAuthor. If we try to discover the semantic mapping between the
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article

contactauthor editor

@authorID @name

author

@id

name address

monograph

authorid

firstname lastname

book

booktitle

Figure 5.1: The Schema Graph Corresponding to the bibliographic DTD

book(bookID:integer, book.booktitle.isroot:boolean, book.booktitle:string,
author.name.firstname:string, author.name.lastname:string,

author.address:string, author.authorid:string).

article(articleID:integer, article.contactauthor.isroot:boolean,
article.contactauthor.authorid:string,

article.title.isroot:boolean, article.title:string.

monograph(monographID:integer, monograph.parentID:boolean,
monograph.parentCODE:integer, monograph.title:string,

monograph.editor.isroot:boolean, monograph.editor.name:string,
author.name.firstname:string, author.name.lastname:string,

author.address:string, author.authorid:string).

author(authorID:integer, author.parentID:integer, author.parentCODE:integer,
author.name.isroot:boolean, author.name.firstname.isroot:boolean,

author.name.firstname:string, author.name.lastname.isroot:boolean,
author.name.lastname:string, author.address.isroot:boolean,

author.address:string, author.authorid:string).

Figure 5.2: Relational Tables Generated by the Hybrid Inline Algorithm

tables and the CM from a set of correspondences, probably, including

T :author.authorID!O:Author.ID,

T :author.author.parentID!O:Article.ID,

then we would not be able to find the representation of the many-to-many relationshiphasAuthor

from the constraints of the relational schema. The foreign keyauthor.parentID of theauthor table

does not match the relationship in terms of the cardinality constraints. There are no other refer-
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ential constraints representing relationships between articles and authors. On the other hand, the

XML schema graph contains the parent-child edge,article→author, which can be interpreted by

the many-to-many relationshiphasAuthor. The foreign keyauthor.parentID actually encodes the

information that an author tuple references an article tuple as a parent tuple. This information repre-

sents the hierarchical relationships between elements in the XML DTD. Consequently, the solution

for discovering semantic mapping from relational schema to CM misunderstands the information

encoded in the foreign key constraint.

�

From this example, we can observe that foreign key constraints sometimes are used to maintain

the hierarchical information of the nested XML structure. To find the semantics of an XML schema,

it is necessary to develop an algorithm that explores the XML structure directly rather than making

use of referential integrity constraints of the relational schema which was obtained from the XML

schema. Comparing to the XML schema mapping technique in Clio [PVM+02], we still face the

challenge to connect concepts in the CM as in the relational case. Moreover, our solution will

exploit the occurrence constraints specified in XML schemas, while these constraints are ignored

by the Clio’s algorithm.

In short, the main contributions of this chapter are as follows: (i) we propose a heuristic algorithm

for finding semantic mappings, which are akin to a tree connection embedded inthe CM; (ii) we

enhance the algorithm by taking into account information about (a) XML Schema features such as

occurrence constraints,key andkeyref definitions, (b) cardinality constraints in the CM, and

(c) XML document design guidelines under the hypothesis that an explicit or implicit CM existed

during the process of XML document design; (iii) we adopt the accuracymetric of schema matching

[MGMR02] and evaluate the tool with a number of experiments.

5.2 Mapping Discovery Algorithm

Now we turn to the algorithm for discovering semantic mapping from an element tree to a CM. The

algorithm assumes a set of correspondences have been given. First,we analyze the structure of an
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XML element tree to lay out several principles for the algorithm.

5.2.1 Principles

As in the relational case, we start from a methodology presented in the literature [EM01, KL01] for

designing XML DTDs/schemas from a CM. We begin with basic CMs which provide constructs for

concepts, attributes, and binary relationships.

Basic CMs

As with relational schemas, there is a notion of XML normal form (XNF) for evaluating the absence

of redundancies and update anomalies in XML schemas [EM01]. The methodology in [EM01]

claims to develop XNF-compliant XML schemas from CMs. It turns out that these “good” XML

schemas are trees embedded in the graph representations of the CMs. Using the term“element

tree” instead of“schema tree” in [EM01], we briefly describe the algorithm of [EM01] (called

EM-algorithm).

Example 5.2.1. A CM containing only binary relationships between concepts is referred to as a

“binary and canonical hypergraph”in [EM01]. For such a CMH, theEM-algorithmderives an

element treeT such thatT is in XNF and every path ofT reflects a sequence of some connected

edges inH. For example, starting from theDepartment node of the CM in Figure 5.3 the following

element tree (omitting attributes)T is obtained:

Department[

(FacultyMember[

(Hobby)∗, (GradStudent[

Program, (Hobby)∗])∗])∗],

where we use [ ] to indicate hierarchy and ( )* to indicate the multiple occurrences of a child element

(or non-functional edges) in element trees.

In essence,EM-algorithmrecursively constructs the element treeT as follows: it starts from a

concept nodeN in CM, creates treeT rooted at a nodeR corresponding toN , and constructs the
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Hobby Faculty Member Department

GradStudent Program

0..* 0..*

0..*

0..*

1..*

1..1

1..*

1..1

1..1

1..*

Figure 5.3: A Sample CM graph.

direct subtrees belowR by following nodes and edges connected toN in CM. Finally, a largest hier-

archical structure embedded within CM is identified and an edge ofT reflects a semantic connection

in the CM.

�

Given an XNF-compliant element treeT and the CM from whichT was derived, we may assume

that there is asemantic treeS embedded in the CM graph such thatS is isomorphic toT . If the

correspondences between elements inT and concepts in the CM were given, we should be able to

identify S.

Example 5.2.2.Suppose elements in the element treeT of Example 5.2.1 correspond to the con-

cepts (nodes) in Figure 5.3 by their names. Then we can recover the semantics of T recursively

starting from the bottom. For the subtreeT ′

GradStudent[

Program, (Hobby)∗],

the edgeGradStudent ⇒ Program in T ′ is functional andGradStudent → Hobby is non-

functional. In the CM graph, we can take the conceptGradStudent as the root. Then we seek for

a functional edge from the conceptGradStudent to the conceptProgram and a1 : N orM : N

edge fromGradStudent to the conceptHobby. The result is the semantic treeS′ consisting of two

edges:GradStudent --->-- Program and GradStudent ----- Hobby .
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Having identifiedS′, we now move one layer up to search for a semantic treeS′′ corresponding

to the following subtreeT ′′

FacultyMember[

(Hobby)∗, (GradStudent[

Program, (Hobby)∗])∗].

The edgeFacultyMember→Hobby in T ′′ is non-functional, and the edge fromFacultyMember

toGradStudent, the root of treeS′, is non-functional as well. Hence, in the CM, we build the tree

S′′ using theM : N edge from the conceptFacultyMember to the conceptHobby and the1 : N

edge fromFacultyMember to the conceptGradStudent.

Finally, we are ready to build a semantic treeS corresponding to the entire treeT

Department[

(FacultyMember[

(Hobby)∗, (GradStudent[

Program, (Hobby)∗])∗])∗].

Since we have identified a semantic treeS′′ corresponding toT ′′, what we have to do now is to

connect the conceptDepartment to the root ofS′′, which is the conceptFacultyMember. The

connection should be a1 : N or N : M edge according to the occurrence constraint of the

FacultyMember element.

Figure 5.4 shows the final semantic treeS identified from the CM in Figure 5.3, where we use a

line with arrow to indicate a functional edge. Notice that the shared conceptHobby gets duplicated

in the CM graph.

�

In an element treeT , attributes are the leaves ofT and often correspond to the datatype properties

of concepts in a CM. Our algorithm assumes that the user specifies the correspondences from XML

attributes to datatype properties in a CM, manually or using some existing schema matching tools.

Given an element tree, a CM, and a set of correspondences, the algorithm attempts to identify the
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Hobby

Faculty Member

Department

GradStudent

ProgramHobby

Figure 5.4: The Identified Semantic Tree

root of a semantic tree corresponding to the element tree and use “semantically matched” edges to

connect the root to remaining nodes. This process is recursive and in abottom-up fashion.

Example 5.2.3.Given an element treeT

GradStudent(@ln,@fn)[

Program(@pname)],

and a CM shown in Figure 5.5. Suppose the user specifies the following correspondences from

attributes of elements to datatype properties of concepts in the CM

v1: X :GradStudent.@ln!O:GradStudent.lastname,

v2: X :GradStudent.@fn!O:GradStudent.firstname,

v3: X :GradStudent.Program.@pname!O:Program.name,

where we use prefixesX andO to distinguish terms in the element tree and the CM.
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@fn

@pname

@ln
Program

GradStudent

-lastname

-firstname

GradStudent

-name

-.

Program1..10..*

0..*0..*

registersIn

appliedFor

v
2v

1
v

3

Figure 5.5: A Small CM and An element Tree

In a recursive and bottom-up fashion, we build a semantic treeS corresponding toT start-

ing from the leaf@pname. The correspondencev3 gives rise to the semantic treeS′ for the leaf

@pname, whereS′ is the conceptProgram. For the subtreeProgram(@pname), the seman-

tic tree isS′ as well because there are no other correspondences involving the element Program.

At this level, there are two other subtrees:@fn and@ln. The semantic tree for both@fn and

@ln is the conceptGradStudent according to the correspondencesv1 and v2. Let us refer to

this semantic tree asS′′. In connectingS′′ to S′, a possible solution is to assume that the root of

S′′ corresponds to the element tree rootGradStudent. Therefore the connection is a functional

edge from the root ofS′′, GradStudent, to the root ofS′, Program, because the connection from

the elementGradStudent to the elementProgram is functional (the occurrence constraint on

Program is 1). Consequently, we identify the semantic treeS as the connectionGradStudent

--registersIn->- Program in the CM.

�

Thefirst principleof our mapping discovery algorithm is to identify the root of a semantic tree

and to construct the tree recursively by connecting the root to its direct subtrees using edges in the

CM graph. More precisely, for the nodev1 and its childv2 in the element tree, if a nodeN1 in the
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CM is identified for the root of the semantic tree for interpreting the tree atv1 and a nodeN2 is

the root of the semantic tree for the subtree atv2, then we connectN1 to N2 using an edge having

compatible cardinality constraints with the edge fromv1 to v2 in the element tree.

As we may have observed, identifying the root of a semantic tree is the major obstacle. The

following example illustrates the problem for an XML schema which is not XNF compliant. Such

a schema can be easily encountered in reality.

Example 5.2.4.Given an element tree

GradStudent[

Name(@ln, @fn), Program(@pname)].

Suppose the user specified the following correspondences

X :GradStudent.Name.@ln!O:GradStudent.lastname,

X :GradStudent.Name.@fn !O:GradStudent.firstname,

X :GradStudent.Program.@pname!O:Program.name,

from the attributes of elements to the datatype properties of concepts in the CM shown in Figure

5.6.

For the elementX :Name and the elementX :Program, we can identify two sub-trees, the

conceptGradStudent and the conceptProgram by using the correspondences. For the element

X :GradStudent, we have to use the two identified two sub-trees to build the final semantic tree.

Since bothX :Name andX :Program occur once and are at the same level, the question is which

concept node is the root of thefinal semantic tree? GradStudent or Program? Since the order

of nodes on the same level of the element tree does not matter, both are potential roots. Therefore,

the mapping algorithm should recover functional edges fromGradStudent to Program as well as

from Program to GradStudent, if any.

�

This leads to thesecond principleof our algorithm. Letv1 andv2 be two nodes in an element tree

(an element tree has element nodes and attribute nodes). Letv2 be a child ofv1 and the maximum
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@fn @pname@ln

Name Program

GradStudent

-lastname

-firstname

GradStudent

-name

-.

