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Abstract

Computer science literature, as many other natural systems behave, form adirected graph–we
call it Citation Graph of Computer Science Literature, whose nodes are articles and edges are links
to the articles cited in a paper. With hundreds and thousands of publications getting published
each year in computer science, people are more interested in exploring the features hidden behind
such huge directed graph by modern graph-theoretic techniques. In thisstudy, we constructed a
web robot querying the prominent computer science digital libraryResearchIndexto build citation
graphs. With the reasonable size citation graph in hand, we first verified that the in-degrees of
nodes(i.e., the citations of articles) follow the Power law distribution. Next, we apply a series graph
theoretic algorithms on it:Weakly Connected Component, Strongly Connected Component, Bicon-
nected Component, Global Minimum Cut, Max-flow Min-cut and Dijkstra’s Shortest Path algorithm
and do numerical analysis of these results. Our study indicate that the citationgraph formed by com-
puter science literature are connected very well and its widespread connectivity doesn’t depend on
“hubs” and “authorities”. The experimental results also show that the macroscopic structure of the
citation graph is different from the macroscopic structure of Web graph which is Bow Tie model.
Also, based on the citation graph built by queryingResearchIndexwhich is a subset and snapshot
of whole citation graph, we provide the diameter measurements.
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1 Introduction

Many natural systems form a huge dynamic directed graph, such that the nodes are the elements
of the natural systems and the edges are the interactions among these elements. Researchers and
scientists from different fields have common interests to explore the features hidden behind these
huge directed graph. Since for a huge directed graph, the number of its nodes and edges usually
is millions and billions. It is infeasible to construct a detailed directed graph structure to depict it.
However, many researches have developed alternate methods to explore and utilize the character-
istics of huge dynamic directed graphs. Particularly, the development of modern graph theory and
graph-theoretic algorithms facilitates the study in these systems.

Developing and understanding huge dynamic networks greatly aid people inefficient and ef-
fective information location and knowledge discovery. For example, the citation graph formed by
scientific literature whose nodes are articles and whose edges are links to articles cited in a paper
conveys information about scholarly activities and spawns measures of scientific productivity. In-
tuitively, well-known papers tend to be cited frequently and papers dealingwith the same specialty
tend to connect to one another. There have been a number of scientific investigations on quantifying
citations as measures of academic output. Nevertheless, interpreting link topology of the citation
graph and offering insights into the nature of underlying inter-relationships such as those among
people or specialties have not advanced greatly, and are still attractive and promising.

People in Information Science have studied the output of science for many years based on ci-
tation and co-citation analysis. Bibliometrics, Informetrics are the technical names for a range of
analytical methods using publishing materials to develop statistics, multidimensional analyses. Yet
the questions that what is the structure of citation graph? and what are its properties? still remained.
Now things have changed. There are more and more published researchpapers available in WWW.
The emergence of digital libraries gives us the chance to explore citation graph by employing mod-
ern graph-theoretic techniques.ResearchIndex[17], as one of such digital libraries, provides a very
convenient way to do computer science article search and allows people to search relevant papers
by navigating the links between papers formed by the citations, i.e., navigating along citation graph
to find useful information. Given a such easily accessible digital library ofcomputer science liter-
ature, we are eager to explore the Citation Graph of Computer Science Literature and mine its link
structure for structural pattern discovery.

The following considerations motivated our study. Understanding the link topology of the cita-
tion graph using graph-theoretic tools may:

1. yield valuable insight into other citation or co-citation analyses.

2. facilitate knowledge discovery relying on link information such as similarity calculation, and
finding communities.

3. help in citation graph visualization.

4. help evaluate the evolution of specialties or research themes over time.