Program1..10..*

0..*0..*

registersIn

appliedFor

Figure 5.6: An Element Tree and A CM

occurrence constraint forv2 is 1. For each conceptC in the CM graph such thatC has been

identified as the root of a sub- semantic tree for the subtree atv2, C is a potential root for building

the semantic tree for the sub- element tree atv1. If v1 does not have a child whose maximum

occurrence constraint is 1, then we find a concept node as the root ofa semantic tree for the sub-

element tree atv1 as follows. The root connects to its children using non-functional paths.The tree

consisting the root and its children is the minimum one if there are other trees formed by other roots

connecting to the same set of children.

Unfortunately, not every functional edge from a parent node to a childnode in an element tree

represents a functional relationship. Specifically, some element tags are actually the collection tags.

The following example illustrates the meaning of a collection tag.

Example 5.2.5.Figure 5.7 depicts an element tree and the correspondences from the element tree

to a CM. The element tree and the correspondences are written in text as follows.

GradStudent[

Name(@ln, @fn),Hobbies[

(Hobby(@title))*]]
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@fn

@title

@ln

Name Hobbies

GradStudent

-lastname
-firstname

GradStudent

-title
-.

Hobby0..1

0..*0..*

0..*

hasHobbies

mostFavorite

Hobby

Figure 5.7: An Element Tree with a Collection Tag

X :GradStudent.Name.@ln!O:GradStudent.lastname,

X :GradStudent.Name.@fn !O:GradStudent.firstname,

X :GradStudent.Hobbies.Hobby.@title!O:Hobby.title.

The element tagX :Hobbies is a collection tag. It represents a collection of hobbies of a graduate

student. Although the edgeX :GradStudent⇒X :Hobbies is functional,X :Hobbies→X :Hobby

is non-functional. When the conceptHobby is identified as the root of the semantic tree for the

subtree

Hobbies[

(Hobby(@title))*],

Hobby should not be considered as a potential root of the semantic tree for the entire element tree.

�

Eliminating concepts corresponding to collection tags from the set of the potential roots is our

third principle.
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In most cases, we try to discover the semantic mapping between an XML schemaand a CM such

that they were developed independently. In such cases, we may not be able to find an isomorphic

semantic treeS embedded in the CM graph. For example, for the element tree

City(@cityName)[

Country (@countryName)],

if a CM with a path City -- locatedIn -->- State -- locatedIn -->- Country

is used for interpreting the element tree, the entire path is a possible answer.Thefourth principlefor

discovering mappings is to find shortest paths in a CM graph instead of restricting to single edges.

The composed cardinality constraints of a path should be compatible with that ofthe corresponding

edge in the element tree.

Even though we could eliminate some collection tags from the set of potential roots to reduce

the number of possible semantic trees, there may still be too many possibilities if the CM graph

is large. To further reduce the size of the set of potential roots, we can make use of thekey and

keyref constructs in an XML schema.

Example 5.2.6.Given the element tree

Article[

Title(@title), Publisher(@name), ContactAuthor(@contact), (Author(@id))∗].

If the attribute@title is defined as thekey for the elementArticle, then we should only choose the

class/concept corresponding to@title as the root of the semantic tree, eliminating the classes cor-

responding to@name and@contact (chosen by the second principle). Alternatively, if@contact

is defined as akeyref referencing some key, we can also eliminate the class corresponding to

@contact. �

So ourfifth principle is to usekey andkeyref definitions to restrict the set of potential roots.

Reified Relationships

To represent n-ary relationships in the conceptual modeling language (CML), one needs to userei-

fied relationship (classes)(see Section 4.3.2). For example, a CM may have classO:Presentation
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connected with functionalroles to classesO:Author, O:Paper, andO:Session, indicating par-

ticipants. It is desirable to recover reified relationships and their role connections from an XML

schema. Suppose the element tree

Presentation[

Presenter(@author), Paper(@title), Session(@eventId)],

represents the above ternary relationship. Then, in the CM, the root of the semantic tree is thereified

relationship classO:Presentation, rather than any one of the three classes which are role fillers.

The sixth principlethen is to look forreified relationshipsfor element trees with only functional

edges from a parent to its children that correspond to separate classes1.

ISA Relationships

In [EM01], ISA relationships are eliminated by collapsing superclasses into their subclasses, or vice

versa. If a superclass is collapsed into subclasses, correspondences can be used to distinguish the

nodes in the CM. If subclasses are collapsed into their superclass, then we treat theISA edges as

special functional edges with cardinality constraints0 : 1 and1 : 1. The last principle is then to

follow ISA edges whenever we need to construct a functional path2.

5.2.2 Algorithm

We have presented theencodeTree(S, L) procedure, which translates a CM subtreeS into a con-

junctive formula, taking into account the correspondencesL in Figure 4.7 of Section 4.3. The same

procedure also applies to the problem of generating mapping formulas for XML schemas. The core

of the solution is the following procedureconstructTree(T, L) which discovers a subtree in a CM

graph for an element tree after appropriately replicating nodes3 in the CM graph.

Function constructTree(T, L)

1If a parent functionally connects to only two children, then it may represent an M:N binary relationship. So recover
it as well.

2Thus,ISA is taken care of in the forthcoming algorithm by proper treatment of functional path.
3Replications are needed when multiple attributes correspond to the same datatype property. See Section 4.3.3 for

details.
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Input an element treeT , a CM graph, and correspondenceL from attributes inT to datatype

properties of class nodes in the CM graph.

Output set of (subtreeS, rootR, collectionTag) triples, wherecollectionTag is a boolean value

indicating whether the root corresponds to a collection tag.

Steps:

1. SupposeN is the root of treeT .

2. If N is an attribute, then findL( , N, , , R) = true; return ({R},R, false). /*the base case

for leaves.*/

3. If N is an element havingn edges{e1, .., en} pointing ton nodes{N1, .., Nn}, let Ti be the

subtree rooted atNi,

then compute (Si,Ri, collectionTagi)= constructTree(Ti, L) for i = 1, .., n;

(a) If n = 1 ande1 is non-functional, return (S1,R1, true);/*N probably is a collection tag

representing a set of instances each of which is an instance of theN1 element.*/

(b) Else ifn = 1 ande1 is functional return (S1,R1,collectionTag1).

(c) Else ifR1=R2=...=Rn, then return (combine(S1, .., Sn),R1, false)4.

(d) Else letF={Rj1 , .., Rjm | s.t. ejk
is functional andcollectionTagjk

= false for k =

1, ..,m, jk∈{1, ..., n}} andNF={Ri1 , .., Rih | s.t. eik is non-functional, oreik is func-

tional andcollectionTagik = true for k = 1, .., h, ik∈{1, ..., n}}, let ans = {},

/*separate nodes according to their connection types toN .*/

i. Try to limit the number of nodes inF by considering the following cases: 1) keep

the nodes corresponding tokey elements located on the highest level; 2) keep those

nodes which do not correspond tokeyref elements.

ii. If NF = ∅, find a reified relationship conceptR with m rolesrj1 , .., rjm pointing

to nodes inF , let S= combine({rjk
}, {Sjk

}) for k = 1, ..,m; let ans= ans∪(S,

R, false). If R does not exist andm = 2, find a non-functional shortest pathp

4Functioncombine merges edges of trees into a larger tree.
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connecting the two nodesRj1 , Rj2 in F ; let S= combine(p, Sj1 , Sj2); let ans=

ans∪(S, Rj1 , false). /*N probably represents an n-ary relationship or many-

many binary relationship (footnote of the sixth principle.)*/

iii. Else for eachRjk
∈ F k = 1, ..,m, find a shortest functional pathpjk

from Rjk

to eachRjt ∈ F\Rjk
for t = 1, .., k − 1, k + 1, ..,m; and find a shortest non-

functional pathqir fromRjk
to eachRir ∈ NF for r = 1, .., h; if pjk

andqir exist,

letS= combine({pjk
}, {qir},{S1, .., Sn}); let ans=ans∪(S,Rjk

,false). /*pick an

root and connect it to other nodes according to their connection types.*/

iv. If ans 6= ∅, returnans; else find a minimum Steiner treeS connectingR1, .., Rn,

return (S,R1, false). /*the default action is to find a shortest Steiner tree.*/

It is likely that the algorithm will return too many results. Therefore, at the final stage we set a

thresholdNthresh for limiting the number of final results presented.

5.3 Experimental Evaluation

We have implemented the mapping algorithm in the prototype toolMAPONTO and conducted a set

of experiments to evaluate its effectiveness and usefulness.

Measures for mapping quality and accuracy.We first attempt to use the notions ofprecisionand

recall for the evaluation. LetR be the number of correct mapping formulas of an XML schema, let

I be the number of correctly identified mapping formulas by the algorithm, and letP be the total

number of mapping formulas returned. The two quantities are computed as:precision = I/P

andrecall = I/R. Please note that for a single input element treeT , which has a single correct

mapping formula, the algorithm either produces the formula or not. So therecall for T is either 0

or 1, but theprecisionmay vary according to the number of output formulas. For measuring the

overall quality of the mapping results, we computed the average precision and recall for all tested

element trees of an XML schema.

However, precision and recall alone cannot tell us how useful the algorithm is to users. The
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purpose of our tool is toassistusers in the process of constructing complex mappings, so that

productivity is enhanced. Consider the case when only one semantic mapping is returned. Even if

the tool did not find the exactly right one, it could still be useful if the formulais accurate enough so

that some labor is saved. To try to measure this, we adopt an accuracy metricfor schema matching

appearing in the literature. Consider the mapping formulaΨ(X)→Φ(X,Y ) with the formulaΨ(X)

encoding an element tree. The formulaΦ(X,Y ) encodes a semantic treeS = (V,E) by using a set

of unary predicates for nodes inV , a set of binary predicates for edges inE, and a set of variables,

Y , assigned to each node (there are predicates and variables for datatype properties as well). For a

given element treeT , writing the complex mapping formula consists of identifying the semantic tree

and encoding it into a conjunctive formula (which could be treated as a set of atomic predicates).

Let Φ1 = {a1(Z1), a2(Z2), .., am(Zm)} encode a treeS1, let Φ2 = {b1(Y 1), b2(Y 2), .., bn(Y n)}

encode a treeS2. LetD = Φ2\Φ1 = {bi(Y i)| s.t. for a given partial one-one functionf : Y → Z

representing the mapping from nodes ofS2 to nodes ofS1, bi(f(Y i)) ∈ Φ1}. One can easily

identify the mappingf : Y → Z by comparing the two treesS2 andS1 (recall a CM graph contains

class nodes as well as attribute nodes representing datatype properties)so we consider that it comes

for free. Letc = |D|. SupposeΦ1 be the correct formula andΦ2 be the formula returned by the

tool for an element tree. To reach the correct formulaΦ1 from the formulaΦ2, one needs to delete

n − c predicates fromΦ2 and addm − c predicates toΦ2. On the other hand, if the user creates

the formula from scratch,m additions are needed. Let us assume that additions and deletions need

the same amount of effort. However, browsing the ontology for correctingformulaΦ2 to formula

Φ1 is different from creating the formulaΦ1 from scratch. So letα be a cost factor for browsing

the ontology for correcting a formula, and letβ be a factor for creating a formula. We define the

accuracy or labor savings of the tool aslabor savings = 1 − α[(n−c)+(m−c)]
βm

. Intuitively, α < β,

but for a worst-case bound let us assumeα = β in this study. Notice that in a perfect situation,

m = n = c andlabor savings = 1.