Motivated, we constructed a web robot to queryResearchIndexto extract and build the citation
graph autonomously. Due to the time and space limitation, the constructed citation graph is only a
snapshot and subset of real citation graph of computer science literature. To this citation graph, we
did three sets of experiments: 1. generated the in- and out- degree of nodes distributions, verifying
that they follow the ubiquitous Power law distribution. 2. applied a series graph theoretic algorithms
on this graph, checking its connectivity and finding various types of components. 3. using global
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minimum cut algorithm sliced this graph into pieces, exploring its interior structure. We will report
our main results momentarily.

1.1 Main results

By constructing a robot for queryingResearchIndex, we built a collection of citation graphs. The
results of our three sets of experiments on them indicated consistent characteristics existing among
them:the first set of experiments of being to generate in- degree distributionsshowed that the in-
degree numbers follow Power law distribution with 1.71 as exponent, i.e., the fraction of literature
with k citations is proportional to1/k1.71.

Our analysis of second set and third set of experiments, which are checking various types of
components and applying global minimum cut algorithm, indicated that≈ 90% of all nodes form
a single Weakly Connected Component(WCC) if citations are treated as undirected edges. In such
giant WCC, almost 68.5% of the nodes have no any incoming link see Figure 1,suggesting that
68.5% of the publications have not been cited yet. Furthermore, in such giant WCC, around 58%
of the nodes account for a big Biconnected Component(BCC), and almostall rest of nodes fall into
trivial BCCs each of which consists of only one distinct node. Our analysis of the big BCC shows
that there are 43% of its nodes without incoming link, and rest of its nodes have both incoming and
outgoing links. Instead of being Bow Tie model as web graph, the macroscopic structure is a half
Bow Tie with one side wing cut off (see Figure 2).

31.5 %

68.5 %papers inside this area
haven’t been cited yet.

papers inside this area

have been cited.

Figure 1: The connectivity of the citation graph: 68.5% of the nodes in WCC have no incoming
link.

Treating the citations as directed edges in the citation graph, we showed that the directed diam-
eter is 29. The diameter is defined as the maximum over all ordered pairs(u, v) of the shortest path
from u to v. However, the probability of existing a directed path between any pair of nodes is only
2%. The undirected diameter is 18 measured by ignoring the direction of edges.

The remainder of this thesis is organized as five additional sections and oneappendix. Citation
and co-citation analysis in scientific literature has been studied for decades, it is related to our work
in some point. Other related work is the efforts of characterizing and mining other large scale
networks such as web graph, we discuss them in Section 2. In Section 3, wegive a description of
the dataset which our study relies on. Graph theory terminology and algorithms as main tools for
this study are reviewed in Section 4. Section 5 contains the bulk of our experiments and analysis of
results. Finally, Section 6 contains our conclusion and discussion of future areas of research for the
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papers form a biconnected
nucleus, it takes 58%.

Figure 2: The connectivity of the citation graph: 58% of the nodes in the giant Weakly Connected
Component(WCC) account for a big Biconnected Component(BCC). 43% of the nodes in the big
BCC have no incoming link.

citation graph. We demonstrate our robot algorithm for data collection and discuss the consideration
for building citation graphs fromResearchIndexin the appendix A.



2 Related work and literature review

Broadly speaking, related prior work can be divided into three categories:(1) citation and co-citation
analysis on scientific literature, including visualization of citation network. (2)characterizing work
on other large scale networks, including various measurements, and (3) efforts of mining link struc-
ture of networks for information location.

In this section, when we discuss the prior related work, we always make corresponding compar-
isons to our own study on the citation graph. The commonality consists in utilizing graph theory
approaches for characterizing large scale networks as well as mining their link topology for efficient
and effective knowledge discovery.