Schemas and CMs.To evaluate the tool, we collected 9 XML schemas varying in size and nested

structure. The 9 schemas come from 4 application domains, and 4 publicly available domain on-

tologies were obtained from the Web and the literature. Table 5.1 shows the characteristics of the
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schemas and the ontologies; the column heads are self-explanatory. Thecompanyschema and on-

tology are obtained from [KL01] in order to test the principles of the mappingconstruction. The

conferenceschema is obtained from [LC00].UT DB is the schema used for describing the informa-

tion of the database group at the University of Toronto.SigmodRecordis the schema for SIGMOD

record. The rest of the schemas are obtained from theClio test suite. The KA ontology, CIA

factbook, and the Bibliographic-Data are all available on the Web.

XML Schema Max Depth (DFS) in # Nodes in # Attributes in Ontology # Nodes # Links

Schema Graph Schema Graph Schema Graph

Company 6 30 17 Company 18 27

Conference 5 21 12 KA 105 4396

UT DB 6 40 20 KA 105 4396

Mondial 6 214 93 CIA factbook 52 77

DBLP 1 3 132 63 Bibliographic 75 749

DBLP 2 5 29 11 Bibliographic 75 749

SigmodRecord 3 16 7 Bibliographic 75 749

Amalgam 1 3 117 101 Bibliographic 75 749

Amalgam 2 3 81 53 Bibliographic 75 749

Table 5.1: Characteristics of Test XML Schemas and CMs

Experimental results. Our experiments are conducted on a Dell desktop with a 1.8GHZ Intel

Pentium 4 CPU and 1G memory. The first observation is the efficiency. In terms of the execution

times, we observed that the algorithm generated results on average in 1.4 seconds which is not

significantly large, for our test data.

Figure 5.8 shows the average precision and recall measures of the 9 mapping pairs. For each pair

of schema and ontology, the average precision and recall are computed as follows. For the element

trees extracted from a schema graph, a set of correct mapping formulasis manually created. We

then apply the algorithm on the element trees and ontologies to generate a set of formulas. Next we

examine each of the generated formulas to count how many are correct and compute the average

precision and recall. The overall average precision is 35% and overallaverage recall is 75%.

Finally, we evaluate the usefulness of the tool. The usefulness is evaluatedin terms of the value

of labor savings which is measured by the number of different predicatesbetween a generated
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Figure 5.8: Average Recall and Precision for 9 Mapping Cases

formula and a correct formula, regardless the subject who would actuallyperform the correction.

Figure 5.9 shows the average values of labor savings for the 9 mapping cases. For each mapping

case, the average labor savings is computed as follows. Examine each incorrect formula returned

by the algorithm and compute its labor saving value relative to the manually created one. Take

the average value of the labor savings of all incorrect formulas. Note that even when the correct

formula was identified by the algorithm, we still computed the labor savings for allincorrect ones

to see how useful the tool is in case only one formula was returned. The overall average labor

savings is over 80%, which is quite promising. Especially in view of the pessimisticassumption

thatα = β in the labor savings formula, we take this as evidence that the tool can greatly assist

users in discovering complex mappings between XML schemas and CMs with a proper schema

matching tool as a front-end component.
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Figure 5.9: Average Labor Savings for 9 Mapping Cases

5.4 Discussion

There are several limitations in our solution for the problem of discovering semantic mappings from

XML schemas to CMs. First, the proposed mapping formalism only relates a treeformula over an

XML schema to a conjunctive formula over a CM. Complicated XML structures involving cycles

need to be unfolded. Second, the solution assumes the user specifies a set of simple correspon-

dences as an additional input. The correspondences are from attributes to attributes. Although the

solution does not particularly deal with the correspondences specified between constructs other than

attributes in both models, we believe the solution is more general and needs lessuser input. In fact,

other types of correspondences provide more information for discovering a semantic tree. For ex-

ample, if the user specified a correspondence from an element tagE to a concept, then the solution

would easily use the concept as the root of a semantic tree for interpreting the element tree rooted at

E. Currently, each concept corresponding to a child ofE which is connected by a functional edge

from E may be a potential root. Third, the solution does not explore information encoded in data

instances such as XML documents. Our techniques are primarily analytical, systematically explor-

ing information in the structures and constraints of schemas and CMs as well as database design
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process.

Ontology reasoning provides a new opportunity for eliminating “unreasonable” mappings. We

can encode a mapping formula into an ontology concept and reason aboutthe ontology to find

any inconsistency that may be introduced by the new encoded concept. A similar approach can be

applied to eliminating “unreasonable” mappings for relational schemas as well.More details are

available in [ABM06].

Integrating schema matching tools for automatically generating the correspondences and devel-

oping a filter by making use of instance data to assist users in choosing correct mappings are future

investigations. Moreover, a thorough empirical usefulness study involving users with different lev-

els of experience in schema mapping will be conducted.

5.5 Summary

In this chapter, we have looked at a new problem of discovering complex semantic mappings from

XML schemas to CMs, given a set of simple correspondences from attributes to attributes. The

problem is well-motivated by the increasing requirements of annotating XML documents with on-

tologies, translating XML data into ontologies, and integrating heterogeneousXML data sources on

the semantic web. We implemented the proposed algorithm in the prototype tool,MAPONTO, for

semi-automatically discovering complex mappings for users, and we evaluatedthe tool on a variety

of real XML schemas and ontologies.

There are several novelties in our solution. First, our mapping language extends the LAV-like

formalism for relational schema and relates a tree formula in an XML schema witha conjunctive

formula in a CM. It subsumes the previously used formalisms [ABFS02, LS03] which deal with

paths in XML tree. Second, our mapping discovery algorithm is guided by theapproach for deriving

“good” XML documents from conceptual models, taking various semantic information encoded in

document structures into consideration. Unlike the relational schemas, hierarchical parent-child

relationships and occurrence constraints are more important than key andforeign key constraints.

Third, we adopted the accuracy metric of the schema matching to measure the usefulness of the tool
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in real mapping cases. The experiment results show that over 80% labor could be saved.

In the next chapter, we will turn our attention to using the semantics of database schemas. We

will focus on the problem of discovering mappings between relational database schemas, assuming

the semantics of each schema are available in terms of some CMs.



Chapter 6

Discovering Schema Mapping

Expressions Using Schema Semantics

We now address the problem of discovering schema mapping expressionsby using the semantic

mappings from schemas to CMs. This chapter is organized as follows. Section 6.1 describes the

problem. Section 6.2 reviews the notations about schemas and semantic mappings from schemas

to CMs. Section 6.3 presents motivating examples for using the semantic mappingsto improve

schema mapping. Section 6.4 discusses our contributions in comparison to related work. Section

6.5 describes the algorithm for schema mapping discovery. Section 6.6 evaluates using a set of

experiments the proposed approach in comparison to the techniques that use only constraints in

the logical schema. Finally, Section 6.7 discusses the pros and cons of oursolution and points to

possible future directions, and Section 6.8 summarizes the chapter.

6.1 The Problem

Schema mapping is the problem of finding ameaningfulrelationship between different database

schemas. This relationship is represented in terms of logical expressions,and it is inherently difficult

to automate. Just given a source and a target relational schemas, there could be numerous ways

123
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of connecting tables in both schemas and pairing up associations to form mappings. Since the

intended relationship is often buried in the head of the database designers/creators, it is almost

impossible to always derive the relationship “correctly” from syntactic structures and constraints

by an automaton. Therefore, interactive and semi-automatic tools are assumed to be the solution.

As we have mentioned before, such a tool often employs a two-phase paradigm: first to specify the

simple correspondences between schema elements such as table columns, then to derive plausible

declarative mapping expressions for users to sift through.

Considering the first phase for specifying element correspondencesis usually done manually or

by some schema matching tools, we are interested in the problem ofderiving plausible declarative

mapping expressions from element correspondences.The element correspondences we consider

will be quite simple: pairs of column names in the source and target relational schema, presumably

signifying that data from the source column will contribute to data to appear in the target column.

For example, in Figure 6.1,v1 is a correspondence between columneid of tableEmployee in the

source and the columneid of Emp in the target.

Employee:
    eid

    did

Dept:
    did
    pid

Emp:
    eid
    pid

v
1

SOURCE TARGET

v2

Figure 6.1: Simple Correspondences between Source and Target

Given a set of simple correspondences from a source schema to a target schema, a schema

mapping solution essentially finds an association in the source among the set ofelements referred

to by the correspondences and an association in the target among the set of elements referred to by

the same set of correspondences. In forming mappings using pairs of associations, two important

questions arise: First, how to construct a “meaningful” association among aset of elements in a
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schema. Second, how to match a source association to a target association insuch a way that the

pair gives rise to intended relationship. Recall that current solutions such as Clio [PVM+02] and

MQG [KB99] rely on integrity constraints (especially referential integrity constraints) to assemble

“logically connected elements” (or logical associations). These logical associations, together with

the column correspondences, then give rise to mappings between the tables. The solution, however,

sometimes miss important semantic connections (as shown by the motivating examplesin next

section), and the interpretation is primitive in the sense that a mapping is simply a pair of logical

associations covering some correspondences and there lacks a strategy for ordering alternatives.

This is in part because it only exploits evidence that is present in the two schemas being mapped

and in part because there is no formal definition of mapping for guiding the process of matching

associations.

Compared with CMs, database schemas are oftensemantically impoverished. This chapter de-

scribes an approach which leverages CMs that encode semantics of schemas to improve schema

mapping. The approach explores an additional source of information, namely thesemanticsof the

database schemas expressed in terms of CMs. In previous chapters, wehave studied how to capture

semantics of a database schema by using a CM of the domain, and a formal description relating the

CM to the database schema. In addition, we observe that obtaining the semantics of a schema is not

necessarily a difficult task. For example, many database schemas are developed from a conceptual

model, such as an Extended Entity-Relationship diagram. Consequently, keeping the EER schema

and the mapping between the EER schema and the relational schema needs limited effort. This

could be quite realistic, given the proliferation of tools for managing CMs andontologies motivated

by visions of e-Services and the Semantic Web.

It is important to note that wedo not assumethat the CMs for the source and target are identical,

or are connected at the semantic level, as in many data integration proposals.Instead, we rely on the

element correspondences between the table columns, which have provento be so useful for others.
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6.2 Representing Semantics for Schemas

Recall that a given CM is represented in a labeled directed graph, calledCM graph. We assume

that attributes in CMs are simple and single-valued (composite and multi-valued attributes can be

transformed into concepts). Note that we will deal with n-ary relationships,relationships with

attributes, and so-called higher order relationships (which relate relationships themselves) in Section

6.5.3 by reifying them. We shall eventually also reify many-to-many binary relationships (ones that

are not functional in either direction) since the algorithm will treat these the same way.

In Chapter 4, we studied the problem of discovering semantics for relational schemas. The

semantics of a relational table is represented by a subtree in a CM graph. Wehave called such

a subtree asemantic tree (or s-tree), where columns of the table associate uniquely with attribute

nodes of the s-tree. An s-tree can be encoded in conjunctive formula, where unary predicates are

used for concepts and binary predicates are used for attributes and binary relationships (see the

algorithm in Figure 4.7).

Example 6.2.1.Figure 6.2 shows a CM containing three concepts:Person, Book, andBookstore.

Let writes(pname, bid) and soldAt(bid, sid) be two tables in a relational schema. In terms of

data, tablewrites(pname, bid) stores persons and the books they wrote, and tablesoldAt(bid, sid)

records books and the stores selling the books. The columns of the tables correspond to some

attributes of concepts in the CM. The semantics ofwrites(pname,bid) is represented by the s-tree

consisting of nodesPerson andBook connected by edgewrites, written textually asPerson

---writes--- Book . The s-tree is encoded in the logical formula

T :writes(pname, bid) → O:Person(x), O:Book(y), O:writes(x, y),

O:pname(x, pname), O:bid(y, bid).

where we use prefixesT andO to distinguish terms in the relational schema and the CM.