2.1 Citation and co-citation analyses of scientific literature

Many current approaches and algorithms for characterizing large scale networks such as World
Wide Web, extend the research in the field of bibliometrics. Bibliometrics is the study of written
literature and their citation structure. Someone might think that our study on citation graph of
computer science literature is bibliometrics study on the citation of those literature.But actually,
our work was inspired by work of characterizing Web graph. We are more interested in the graph
structure formed by citations of literature instead of impact factor of each article. We consider our
work is complementary to bibliometrics, and is a different view of citation structure. Research in
bibliometrics has long been concerned with the use of citations to produce quantitative estimates
of the importance and impact of individual scientific publication and journals.The most well-
known measure in this field is Garfield’s impact factor[10], used to providecomputer-compiled
statistical reports of Journal Citation Reports(JCR) of the Institute for Scientific Information(ISI). It
is a measure of the frequency with which the average article in a journal hasbeen cited in a particular
year of period. It is observed that the impact factor is a ranking scheme based fundamentally on
a pure counting of the in-degree of nodes in the citation graph, but it doesnot give us any picture
of such graph. Bibliometrics can take a number of technical forms, as characterized as follows:(1)
citation analysis: identify the number of times a specific publication is cited in other scientific
publications, (2) co-citation analysis: identify pairs or groups of publications that are cited together
in other publications, (3) co-word analysis: assign keywords to a publication by a professional
reader; publications which have same keywords and sets of words are linked to each other via a
clustering technique, and (4) scientific mapping: develop a visual model of the realm of scientific
fields representing the structure of literature output of particular scientificfields.

Instead of analyzing the average or total number of citations such as impactfactor, Redner[26]
focuses on the more fundamental distribution of citations of scientific literature, namely, the number
of papers which have been cited a total ofx times,N(x). The study in [26] is based on two rela-
tively large data sets: one is the citation distribution of 783,339 papers duringthe period 1981-June
1997 that have been catalogued by the Institute for Scientific Information(ISI);the second is the ci-
tation distribution , as of June 1997, of the 24,296 papers cited at least once which were published
in volumes 11 through 50 of Physical Review D(PRD), 1975-1994. Its focus is on citations of pub-
lications rather than citations of specific authors. The main result of this studyis that the asymptotic
tail of the citation distribution appears to be described by a Power law,N(x) ∼ x−α, with α ≈ 3.
Another important aspect of citation statistics is its continuing temporal evolution. This feature is
nicely illustrated by the annual citation statistics of Physical Review D(PRD) publications, where
the average number of citations for articles published in a given year is typically decreasing slowly
with time. The citation distribution provides basic insights about the relative popularity of scientific
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publications and provides a much more complete measure of popularity than the average or total
number of citations such as impact factor. [26] shows, at a basic level, most publications are mini-
mally recognized, with≈ 47% of the papers in the Institute for Scientific Information(ISI) data set
uncited, more than80% cited 10 times or less, and≈ 0.01% cited more than 1000 times.

As scientific mapping, Chen [6, 7] develop a set of methods that extends and transforms tra-
ditional author co-citation analysis by extracting structural patterns from scientific literature and
representing them in a 3D knowledge landscape. [6] address the problem to effectively and in-
tuitively access and explore information in a digital library by a set of visualization tools. Their
work focuses on two major datasets: the ACM SIGCHI conference seriescontaining 169 papers
published in three conference proceedings, and the ACM Hypertext conference series including
all the papers published in the ACM Hypertext conference proceedings(1987-1998). In [7], the
authors show their procedure for extracting intellectual structure from scientific literature. Their
approach to knowledge visualization work particularly well for identifying intellectual groupings
based on an extension of the traditional author co-citation analysis. Their results reveal many chal-
lenges for understanding knowledge structure, they argue that because citation analysis builds on
scientists’ long-established citation practice, approaches that focus on Web-based citation resource
hold promise. Our work is based on such citation resource:ResearchIndex. As we listed above, the
visualization approaches of extracting intellectual structure from scientificliterature developed in
[6, 7] give useful insights into understanding the structure of citation graph of scientific literature.
Users can apply such visualizations to discover patterns and make valuableconnections between
articles. We consider that our work on characterizing citation graph of scientific literature will shed
additional light on visualization of citation graphs.