Likewise, The semantics ofsoldAt(bid, sid) is represented by the s-tree consisting of nodes

Book and Bookstore connected by edgesoldAt, written textually asBook ---soldAt---

Bookstore . The s-tree is encoded in the logical formula
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-pname: key

Person

-bid: key

Book

-sid: key

Bookstore

writes soldAt

1..* 0..* 1..* 0..*

writes(pname, bid) soldAt(bid, sid)

Figure 6.2: Semantics of Tables

T :soldAt(bid, sid) → O:Book(x), O:Bookstore(y), O:soldAt(x, y),

O:bid(x, bid), O:sid(y, sid).

�

In order to handle multiple relationships between entities, as well as “recursive” relationships,

while continuing to use trees, we duplicate concept nodes, and all the relationships they participate

in (see Section 4.3.3). So, for example, the semantics of tablepers(pid,name,age,spousePid) is

represented by a graph with two nodes,Person andPersoncopy1, connected by edgehasSpouse

in Figure 6.3. And an additional column,pers.bestFriendPid, would require an additional node,

Personcopy2, connected toPerson by edgehasBestFriend. Note that this approach allows us to

handle correctlycyclic RICs since the table semantics has to specify the number of times the loop

has to be unfolded.

As we have noted before, there are well-known methodologies for designing logical database

schemas from a CM, such as EER diagrams. We call such methodologieser2rel designs. We can

now assert that s-trees allow the encoding of the semantics of all tables obtained by er2rel design,

and there are ways of dealing with more complex formulasΦ.

Our study of discovering semantics for database schemas also associatestwo additional notions

with the semantics of a tableT : First, ananchor, which is the central object in the s-tree from which

T is derived, if aner2rel design was used. For example, ifT(c,d) was derived from a functional

relationship C ---p->-- D , thenC is the anchor of tableT . Second, a rule expressing how

classes involved in the s-tree ofT are identified by columns ofT . In the preceding example, classC

is identified by the columnc of T , while classD is identified by the columnd. (More details about
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-pid: key

-name
-age

Person

hasSpouse

hasBestFriend

0..*

0..1 0..1

0..*

-pid: key
-name

-age

Person

-pid: key

-name
-age

Person

-pid: key
-name

-age

Person

hasBestFriend

hasSpouse

pers(pid,name,age,spoursePid,bestFriendPid)

0..*

0..1

0..1

duplicates

Figure 6.3: Handling Multiple and Recursive Relationships

these can be found in Section 4.3.)

6.3 Motivating Examples

Now, we highlight our motivations with illustrative (rather than exhaustive) examples.

Example 6.3.1. Consider the source relational schema given in the upper part of Figure6.4. It

contains five tables:person(pname,age), writes(pname, bid), book(bid), soldAt(bid, sid), and

bookstore(sid). The underlined column name(s), such aspname, indicates the primary key of

each table. A dashed arrow represents aReferential Integrity Constraint (RIC), i.e., a foreign

key referencing a key. (This is not required for our own algorithm, which could recover many

RICs from the semantics, but is presented for comparison purposes.) For example, the dashed

arrow r1 pointing from columnpname of table writes(pname,bid) to columnpname of table

person(pname, age), written textually aswrites.pname⊆ person.pname, indicates that the val-

ues in the former column are a subset of the latter.

The semantics of the source schema is encoded by associating with each tablea subgraph in the

CM above it. In the CM, we take a binary relationship to link instances in its participating classes

in a specific direction. For example,Person is linked toBook by writes, while Book is linked to
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0..*1..* 0..*1..*

person( pname,age ) writes( pname ,bid) book( bid) soldAt( bid,sid ) bookstore( sid)

hasBookSoldAt( aname,sid )

v1 v2

SOURCE:

TARGET:

r1 r
2

r3 r
4

writes soldAt

0..*1..*

hasBookSoldAt

-hasName: key

-age

Person

-bid: key

-.

Book

-sid: key

-.

Bookstore

-aname: key

Author

-sid: key

Bookstore

Figure 6.4: Schemas, CMs, RICs, and Correspondences

Person by its inverse,writes−. To encode constraints for identifying objects, we need a special

key annotation to indicate (collections of) attributes that act as identifiers of entities.

A target schemais given in the lower part of Figure 6.4. The target schema contains, among

others, a tablehasBookSoldAt(aname,sid). The table is associated with the CM shown below

it. Now let us turn to the mapping task. To initiate the process, inter-schema correspondences

need to be specified. Figure 6.4 shows two correspondences using solidlines with arrows:v1, con-

nectingperson.pname in the source tohasBookSoldAt.aname in the target, andv2, connecting

bookstore.sid in the source tohasBookSoldAt.sid in the target. Textually, a correspondence is

written asperson.pname!hasBookSoldAt.aname.

Current Solution The current solutions, which we call theRIC-based techniques, take as input

the source schema, the target schema, database constraints (including keys, foreign keys, and more

generally RICs), and the correspondences. In our examples, we will use an approach proposed in

Clio [PVM+02], that is perhaps the most general of the solutions and generates GLAV mappings

in the form of source-to-target tuple-generating dependencies (s-t tgd) [FKMP03]. Specifically, to

generate a mapping expression, Clio uses an extension of the relational chase algorithm to first

assemble logically connected elements into so-calledlogical relations. In this example, RICsr1
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andr2 are applied to tablewrites(pname,bid) to produce the logical relation (expression):

S1: person(pname,age) ./ writes(pname, bid) ./ book(bid).

Likewise, we can chase the tablesoldAt(bid,sid) usingr3 andr4 to produce:

S2: book(bid) ./ soldAt(bid,sid) ./ bookstore(sid).

In the target, a logical relation is

T1: hasBookSoldAt(aname,sid).

To interpret the correspondences, the RIC-based technique looks ateach pair of source and target

logical relations, and checks which arecoveredby the pair. For example, the pair〈S1, T1〉 covers

v1, and the pair〈S2, T1〉 coversv2. So the mappings are actually written as〈S1, T1, v1〉 and〈S2, T1,

v2〉. The complete algorithm will then generate the following two candidatedeclarative mapping

expressionsin the form of s-t tgd:

M1: ∀pname, age, bid.(person(pname, age)∧writes(pname, bid) ∧book(bid)

→ ∃xhasBookSoldAt(pname, x)).

M2: ∀bid, sid.(book(bid)∧soldAt(bid, sid)∧bookstore(sid)

→∃yhasBookSoldAt(y, sid)).

Since, in this example, the tablesperson(pname) andbookstore(bid) are also logical relations,

then the following are also candidate mappings:

M3: ∀pname, age(person(pname, age)→∃xhasBookSoldAt(pname, x)).

M4: ∀sid(bookstore(sid)→∃yhasBookSoldAt(y, sid)).

Thereafter, all candidate mappings are presented to the user for further examination and debugging.

Note that the mappingsM1 throughM4 represent incomplete data. When mappings are real-

ized as queries (as in data exchange), Skolem functions are generally used to represent existentially

quantified variables [PVM+02]. In some cases, Skolem functions (and more complex mapping ex-

pressions like nested mappings) can be used to represent how data generated by different mappings
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should be merged [FHH+06]. However, no mapping generation algorithm that we are aware of

would automatically generate a mapping that pairs authors with bookstores thatstock their books,

an interpretation we motivate below.

Alternate Solution We believe that the following mapping expression is more natural in this case

and should be generated as a candidate:

M5: ∀pname, age, bid, sid.(person(pname, age)∧writes(pname, bid)∧

Book(bid)∧soldAt(bid, sid)∧bookstore(sid) → hasBookSoldAt(pname, sid)).

The mapping pairs in the target a person and a bookstore if the person writes a book and the book is

sold at the bookstore. Looking into the semantics of the schemas, we observe that there is indeed a

semantic connection between the classesPerson andBookstore, namely the composition ofwrites

andsoldAt.

Furthermore, note that the many-to-many cardinality constraint that can be inferred for the com-

posed connection is compatible with that of the target relationshiphasBookSoldAt. Contrast this to

the hypothetical case when the upper bound ofhasBookSoldAt would have been 1, indicating that

each author is associated with at most one bookstore: we contend that such pairings are semantically

incompatible, and do not lead to reasonable mapping expressions.

Note that the RIC-based techniques avoid generating lossy joins (likewrites./soldAt), because

these would provide an overabundance of logical relations, making the technique much less use-

ful in practice. So any semantic solution must strictly limit, though not rule out, the use of such

compositions.

�

Example 6.3.2.Most conceptual modeling languages support the modeling of classes connected by

ISA relationships, as well asdisjointnessandcompletenessconstraints concerning the subclasses.

Consider a CM, illustrated in Figure 6.5, with classEmployee and two subclassesEngineer

andProgrammer, which are not disjoint, and cover the superclass. The bottom classes and their

respectiveISA relationships represent the semantics of the tablesprogrammer(ssn,name,acnt)

andengineer(ssn,name,site), forming the source schema. Suppose that the target database has
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-ssn: key

-name

Employee

-site

Engineer

-acnt

Programmer

isa isa

Figure 6.5: Using Rich Semantics in CM

schemaemployee(eid,name,site,acnt), and its CM is identical to Figure 6.5. These two databases

represent alternative ways of encodingISA hierarchies in relational tables, except for the fact that

they use different identifiers,ssn andeid, as keys. Given correspondences that pair all columns

with identical names (sossn andeid do not correspond), the RIC-based techniques will suggest

mappings〈programmer, employee〉 and 〈engineer, employee〉, which will not merge the in-

formation about the engineer programmers. We would prefer instead a mapping that makes this

connection. This will be made possible by the presence of the superclass inthe CM, but absent in

the database schema. �

Example 6.3.3. In addition to cardinality considerations, the CM may contain additional informa-

tion useful in eliminating or prioritizing possible mappings. For example, consider a case resem-

bling Example 6.3.2, where information about departments and faculty are encoded using different

internal keys in the source and target db. If the source had two functional relationships,chairOf and

deanOf, betweenDepartment andFaculty, while the target only had one, call itfoo, then even

considering cardinality constraints one cannot distinguish the two mapping candidates:〈chairOf,

foo〉 and〈deanOf, foo〉. On the other hand, if the semantics indicates thatchairOf and foo are

partOf relationships (marked by filled-in diamond in UML), butdeanOf is not, then the second

mapping is less likely and can be eliminated or downgraded. BecausepartOf is transitive, this

would be the case even if we had to traverse a longer path of such edges inthe source CM.
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6.4 Comparisons and Contributions

We now discuss the main contributions made in this chapter in comparison to the related work. The

most directly related work is obviously Clio [MHH00, PVM+02], and we have already provided

some comparison of the basic techniques. Conceptual models have been used in developing graph-

ical query interfaces for databases. A central problem is inferring a query when a user has marked

some nodes in a CM diagram. We note that Zhang & Mendelzon [ZM83] appliedthe concept of

maximal object from relational database theory to find a default connectionamong a set of nodes in

a CM diagram. The following example shows their basic technique.

Example 6.4.1. In [ZM83], an object is defined as a relationship set together with all its partici-

pating entity sets. A maximal object is constructed by starting with an object and “growing” it into

a maximal object. Objects are added to the maximal object being constructed as long as the new

object joins losslessly with the objects already in the set. The cardinalities on theedges of the ER

diagram is used to infer lossless joins which allow maximal objects to grow with newobjects.

Figure 6.6 shows a CM diagram. Some of the maximal objects that can be inferred from the

diagram are:

{ Hospital ----- Lab }, (1)

{ Patient --->-- Ward , Ward --->-- Hospital , Test --->-- Patient ,

Test --->-- Lab }, (2)

{ Staff --->-- Ward , Ward --->-- Hospital }. (3)

The maximal object defined has two properties (i) the join of all the relationshipand entity sets

in the maximal object is lossless and (ii) the subgraph of the original CM graphcorresponding to

the maximal object contains no cycles. For a given set of nodesX, let T be the maximal object in

the CM graph that contains every node inX and has as few nodes as possible. The set of all theT ’s

is calledconnectiononX. Queries are formed using the connection.
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Hospital

-wid: key

Ward

Staff

Doctor -name: key

Lab

Patient
Test

Diagnosis

1..1

1..1 1..1

1..1

1..1

1..1

1..1

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

Figure 6.6: Finding Maximal Objects

Consider the query:Find the labs associated with ward 12.To express this query, the user can

markLab andWard and the output attributes. The only maximal object that contains bothLab and

Ward is the second one in the above maximal object list. Therefore, the connectionpath isWard –

Patient – Test – Lab, and the answer will be the set of labs that have been assigned tests for patients

of ward 12. Note that there are several other ways of connectingLab to Ward. For example, the

set of labs that work with the hospital where ward 12 is located. Intuitively,this connection is less

“tight” than the one given by the maximal object since the join among the entity and relationship

sets is lossless for the maximal object.

�
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In terms of finding a meaningful association among a set of concept nodesin a CM, we also adopt

the idea of lossless join. However, as Example 6.3.1 shows, sometimes the expected association

may be a lossy join. Therefore, we should also consider some connectionsin addition to maximal

objects in a CM. The following example shows how the work in [WS84] deals withthe problem of

connecting concept nodes in a CM by assigning different weights to different types of edges.

Example 6.4.2. In [WS84], the query inference problem is to determine the best tree containing

the target graph marked by the user in a CM graph. A best query tree possesses two properties (i)

it is minimal in the sense that each leaf node of the query tree is contained in the target graph and

(ii) it has minimum cost. The cost of an edge is specified as follows. For an edge e between a

concept node and an attribute node, the cost ofe is always 1; the cost of traversing an edgee from a

conceptC1 to a conceptC2 is 1 if the upper bound of the cardinality constraints on theC2 side is 1;

otherwise the cost of traversinge is µ, a sufficiently large number. Using the cost model, the query

inference problem is a variation of the minimum directed cost Steiner tree problem.

-sName

-sAddr

Student

-collegeName

-dean

College

-className

-prof

Class

register

offer

enrol

1..*

1..1

1..*1..1

1..*

1..*

Figure 6.7: Finding Query Trees

Figure 6.7 shows a cyclic CM graph. Suppose the user has marked the target graph as the two

attribute nodessName andcollegeName. There are two trees containing the target graph, namely,

Student --->register-- College and Student --enrol-- Class --->offer--

College (we have omitted the attribute nodes.) The best query tree is the first one because the

cost of the second tree will addµ by traversing the edge fromStudent to Class. µ is sufficiently
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large so that the total cost of the second tree is greater than the cost of thefirst tree.

�

In this example, if there is no lossless join then all edges of all connections have weightµ and

these connections are still the possible connections among marked nodes; the shortest one will be

returned as a result. We will also consider a connection that is a lossy join among the relationships

and the concepts in the connection in our mapping discovery process. However, like above, the use

of such a connection should be kept at a minimum. It would only happen whenit is necessary to

find a compatible connection to match one connection in other CM, as shown in Example 6.3.1 and

detailed in Section 6.5.3

The contributions made in this chapter are as follows. Compared to traditional RIC-based tech-

niques, the work presented in this chapter increases recall by, among others, slightly generalizing the

use of RICs to repeatedly merging functional relationships onto the entities in the CM, whereISA

is also treated as a functional relationship. It can also increase precisionby eliminating candidate

logical relations which cannot be consistently satisfied (e.g., because of disjointness constraints) and

eliminating mappings that pair relationships with suspiciously different semantics(many-to-many

with many-to-one,partOf with non-partOf ). Compared to the work of using CMs for user-friendly

query interfaces, the work presented in this chapter proposes a semanticsolution for discovering

mappings between relational schemas which is fundamentally different in thatthe focus is shifted

from discovering meaningful connections in asingle CM to discovering a pair of ”semantically

similar” associations in different CMs. Following sections elaborate on the solution we propose.

6.5 Mapping Discovery Algorithm

In this section we study the problem of discovering a pair of matched associations in the source and

target schemas. The ultimate goal is to find a pair of “semantically similar” algebraic expressions

that connect the respective sets of columns linked by the correspondences. We begin with a formal

description of the problem setting. Next we proceed to our basic principlesfor mapping discovery

and use examples to illustrate the algorithm for discovering a pair of matched graphical represen-
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tations in CM graphs. We present the formal algorithm after the examples. Finally, we describe a

process for obtaining algebraic expressions from graphical representation.

6.5.1 Basic Criteria

The input to our algorithm consists of (i) a source relational schemaS and a target relational schema

T , whereS andT associate with their respective CMsGS andGT through table semantics; (ii) a set

of correspondencesL linking a setL(S) of columns inS to a setL(T ) of columns inT . Assuming

that L specifies pairwise “similar” table columns, we seek to find a pair of “similar” algebraic

expressions〈E1, E2〉 which “interpret” the correspondencesL.

As shown earlier, the table semantics relate each table in the schema to an s-treein the respective

CM graph, associating with each table column a concept node in the graph through the bijective

associations between columns and attribute nodes. Consequently, the setL(S) of columns gives

rise to a setCS of marked concept nodes in the graphGS . Likewise, the setL(T ) gives rise to a set

CT of marked concept nodes in the graphGT . We call the s-trees associated with tables that have

columns participating inL pre-selected s-trees.

Example 6.5.1.Figure 6.8 presents a source schema associated with a source CM above itand a

target schema associated a target CM below it. The set of correspondencesL contains two corre-

spondences specified from the source schema to the target schema

v1: enroll.name!taughtBy.sname

v2: teach.instId!taughtBy.pid

L(S) is the set{enroll.name, teach.instId}; L(T ) is the set{taughtBy.sname, taughtBy.pid}.

The setCS of marked concept nodes in the source CM graph contains two nodes:Student and

Instructor, and the setCT of marked concept nodes in the target CM graph also contains two nodes:

Student andProfessor. Since the source schema contains five relational tablesstudent(name,age),

course(cNum), instructor(instId), enroll(name, cNum), andteach(cNum, instId), there are five

s-trees, namely,Student , Course , Instructor , Student --enroll-- Course ,

and Course --taughtBy->-- Instructor , corresponding to the five relational tables, re-
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spectively. According to the correspondencesv1 andv2, there are two pre-selected s-trees:Student

--enroll-- Course and Course --taughtBy->-- Instructor .

0..*1..* 1..10..*

student(  name,age )

enroll(  name ,cNum )

course(cNum)

teach(cNum,instId)

instructor(instId)

taughtBy(sname, pid)

v
1

v
2

SOURCE:

TARGET:

enroll taughtBy

0..*1..*

taughtBy

-hasName: key

-age

Student

-cNum: key

-.

Course

-instId: key

-.

Instructor

-sname: key

Student

-pid: key

Professor

Figure 6.8: Marked Class Nodes and Pre-selected s-trees

Likewise, in the target CM graph,Student --taughtBy-- Professor is the s-tree

corresponding to the tabletaughtBy(sname, pid). The same s-tree is also the pre-selected s-tree in

the target CM graph.

�

Our approach will consist of two major steps:

1. Find a subgraphD1 connecting concept nodes inCS and a subgraphD2 connecting concept

nodes inCT such thatD1 andD2 are semantically “similar” — we call theseconceptual

subgraphs (CSG);

2. TranslateD1 andD2, including the relevant attribute nodes, into algebraic expressionsE1

andE2, and return the triple〈E1, E2, LM 〉 as a mapping candidate, whereLM ⊆ L is the set

of correspondences covered by the pair〈E1, E2〉.
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In the rest of this section, we first present the CSGs for different situations and illustrate the

algorithms for discovering them using various examples. Then, we describe a process of translating

a CSG into an algebraic expression by using the table semantics in terms of LAV expressions.

6.5.2 Basic Conceptual Model

We first consider basic constructs: concepts and functional binary relationships, includingISA. We

delay the treatment of all other kinds of relationships to the next subsection.

There are many ways to connect the marked nodes inCS to create CSGs; similarly forCT . We

propose to systematically explore the information encoded in the correspondences and the table

semantics to discover a pair of similar CSGs. First, a nodev ∈ CS corresponds to a nodeu ∈ CT

whenv andu have attributes that are associated with corresponding columns via the table semantics.

Second, we take into consideration the following: (i) For a pair of nodes (v1, v2) in CS and a pair

of nodes (u1, u2) in CT , with v1 corresponding tou1 andv2 corresponding tou2, if there is to be a

connection betweenv1 andv2 then it should be “semantically similar” or at least “compatible” to the

connection betweenu1 andu2. The compatibility is decided by either the cardinality constraints of

the connections imposed on the corresponding participants or the semantic type of the connections,

e.g.,ISA andpartOf . For instance, a source relationship betweenv1 andv2 with lower bound 2

of the cardinality forv2 is not compatible with a target relationship betweenu1 andu2 with upper

bound 1 of the cardinality foru2. The second part of Example 6.3.3 also usespartOf semantics

to pair up compatible relationships. (ii) Since columns appearing in the same table are assumed to

represent particularly relevant semantic connections between the concepts carrying the respective

attributes, there is a preference that the CSGs use edges from the pre-selected s-trees. (iii) To

the extent that there are choices available, we want the CSG to represent“intuitively meaningful

concepts/queries”. (iv) All things being equal, we want the CSG to be compact – as per Occam’s

principle.

In relational database, there appears to be consensus that observation (iii) favors the joins in the

query to be lossless. Previous research on graphical querying of ERdiagrams [ZM83] (see Example
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6.4.1) indicates thatfunctional treesin such diagrams correspond to lossless joins. Formally, a

functional treeF containing a set of nodes{v1, v2, ..., vn} is a tree with a rootu such that all paths

from u are functional. (Such a tree is formally a Steiner tree.) The preference for functional trees is

motivated by the fact that functional properties in the CM determine functional dependencies, and

hence the application of theer2rel design to a functional tree gives rise to a set of relational tables

whose join is lossless. Combining this with observation (iv), we are led to seekminimal functional

treescontaining, as a subset, the nodes inCS (CT ). Interestingly, Wald & Sorenson [WS84], while

considering the problem of querying ER diagrams, also suggested using minimal-cost Steiner trees,

but in this case passing, if necessary, through non-functional edges, whose individual cost is greater

than the sum of all the functional edges (see Example 6.4.2).

Note also that meaningful queries should not be equivalent tofalse, so we will eliminate CSGs

that include anISA edge from a class nodeC to its parent and then anISA− edge to a nodeD

corresponding to a disjoint subclass fromC.

We now begin to present the algorithm, which starts by finding a CSG in one sideand constructs

a semantically “similar” CSG in the other side. For ease of presentation, we assume that we always

start from the target side, and then try to find a similar CSG in the source. There are two subcases:

• Case A: The target CSGD2 is known, e.g., it is the s-tree associated with a single table.

• Case B: The target CSG is to be constructed itself.

Case A. We use the following example to illustrate the construction of a similar CSG in the source

when the target CSGD2 is given.

Example 6.5.2.Consider an example involving source schema with tablescontrol(proj,dept) and

manage(dept,mgr), and target tableproj(pnum, dept, emp). Suppose the correspondences given

arev1:control.proj!proj.pnum, v2:control.dept!proj.dept, andv3:manage.mgr!proj.emp.