2.2 Characteristics of large scale networks: Web graph

Consider the directed graph whose nodes correspond to static pages onthe web, and whose edges
correspond to hyperlinks between these pages. A.Broder and others in[3] study various properties
of this graph including its diameter, degree distributions, connected components, and macroscopic
structure. They performed a number of experiments on web crawls from May 1999 and October
1999–approximately 200 million pages and 1.5 billion hyperlinks. First, they verified the in- and
out- degree distribution follow the Power law distribution with exponent as 2.1,confirming it as
a basic web property. In their second set of experiments they studied the directed and undirected
connected components of the web. Their analyses reveals an interesting picture of the web’s macro-
scopic structure. Most (over 90%) of the nodes form a single connected component if hyperlinks
are treated as undirected edges. This connected component breaks naturally into four pieces. The
first piece is a central core, all of whose pages can reach one another along directed hyperlinks–
this “giant strongly connected component” (SCC) is at the heart of the web. The second and third
pieces are called IN and OUT. IN consists of pages that can reach SCC,but cannot be reached from
it–possibly new sites that people have not yet discovered and linked to. OUT consists of pages that
accessible from SCC, but don’t link back to it, such as corporate websites containing only internal
links. Finally, the TENTRILS contain pages that can not reach SCC, and cannot be reached from
SCC. Perhaps the most surprising fact is that the size of SCC is relatively small– it comprises about
1
4 of all pages. Each of other three sets contain about other three1

4 portions of all pages–thus, all
four sets have roughly the same size. They call it as Bow Tie model.

Defining the diameter as the expected length of the shortest path where the expectation is over
uniform choices from the set of all ordered pairs of nodes(u, v) such that there is a path fromu
to v, A.Broder et.al in [3] show that the diameter of the central core(SCC) is atleast 28, and that
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the diameter of the graph as a whole is over 500. They show that for randomly chosen source and
destination pages, the probability that any path exists from the source to the destination is only
24%. They also show that, if a directed path exists, its average length will be about 16, likewise, if
a undirected path exists, its average length will be about 6.

The work of A.Broder et.al in [3] confirms the early work of Barabasi([23, 1, 2]) in which
Barabasi introduce the scale-free characteristics of random networks–the probabilityP (k) that a
vertex in the network is connected tok other vertices decays as a Power law in some large random
networks. Barabasi in [2] claim that the scale-free characteristics exist in many natural systems.
In particular, many of these systems form complex networks. For example, living systems form a
huge genetic network, whose vertices are proteins, the edges representing the chemical interactions
between them. Similarly, a large network is formed by the nervous system, whose vertices are the
nerve cells, connected by axons. But equally complex networks occur insocial science, where ver-
tices are individuals or organizations, and the edges characterize the interactions between them, in
the business world, where vertices are companies and edges represent diverse trade relationships. In
order to find the generic features of such network development, they explore the large database de-
scribing the topology of large network as WWW. To determine the local connectivity of the WWW,
they constructed a robot. The data were obtained from the complete map of thend.edudomain,
that contains 325,719 documents and 1,469,680 links. From the collected datathey determined
the probabilityPout(k)(Pin(k)) that a document hask outgoing(incoming) links follow a Power
law, with 2.45(2.1) as exponent. Another particularly important quantity in a search process is the
shortest path between two documents,d, defined as the smallest number of URL links that must be
followed to navigate from one document to the other. They find that the average ofd over all pairs
of vertices is 19. Connecting to its scale-free stationary state of large random networks, we expect
that citation graph exhibit the same scale-free state rather in different size; but the issue is that what
is its exponent? Scale-free stationary state gives us such insight that we may wish to understand the
link structure of citation graph by exploiting a subgraph, provided the subgraph has enough nodes
and edges.

2.3 literature review on mining link structure of large scale networks for informa-
tion location

Understanding the topology and local connectivity of large random networks allows us to predict
the behavior of diverse algorithms for locating information and patterns in these networks. To my
understand, searching information and patterns in Hypertext structuresby exploiting link topology
started as early as Botafogo in [5] in 1991. The authors define two types of important nodes:index
and reference. An index node is a node whose out-degree is greater than average out-degree, a refer-
ence node is a node whose in-degree is greater than average in-degree. In order to better capture the
notion of how complex a hypertext is, thecompactnessmetric is developed. Informally, the com-
pactness is measured by the distances between nodes. Giving the definitionof compactness, they
define a semantic cluster of a hypertext as a set of nodes and links that have two properties:(1) they
are a subgraph of the hypertext, (b) the compactness of the subgraph ishigher than the compact-
ness of the whole graph. Having the definition of semantic cluster of hypertext, they introduce two
types of algorithms to find semantic clusters in the hypertext:(1) Biconnected components , and (2)
Strongly connected components. By analyzing the structure of a hypertext using both algorithms,
[5] show that it is possible to identify groups of nodes that have a high semantic relation. In citation
graph domain, we expect to find Biconnected component and Strongly connected component struc-
tures. The main insight brought by [5] is that could we capture the notion ofpublication community
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by compactness? and how to identify communities in the context of citation graph?

Many achievements have been fulfilled in exploiting link topology of Web to locateinformation
in recent researches. Kleinberg[16] proposes an algorithm that, given a topic, finds pages that are
considered authorities on that topic. The algorithm, known as HITS, is based on the hypothesis that
for broad topics, authority is conferred by a set of hub pages, which are recursively defined as a
set of pages with a large number of links to many relevant authorities. Specifically, their approach
mainly address the problem of distilling and filtering authorities from large volumeof relevant
information. It consists of two processes: first, they need to construct afocused subgraph of WWW
with these properties: (1) it’s relatively small, (2) it rich in relevant pages,and (3) it contains most
of the strongest authorities. Second, based on their hypothesis that there are hub pages which have
links to multiple relevant authoritative pages;hubs and authorities exhibit whatcould be called a
mutually reinforcing relationship:a good hub is a page that point to many good authorities;a good
authority is a page that is pointed to by many good hubs, they apply a iterative algorithm to compute
the hub weights and authority weight of each web page. They show that thevectors of hub and
authority weights correspond to the principal eigenvectors of matrices inferred from the adjacency
matrix of the focused subgraph of WWW. The main concerns are fundamentally different from
problems of clustering. Clustering addresses the issue of dissecting a heterogeneous population into
sub-populations that are in some way more cohesive; thus, clustering is intrinsically different from
the issue of distilling authorities from a relevant corpus of broad topics. The hypothesis of hubs and
authorities exhibiting mutually reinforcing relationship on which the HITS algorithm based is not
likely to be expected in the context of scientific literature–citation graph. When[16] began with the
goal of discovering authoritative pages, they are expecting mutually reinforcing relationship is the
intrinsic property of WWW. On the other hand, their approach in fact identified a more complex
pattern of social organization on the WWW, in which hub pages link densely toa set of thematically
related authorities. This equilibrium between hubs and authorities is a phenomenon that recurs in
the context of a wide variety of topics on the WWW. But in the context of scientific literature,
it has typically lacked, and arguably not required, an analogous formulation of the role that hubs
play in WWW. Therefore, when we explore citation graph of scientific literature, we have to avoid
the pitfalls of using the notions of hub and authority. We argue that the framework of [16] seems
appropriate as a model of the way in which authority is conferred by hubs inan environment such
as the Web.