Figure 6.9 provides the semantics of target tableproj as the graph, rooted atProj, while the seman-

tics of the source tables are subgraphsProject ---controlledBy->-- Department and
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Department ---hasManager->-- Employee

Project Department Employee

Proj Dept

controlledBy

1..* 1..1 0..* 1..1

1..1

1..1

1..*

0..*

hasManager

hasDept

hasSup

v
1

v
2

v3

SOURCE

:

TARGET:

pid did eid

pid did

Emp

eid

Figure 6.9: Input to Example 6.5.2

In Figure 6.9, the correspondences are lifted to correspondences between the associated class

nodes.

Notice that the target CSG is ananchored s-tree, where the anchor isProj, and the path from the

anchor to every other node is functional. This leads us to believe that a “similar” CSG in the source

should be a functional tree with a root corresponding to the anchor.

Case A.1 Suppose for the anchorProj in the target we find a corresponding node in the source, in

this caseProject. Then try connect it to every other node that has a correspondence tothe target CM,

(Department andEmployee in this case) using minimal cost functional paths. Since observation

(ii) above directs us to follow edges in pre-selected trees as much as possible, the edges in pre-

selected trees do not contribute to the cost of functional paths. At last, wechoose the functional

tree(s) satisfying the following conditions as the CSGs in the source: (1) having the minimal cost

and (2) containing the most number of edges in the pre-selected s-trees. Each of such functional

trees is rooted at the node corresponding to the anchor in the target. In thisexample, the tree

Project ---controlledBy->-- Department ---hasManager->-- Employee is the
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CSG in the source that matches the target CSG.

Case A.2 If a user only specifies correspondencesv2 andv3 (v1 is missing), then we can no longer

find a corresponding root in the source; we are nonetheless seeking an CSG in the source that is a

functional tree. In this case, we look for all functional trees in the source that contain the nodes in

CS . Such trees should be as small as possible, hence, minimal functional trees.

In this example, we would return the same anchored tree as above. Note thateven if there were

another classIntern in the source graph, and a functional relationshipIntern ---works_on->--

Project , the functional tree rooted atIntern would not be returned because it is not minimal:

the functional tree rooted atProject already contains the necessary nodes.

Note that it is this technique that finds the appropriate answer for Example 6.3.2. Suppose

for the source tablesprogrammer(ssn, name, acnt) andengineer(ssn, name, site), the respec-

tive s-trees in the CM graph areEmployee --->isa-- Programmer and Employee

--->isa-- Engineer . These two s-trees are also pre-selected s-trees. Let the tree containing

the two ISA relationships be the s-tree for the target tableemployee(eid, name, site, acnt). To

connect the marked class nodesProgrammer andEngineer using edges in the pre-selected s-trees

in terms of a minimal functional tree in the CM graph, we could takeEmployee as the root and use

theISA edges as the functional links. The resulted tree gives rise to the desired algebraic expression

over the source tables, i.e.,

programmer(ssn, name1, acnt)./engineer(ssn, name2, site).

Suppose that the nodes inCS are not covered by a single (minimal) functional tree in the source

CM graph. Then, in Case A.1, we connect as many nodes as possible using a single tree rooted at

the node corresponding to the anchor and leave the rest unconnected.Consequently, the correspon-

dences will be split among the tree and the remaining unconnected nodes. InCase A.2, we find

the collection of trees covering different subsets of the nodes, and return each paired with the target

CSG. �

As the example below illustrates, a node in the target tree may correspond to multiple nodes in
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the source graph.

Example 6.5.3.The target tree in Figure 6.10 consists of a single nodeDivision. Using the corre-

spondences

employee.name!division.manager,

department.did!division.did,

department.budget!division.budget,

we identify two nodes in the source,Employee andDepartment, corresponding toDivision of the

target. To connect the two source nodes, we usekey information. The conceptDepartment has

an attribute corresponding to thekey did of the target conceptDivision. Therefore, we search for a

functional tree rooted atDepartment, which has the attribute corresponding todid. As a result, the

tree Department ---hasManager->-- Employee is returned.

employee(eid,name)

division(did, budget, manager)

SOURCE:

TARGET:

-eid: key
-name

Employee

-did: key
-budget

Department

-did: key
-manager

-budget

Division

department(did,budget)

1..1

1..1

1..*

0..*

worksIn

hasManager

worksIn(eid, did)

hasManager(did, eid)

Figure 6.10: UsingKey Information for Identifying the Root

However, if there is no concept in the source having an attribute corresponding to the key in

the target, then we look for all minimal functional trees containing the source nodes as discussed

in Example 6.5.2 Case A.2. In this case, both treesDepartment ---hasManager->--

Employee and Employee ---worksIn->-- Department are returned. �
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Case B. Next, we consider the case where there are several pre-selected s-trees in the target and

we want to connect them. Once again, we use the idea of minimal-cost functional trees to con-

nect the marked nodes which belong to these pre-selected trees. Consequently, we construct a set

of minimal functional trees in the target. Similarly, we can construct a set of minimal functional

trees in the source. From these two sets we form pairs CSGs by reverting toCase A, i.e., following

heuristics such as matching the roots of tree pairs and seeking compatible connections.

We now present the algorithm for discovering CSGs in a source and a target CM graphs when

given a source and a target relational schemas, their table semantics, anda set of correspondences

from columns of the source schema to columns of the target schema.

Algorithm: getCSGs( S, GS , ΣS , T , GT , ΣT , L)

Input: A source schemaS associated with a CMGS through the table semanticsΣS ; a target

schemaT associated with a CMGT through the table semanticsΣT ; a set of correspondencesL

between a set of columnsL(S) in S and a set of columnsL(T ) in T .

Output: A set of〈D1, D2, LM 〉, whereD1 andD2 are CSGs inGS andGT , respectively, andLM

is a set of correspondences covered by〈D1, D2〉.

Steps:

1. Let CS andCT be the sets of concept nodes identified by the correspondencesL along with

the table semanticsΣS andΣT in the CM graphsGS andGT , respectively.

(a) ComputeCS=onc(L(S))1 andCT =onc(L(T )).

2. LetPS andPT be the sets of pre-selected s-trees inGS andGT , respectively.

(a) ComputePS = pstree(L(S))2 andPT = pstree(L(T )).

3. Let Ans be the results set. Initialize Ans= ∅.

4. LetB be a set of CSGs in the target graphGT . InitializeB = ∅

1onc(X) is the function which gets the set of concept nodes having attributes corresponding to the columnsX.
2pstree(L) is the function which gets the set of s-trees associated with tables with columns participating inL.
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(a) If |PT | = 1, letB = B ∪ PT . /*There is only one pre-selected s-tree in the target. This tree covers

all nodes inCT .*/

(b) Else let FT be the set of functional trees covering nodes inCT , initialize FT=∅; for each

nodev ∈ GT

i. for each nodei ∈ CT , let SPi ={p | p is a shortest functional path fromv to i}. /*In

computing a shortest path, the edges of the pre-selected s-trees inPT do not contribute the weight of

a path.*/

ii. FT=FT ∪ combine(SPi)3 for all i ∈ CT .

iii. Among each set of functional tree in FT such that these trees cover the same set of

nodes inCT , choose the treet that has the minimum weight and contains the most

number of edges in the pre-selected s-trees inPT , letB = B ∪ t.

5. For each CSGgT ∈ B, letD be a set of CSGs in the source graphGS . InitializeD = ∅

(a) Letu be the anchor ofgT . /*If gT is a single pre-selected tree according to step 4.a, get the anchor

of gT by the table semantics; else the anchor ofgT is the nodev specified in step 4.b.*/

(b) LetR be the set of nodes inGS corresponding to the nodes ingT , getR throughL.

(c) Let r be a node inR corresponding tou. /*If there are multiple nodes inR corresponding tou,

distinguish them usingkey information of nodes ingT , if possible.*/

(d) If r exists

i. For each nodej ∈ R\r, let SPj={p | a shortest functional path fromr to j such

that p is compatible with the path between the nodes corresponding tor andj in

GT .} /*Using semantics likeISA andpartOf to check the compatibility. A case considered here is

that ISA andpartOf paths are compatible withISA andpartOf paths, respectively.*/

ii. D = D∪ combine(SPj) for all j ∈ R\r.

iii. For each CSGgS ∈ D

A. Let UCS be the set of nodes inR which are not covered bygS . Let UCT be the

set of nodes ingT corresponding to the nodes in UCS .
3combine is the function that merges functional shortest paths into a functional tree.
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B. Let Ans=Ans∪〈gS\UCS , gT \UCT , LM 〉. /*gS\UCS is the graph after removing

nodes in UCS and their incident edges fromgS ; the same forgT \UCT .*/

C. Let l be the correspondence linking a nodevi in UCS and a nodevj in UCT ,

let Ans = Ans∪〈vi, vj , l〉.

(e) Else/*For the functional treegT , we cannot find a node in the source corresponding to the anchor ofgT ,

so find all minimum functional trees covering R.*/

i. Compute a setD of CSGs covering nodes inR using procedure similar to step 4.b.

ii. For each CSGgS ∈ D, letLM be the set of correspondences covered by〈gS , gT 〉;

remove those leaves fromgS andgT such that they do not participateLM ; check

the compatibility of paths ingS andgT as in step 5.d.i.

iii. Let Ans = Ans∪〈gS , gT , LM 〉.

6. Repeat step 4 and step 5 by exchanging the source and the target in those steps but skip the

CSGs that have been matched in steps 4-5.

7. If the single pre-selected s-tree identified in step 4.a is not a functional tree, then find the set

of corresponding nodes in other graph and compute a minimum Steiner tree spanning the set

of corresponding nodes as a matched CSG.

8. Return Ans as the result.

6.5.3 Reified Relationships

In order to represent n-ary relationships (n > 2) in a CM like UML, one reifies them, introduc-

ing a special class connected to the participants using so-called “roles”. For example, to repre-

sent that stores sell products to persons, we introduce classSell, with functional properties/roles

seller, buyer, sold pointing to classesStore, Person andProduct respectively. (See Figure 6.11.)

Such reified relationship nodes will be indicated in our text by tagging their name with♦, although

formally this can be encoded in the CM by making such classes be subclassesof a special top-level

classReifiedRelationship. Note that classes for reified relationships may also be used to attach
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descriptive attributes for relationships (e.g.,dateOfPurchase). In fact, we need to use this mod-

eling approach for binary relationships that have attributes. For ease ofalgorithm design, we have

also chosen to represent many-to-many binary relationships, such as “person likes food”, in reified

form.

In terms of the formulas for table semantics, reified relationships are used in the standard way.

For example, if we had tablesells(sid,prodid,pid, date) whose semantics is represented by Figure

6.11, then the formula is specified as follows:

T :sells(sid, prodid, pid, date) → O:Store(x), O:Product(y),

O:Person(z), O:Sell(s),

O:seller(s, x), O:buyer(s, z),

O:sold(s, y), O:sid(x, sid),

O:prodid(y, prodid), O:pid(z, pid),

O:dateOfPurchase(s, date).

-sid: key

Store

-dateOfPurchase

Sell

-pid: key

Person

-prodid: key

Product

seller

0..*1..1

1..1

1..10..*

0..*

buyer

sold

Figure 6.11: Reified Relationship Diagram

Note that cardinality constraints0/1..1 on inverse roles can be used to indicate those cases where

an object can participate at most once in a relationship. Thus functional paths, such asProject

---has_manager-->- Employee can still be recognized in reified form asProject -<--

what−-->- Management♦ ---who-->- Employee .

When a reified relationship node appears in a CM graph, we make severaladjustments in the

mapping algorithm. First, a path of length two passing through a reified relationship node should
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be counted as a path of length 1, because a reified relationship could havebeen eliminated, leaving

a single edge.

Second, the semantic category of a target tree rooted at a reified relationship inducesprefer-

encesfor similarly rooted (minimal) functional trees in the source. This includes the anchor being

many-to-many, many-to-one or one-to-one (distinguished by the cardinalityrestrictions on the role

inverses, as in theManagement example above), the number of roles (exact arity), or subclass

relationship to top-level CM concept (e.g.,partOf♦).

Third, note that non-functional relationships between entities in a CM can also be derived as

the composition of edges on non-functional paths. For example, traversing the path Person

---shopsAt--- Store ---location-->- City yields a many-to-many relationship between

persons and cities where the stores are located. Thus, in seeking matchesin the source for a target

(reified) many-to-many binary relationships betweenA andB, one must also consider the possibility

that they appear as paths fromA’ to B’ in the source that are not functional in either direction, where

A’ andB’ are nodes in the source corresponding toA andB in the target, respectively. Note that

using a single reified relationship as an anchor and extending this graph byfunctional paths from

the roles, corresponds to lossless joins with the table representing the root;therefore such CSGs are

preferred. More generally, we look for CSGs that minimize the number of lossy joins, by minimiz-

ing the number ofdirection reversal changesalong each path. In terms of the algorithmgetCSGs(

S, GS , ΣS , T , GT , ΣT , L), we add the following adjustment.

• If the anchor of a CSG to-be-discovered is a reified many-to-many relationship that has been

identified, then we use shortest paths with minimum direction reversal changes along each

path to connect the anchor to other nodes.

Example 6.5.4. [Example 6.3.1 revisited]The solution to the problem in Example 6.3.1 is then

obtained as follows. The target s-tree in Figure 6.4 is a many-to-many relationship, which our

algorithm represents as a reified relationship with anchorhasBookSoldAt♦. To find a matching

CSG connecting the nodePerson in the source (corresponding toAuthor in the target) and the node

Bookstore in the source (corresponding toBookstore in the target), we look for paths connecting
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them that are not functional in either direction. Note that going from one role filler to another of

a reified many-many binary relationship produces exactly such a path. In this case, no such single

reified node can be found in the source. So we look for longer paths, obtaining the path fromPerson

to Bookstore throughwrites♦, Book, andsoldAt♦.

�

6.5.4 Obtaining Relational Expressions

The final mapping expression requires a pair of algebraic expressionsusing the tables in the input

relational schemas only. Therefore, we need to translate the discoveredCSGs in the CM graphs

into algebraic expressions over the database schemas. Consider a CM asa collection of primitive

relations/predicates for its concepts, attributes and properties. The semantics of a relational table

associated with the CM is a LAV expression over these predicates. Translating a discovered sub-

graph in the CM graph into expressions over tables associated with the CM graph becomes a query

rewriting problem.

The first step of the translation is to express the CSG as a query using CM predicates. The en-

coding algorithm proposed in Figure 4.7 of Section 4.3 can be used for this purpose. The following

example illustrates this.

Person Book Bookstorewrites soldAt

pname sid

pname sid

Figure 6.12: A Discovered Tree over a CM Graph

Example 6.5.5. Figure 6.12 is a fully specified CSG in the source CM of Example 6.3.1, with

attribute nodes shown. (For simplicity of presentation, we revert to unreified binary relationships.)

TakingPerson as the root of the tree, the encoding algorithm recursively constructs a logic formula

using unary predicates for the class nodes and binary predicates for the edges. An attribute node is
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encoded as a fresh variable in the formula and appears in the answer tuple. Assigning a nameans

to the query, we obtain

ans(v1,v2) :- O:Person(x1), O:pname(x1, v1),

O:writes(x1, x2), O:Book(x2),

O:soldAt(x2, x3), O:Bookstore(x3),

O:sid(x3, v2).

�

Given the table semantics in terms of logical formulas, we rewrite the queryq above to a new

queryq′ which only mentions the tables in the relational schema by taking advantage of theobject

identifier information in the table semantics. The new queryq′ is maximally-contained (see [Hal01])

in q and should mention tables that have columns linked by the correspondences.

Example 6.5.6.For the sake of completeness, we now briefly describe a process of rewriting. We

have proposed in Section 4.5 an ad-hoc approach to deriving inverse rules for each predicate in a

CM, in terms of the tables in a relational schema. An essential problem resolved there is that unique

internal object identifiers (e.g., arguments likex for Person(x) ) used in the CM, are not directly

available in the relational tables. Formally, these are converted to Skolem functions, giving rise to

formulas such as

O:Person(f(pname, age)) :- T :person(pname, age).

when inverting a semantic specification such as

T :person(pname, age) →O :Person(x), O :hasName(x, pname), O:hasAge(x, age).

The problem is that different tables give rise to different Skolem functions, which cannot then be

joined. For this purpose, we use thekey information about table semantics (see Table 4.1 of Section

4.3) in order to “unify” the various Skolem functions. So if we knew thathasName is the key of

entity Person, and the body formulaΦ containsPerson(x)∧ hasName(x, z) then we can in fact

usez instead ofx as the internal identifier, and treathasName as the identity relation.
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As a result, we can rewrite the queryq in Example 6.5.5 to queries that mention tables only. In

our case, these include the following:

q′1: ans(v1,v2) :- T :writes(v1, y), T :soldAT(y, v2).

q′2: ans(v1,v2) :- T :Person(v1), T :writes(v1, y),

T :Book(y), T :soldAT(y, v2),

T :Bookstore(v2).

q′3: ans(v1,v2) :- T :Person(v1) T :writes(v1, y),

T :soldAT(y, v2), T :Bookstore(v2).

Sinceq′1 does not mention tablesperson(pname) andbookstore(sid) that are linked by the

correspondences, andq′2 is contained inq′3, q′1 andq′2 are eliminated. The body of the queryq′3,

converted to relational algebra in the standard way, is returned as the algebraic expression.

�

6.6 Experimental Evaluation

We now report on experimental results that evaluate the performance of the proposed approach. We

show that this approach works reasonably in a number of cases, and achieves better results than the

RIC-based techniques for discovering a complex mapping expression among marked elements in

the schemas. The implementation is in Java and all experiments were performed ona PC-compatible

machine with a Pentium IV 2.4GH CPU and 512MB memory.

Datasets: We considered a variety of domains. For each, a pair of relational schemas developed

independently was used for testing. We ensured that the CMs associated with the pair of schemas

were also mutually independent, by using different domain CMs or the different ER conceptual

models used for deriving the independent schemas. We describe them briefly below. All the schemas

and CMs used in our experiments are available at [An06].

The first three pairs of schemas were obtained from Clio’s test datasets [PVM+02]. DBLP 1&2

are the relational schemas for the DBLP bibliography. They are associated with the Bibliographic
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Schema #tables associated #nodes #mappings time
CM in CM tested (sec)

DBLP1 22 Bibliographic 75 6 0.072
DBLP2 9 DBLP2 ER 7

Mondial1 28 factbook 52 5 0.424
Mondial2 26 mondial2 ER 26

Amalgam1 15 amalgam1 ER 8 7 0.14
Amalgam2 27 amalgam2 ER 26

3Sdb1 9 3Sdb1 ER 9 3 0.105
3Sdb2 9 3Sdb2 ER 11

UTCS 8 KA onto. 105 2 0.384
UTDB 13 CS dept. onto. 62

HotelA 6 hotelA onto. 7 5 0.158
HotelB 5 hotelB onto. 7

NetworkA 18 networkA onto. 28 6 0.106
NetworkB 19 networkB onto. 27

Table 6.1: Characteristics of Test Data

ontology and an ER model reverse engineered from the DBLP2 schema, respectively. Mondial 1&2

are databases about countries and their various features, where Mondial1 is associated with the CIA

factbook ontology and Mondial2 is reverse engineered. Amalgam 1&2 are test schemas developed

by students and used in the Clio evaluations. They associate with different conceptual models.

3Sdb 1&2 are two versions of a repository of data on biological samples explored during gene

expression analysis [JTBM06]. UTCS and UTDB are databases for theCS department and the DB

group at the University of Toronto. They were used in our previous study of semantics discovery,

so their semantics are available now. Finally, we chose two pairs of ontologiesfrom the I3CON

conference4. These ontologies were used for the ontology alignment competition and demonstrate

a certain degree of modeling heterogeneity. We forward engineered theminto relational schemas

for testing our techniques. As shown in Table 6.1, the test data have a variety of complexities.

Methodology: We compared thesemantic approach, presented in this chapter, with the RIC-

based technique illustrated in Example 6.3.1, which, recall, creates logical relations by chasing

RICs constraints, and derives mappings from pairs of source-targetlogical relations covering some

4http://www.atl.external.lmco.com/projects/ontology/i3con.html
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correspondences. Since in its raw form, the chase generates maximal setsof columns that can be

grouped by lossless joins, we first applied a heuristic that removed any unnecessary joins — ones

that did not introduce new attributes not covered by correspondences. (This is one optimization

recently described in [FHH+06].)

The comparison tries to focus on the intrinsic abilities of the methods. Each experiment consists

of a manually created non-trivial “benchmark” mapping between some pair of schemas. (A triv-

ial mapping is from a single source table to a single target table.), together with correspondences

involving column names in it. These manually-created mappings are used as a “gold standard” to

compare the mapping performance of the different methods.

Measures:We useprecision andrecall to measure the performance of the methods. For a given

schema pair, letP be the set of mappings generated by a method for a given set of correspondences.

Let R be the set of manually-created mappings for the same given set of correspondences. The

two measures are computed as:precision = |P∩R|
|P | andrecall = |P∩R|

|R| . We compute the average

precision and average recall over all tested mapping cases.

We believe it is instructive to give more details about how we calculate these measures. For each

test case,R contains the manually-created non-trivial benchmark mapping expressionconsisting of

a connection in the source and a connection in the target. In evaluating the generated mappings for

each method, we seek the same pair of connections, considering others that do not match the bench-

mark completely as “incorrect” mappings. For instance, in Example 6.3.1, evenif there were target

tables forauthor2, store2, and the RIC-based techniques recovered mappings〈person,author2〉

and〈store,store2〉, recall and precision would have been 0 because no non-trivial mappings were

found. (Note that the semantic method can also find trivial mappings.)

Results: First, the times used by thesemantic approach for generating the mappings (in algebraic

expressions) in the tested schemas are insignificant. The last column of Table 6.1 shows that it took

less than one second. This is comparable with the RIC-based technique, which also took less than

one second for mapping generation in our experiments. Next, in terms of the measures, Figure 6.13

compares the average precisions ofsemantic and the RIC-based technique for all the domains.
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Figure 6.13: Average Precision

Figure 6.14 compares the average recalls.

0

20

40

60

80

100

DBLP


M
on

dia
l

Am
alg

am


3S
db



UTCSDB

Hot
el

Net
wor

k

A
ve

ra
ge

 R
ec

al
l (

%
)

Semantic RIC-based

Figure 6.14: Average Recall

The results show that in general, thesemantic approach performed at least as well as the RIC-

based technique for the test datasets. The measures of recall show thatthe semantic approach did

not miss any correct mappings that were predicted by the RIC-based technique (since it gotall the

mappings sought), and made significant improvements in some cases. Moreover, Figure 6.13 shows
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that the semantic approach had significantly improved precision in some cases.

Discussion:Many of the experimental schemas we have found do not have complicated semantics,

and therefore would not provide differing results unless somewhat complex correspondences and

mappings were sought. Most of the differences in this particular experimental set were due to

situations such as the one illustrated in Example 6.3.2.

6.7 Discussion

We have proposed here an approach to discovering mapping expressions between a pair of relational

schemas. The approach starts from simple table column correspondencesand utilizes the semantics

of the tables, expressed through connections to conceptual models. We first showed several cases

where the current solutions for discovering mappings (based on referential integrity and key con-

straints) does not produce the best results. We then developed an algorithm for discovering plausible

mappings at the conceptual level, and translated them into sketches of relational level mappings. In-

tuitively, this algorithm replaces the use of RICs by the notion of ”minimal functional tree” in the

CM, which, interestingly, appear to be related through the theory of Universal Relations and loss-

less joins. Experimental results demonstrated that the semantic approach achieved a generally better

performance in recovering complex mapping expressions on test datasetsdrawn from a variety of

domains.

Compared to the traditional schema mapping techniques, e.g., Clio, our solution has an obvious

limitation, that is, it assumes the semantics of the schemas being mapped are available. Given

the additional significant work that has gone into the Clio tool, it may be best to view the present

work as being complementary and embedded: if the semantics of the schemas is available or can

be reconstructed with low cost using theMAPONTO tool, then the present technique could be used

inside Clio to provide some better candidate mappings. The exact details of such a merger remain

to be worked out.

In terms of future work, we are planning to work on the representation of all conjunctive queries

over the CM, as well as safe negation in s-trees/s-graphs. As shown in Chapter 4, a more careful
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look at the tree provides hints about when joins should really be treated as outer-joins (e.g., when

the minimum cardinality of an edge being traversed is 0, not 1); such information could be quite

useful in computing more accurate mappings, expressed as nested tuple-generating dependencies.

Investigating the related problem of finding complex semantic mappings betweentwo CMs, given

a set of element correspondences, is another future research direction.

6.8 Summary

Based on our study on discovering semantics for database schemas in previous two chapters, we

developed a new approach to schema mapping by using the semantics of schemas in this chapter.

The essential point is to find a pair of associations in the source and the target schemas such that

the pair are “semantically similar”. For doing this, we explored various constructs in the CMs

associated with schemas. These constructs include cardinality constraints,types of relationships,

and graph structures. We believe that what we have done in this chapter will lead to more work in

exploring and utilizing semantics of data.



Chapter 7

Conclusions and Future Directions

Discovering semantic mappings between different data representations is acritical step for many in-

formation management applications. Since manual creation of semantic mappingsis labor-intensive

and error-prone, it is important to develop tools to automate the process. This dissertation has con-

tributed to both developing tools for semantic mapping creation and understanding semantics for

database schemas. In this chapter, we recapitulate the main contributions of the dissertation and

discuss directions for future research.

7.1 Main Contributions

This dissertation makes two major contributions: (i) discovering semantics for widely used database

schemas in terms of CMs and (ii) using the semantics for discovering mapping expressions between

database schemas.

We approach the problem of discovering semantics for database schemasby aligning the model-

ing constructs in schemas and given CMs. The alignment is guided by well-known database design

principles. The underlying assumption is that a mapping expression relates two “semantically sim-

ilar” associations in different models.

To increase the chance of getting accurate mapping results, we request from the user simple

157
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element correspondences as an additional input for the mapping algorithm.This approach is sup-

ported by other mapping tools, and simple element correspondences can bespecified manually or by

schema matching tools. Starting from the correspondences between the elements in a schema and a

CM, we directed our attention to find an association among elements in the schema and an “semanti-

cally similar” association among elements in the CM. First, we meticulously analyzed the standard

database design methodology. We uncovered a number of notions related tothe transformation

process in addition to a set of standard rules for generating schema structures from a conceptual

model. These notions, e.g., anchor, play a central role in the development of the semantic mapping

discovery algorithm.

Second, we constructed a CM graph from a CM by taking cardinality constraints and relation-

ship types into consideration. We differentiate functional paths from non-functional paths for the

purpose of interpreting the key and foreign key constraints in database schema. Third, focusing on

the schemas that could have been generated by the standard design methodology from conceptual

models, we develop an algorithm that is “complete” and “sound”. This resultgives us a theoretical

confidence for judging the performance of the algorithm on some “regular” database schemas. To

evaluate the algorithm on a wide variety of practical schemas, we finally implemented and tested

the algorithm in our prototype toolMAPONTO. One lesson we have learned from the experimental

study is that the tool is useful because not only it can produce correctanswers for many cases, but

also it could reduce the burden that would be endured by human even though the answers are in-

correct. The user still could benefit from the incorrect answers by debugging them into the desired

ones instead of specifying the correct answers completely from scratch.

Our second major contribution is made by taking advantage of the semantics of database schemas

that would have been discovered by theMAPONTO tool for improving schema mapping. We are

motivated by the observation that traditional schema mapping approaches relying on schema con-

straints and structures sometimes do not produce desired mapping relationships between a given

source and a given target schemas. It is in part because logical schemas are ”semantically impov-

erished”; therefore, it is inherently difficult for computerized tools to discover mappings between

heterogeneous schemas. Moreover, traditional mapping techniques would first find logical associ-



159

ations in the source and target schemas and then would pair each logical association in the source

with each logical association in the target. As a result, the number of candidatemappings would be

huge since every combination of a logical association in the source and a logical association in the

target is considered as a candidate. The user may be overwhelmed by the results generated by the

traditional mapping tools.

In order to improve schema mapping, we believe that multiple information sourcesabout schemas

have to be exploited. As we have studied the issues of semantics for database schemas, we exploit

the information about schema semantics expressed in semantic mappings to CMs.Although we

have developed a tool for discovering semantics for schemas in terms of given CMs, many database

schemas were developed independently from different conceptual models. We therefore do not as-

sume that schemas are connected at the CM level. We focus on exploiting the semantic information

encoded in different CMs for discovering possible relationships between schemas. The underly-

ing assumption is the same as that for discovering schema semantics, that is, seeking for a pair of

“semantically similar” associations in different schemas. To do this, the CMs are treated as graphs

and the semantics of each relational table is a tree called s-tree. Given a setof correspondences

between schema elements, we first identify sets of concept nodes in the CM graphs. The algorithm

then focuses on finding compatible conceptual subgraphs in both CM graphs. Finally, these pairs of

compatible subgraphs are translated into algebraic expressions over the schema elements. A pair of

algebraic expression gives rise to a schema mapping expression. Our experimental results show that

the semantic approach outperforms the traditional techniques in terms of both recall and precision.

The key innovations that we have made in developing the solution to semantic schema mapping

is that we bring the necessity of explicit representation of semantics for schemas to the forefront

of data integration and we exploit a kind of semantics for improving schema mapping. We expect

more work ahead for representing and exploiting the full semantics of various database schemas.
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7.2 Future Directions

Although we have made significant progress on the problem of discovering and using semantics for

database schemas, we believe that what we have tackled is just a tip of the iceberg representing the

long-standing problem of understanding data semantics. To achieve the goal of seamless semantic

integration over heterogeneous and multiple information systems, substantial work remain. We now

discuss several immediate future research directions.

Mapping between CMsOne problem is to discover complex semantic mappings between CMs.

Although we have developed solutions for discovering a semantic mapping from database schemas

to CMs and for discovering schema mapping, it is unclear whether the solutions are directly applica-

ble for discovering semantic mappings between CMs. What is clear is that CMstend to have more

complex structure and richer semantics. A CM language often provides a rich set of constructs for

modeling a subject matter. This increases the difficulty in discovering semantic mappings between

CMs because there are more variations for modeling the same real world object. Nonetheless, many

applications demand establishing semantic mappings between various CMs. A prominent exam-

ple is the Semantic Web, where data are annotated with domain ontologies. It is impossible that a

single ontology or a few monolithic ontologies would dominate the Semantic Web. Instead, data

would be annotated with numerous, different ontologies. A pressing problem in the realization of

the Semantic Web is to connect these ontologies by semantic mappings.

Although ontology mapping has attracted a steady attention since the advent ofthe Semantic

Web, little effort has been put into deriving complex mapping expressions between ontologies. Most

of the current solutions focus on producing correspondences between single elements in ontologies,

e.g., a conceptC1 in an ontology is a synonym of the conceptC2 in another ontology. A semi-

automatic and interactive approach similar to what we have developed in this dissertation would be

appropriate for deriving complex mapping expressions for CMs.

Semantic Mapping ManagementThe second direction is mapping management including main-

taining semantic mappings associated with design process and adapting mappings when domain

models evolve. As we have observed, current practices in database design do not keep the con-
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ceptual models for late use. One way to reduce legacy data is to maintain the semantic mapping

associated with database design process. A key problem of the maintenanceis that schemas change

constantly due to the open and dynamic application environment. When a schemaevolves, the cor-

responding CM and the semantic mapping also need to adapt the schema’s evolution in order to

maintain the validity of the mapping.

Semantic Mapping CompositionThird, composing a series of semantic mappings to reach a di-

rect mapping is a natural application. Suppose we have a situation where data providers willingly

connect their data sources to acquainted sources and these sources are connected to other acquain-

tances. A similar situation is that different databases are derived from a common CM or that

database schemas are connected at their CM level. In almost all these situations, semantic map-

ping composition plays an important part in direct information exchange between sources without

direct mappings. Current solutions for mapping composition focus on mappings between relational

database schemas. Such a mapping often is specified in the form of source-to-target tuple generat-

ing dependency (see Section 2.1). It is worth investigating the composition ofsemantic mappings

from two different database schemas to a CM with rich semantics. Moreover, composing a semantic

mapping from a database schema to a CM with a semantic mapping between two CMs will generate

a new semantic mapping for the database schema.

Integrating Schema Matching ToolsThe fourth future work direction is to integrate the schema

matching tools with our tool to achieve fuller automation. Simple correspondences between ele-

ments in different domain models play a key role in our solutions to both the problem of discovering

semantics and the problem of using semantics for database schemas. So farwe have assumed that

correspondences are available and there are no questions about the accuracy of correspondences.

Almost all schema matching tools, however, are semi-automatic, needing human intervention in

choosing desired results. Integrating such schema matching tools with our tools faces many chal-

lenges. The biggest one is that the correspondences generated by a schema matching tool may be

ambiguous or incorrect. If we expect to achieve full automation, these correspondences would be

fed into our tool as part of the input. As a result, the final mapping expressions may be meaningless

and useless. We believe that the semantic information available in both schemas and CMs can be ex-
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ploited to inspect the input correspondences in order to generate meaningful mapping expressions.

Substantial work remains.

Exploiting Data Instances for Ordering the CandidatesA fifth direction is to prioritize the map-

ping candidates according to data instances. A database often has data instances accompanying its

schema. A mapping relating a domain modelM1 to another domain modelM2 can be applied to an

instance ofM1 as a query, generating a new instance forM2. If there is an existing instance ofM2,

we could compare the new generated instance with the existing one in terms of some “distance”

criteria between them. The closer the two instances are, the higher the priorityis assigned to the

mapping. In addition, comprehensive machine learning techniques can be used to discover semantic

patterns for the same purpose.

Better User Interface for Interaction Finally, we need better user interfaces for efficient interac-

tion. The solutions we have developed must interact with the user in order to arrive at the final cor-

rect mappings. We consider the development of user-friendly interfaces for efficient user interaction

is one of the most important problems in developing various mapping tools. Our own experience

working with theMAPONTO tool shows that the user can easily get frustrated in browsing large

scale and complex schemas and CMs for verifying the mappings generated by the tool. Current

data integration systems may involve hundreds and thousands different databases and conceptual

models. Consequently, a great number of mappings need to be verified manually before meaning-

ful data integration is provided. A fundamental criterion in developing interfaces for efficient user

interaction is to minimize the user input and maximize the yield of the input.
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