In addition to the two-level algorithm such as HITS in [16] to filter authorities from WWW,
there have been several one-level approaches to ranking pages in the context of hypertext and
the WWW. Brin and Page [25] proposed a ranking measure based on a node-to-node weight-
propagation scheme and its analysis via eigenvectors. Their approach is based on a model in which
authority is passed directly from authorities to other authorities, without interposing a notion of hub
pages. Such model is more likely to be expected in the context of citation graphof scientific liter-
ature, therefore, we would like to say much about it here. They make use of link topology of the
WWW to calculate a quality ranking for each web page; this ranking is called PageRank. They show
that PageRank is an objective measure of its citation importance that corresponds well with people’s
subjective idea of importance; we would have the same feeling in citation graphof scientific litera-
ture. Analogous to scientific literature, they calculate page’s importance or quality by counting the
citations of a given page. Instead of counting the citation directly, PageRank extends this idea by
not counting links from all pages equally. It is worth noting a basic concern in the application of
this approach to WWW. The PageRank algorithm is applied to compute ranks forall the nodes in
millions pages of the WWW; these ranks are then primarily used to order the results of subsequent
text-based searches. In the context of citation graph of scientific literature, we more concern finding
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the activities of specialties instead of identifying ranks of all documents for awhole.

There are many approaches in knowledge discovery or similarity calculationbased on link analy-
ses of directed or undirected graphs representing the underlying objects. Rafiei and Mendelzon [22]
consider a question of finding reputation of a given page by analyzing its neighborhood connection.
Specifically, in the context of Web, they propose two methods for computing the reputation of web
page in terms of random walks on the Web graph. Their first method is basedon one-level weight
propagation, PageRank, model proposed by Brin and Page [25]; whereas, their second method is
based on two-level weight propagation, hubs and authorities model proposed by Kleinberg [16].

Kumar and others [24] show that a large number of Web communities can be identified from their
signatures in the form of complete bipartite subgraph of the web based on thehub-and-authority
structure of community proposed in [16]. Their main concerns are to find these implicitly defined
communities in the Web. Specifically, they mainly focus on the co-citation relationship of webpages
which occurs repeatedly. The main idea is that related pages are frequently referenced together,
a phenomenon originated in the scientific literature. Their thesis is that co-citation is not just a
characteristic of well-developed and explicitly-known communities but an early indicator of newly
emerging communities. In other word, they can exploit co-citation in the web graph to extract all
communities that have taken shape on the web, even before the participants have realized that they
have formed a community. The process and results of trawling implicitly-definedweb communities
indicate that hub-and-authority structure is well appropriate in the environment such as WWW. In
our citation graph of scientific literature domain, We also concern to find implicitly-define commu-
nities before participants have realized that they have formed such communities;these communities
are early indicators of emerging specialties. The finding of emerging specialties would be help for
researchers to justify their current research and identify their future research direction.

There are two more types of efforts in finding relevancy among web pagesthrough exploiting
link connection information of Web graph. One [8] such work is based on the hub-and-authority
structure proposed by [16]; another [12] is based on the graph theoretic algorithm–Max-flow and
Min-cut–to identify web communities defined in terms of connectivity among web pages.

Dean and Henzinger [8] describe the Companion and Cocitation algorithms, two algorithms
which use only the hyperlink structure of the web to identify related web pages. Their Companion
algorithm is derived from the HITS [16] algorithm, and their Cocitation algorithm finds pages that
are frequently cocited with the input page(that is, it finds other pages thatare pointed to by many
other pages that all also point to the input page).

Flake, Lawrence and Giles in [12] propose an efficient approach to find Web communities by
computing Min-cut through Max-flow on a derived underlying local web graph. They argue that if
time and space complexity issues were irrelevant, then one could identify tightly coupled commu-
nities by solving the problem as a balanced minimum cut problem, where the goalis to partition a
graph such that the edge weight between the partitions is minimized while maintainingpartitions
of a minimal size. But unfortunately, most generic versions of balanced minimum-cut graph parti-
tioning are NP-complete. If balanced restriction is removed, the algorithm is easier. But one will
suffer from the problem of highly unbalanced and trivial partitions in a graph. In order to avoid the
problems mentioned above, they propose the approach to find communities combining Max flow-
Min cuts algorithm with expectation maximization technique. They show that a community can
be identified by calculating thes − t minimum cut of graph withs andt being used as the source
and sink, respectively.In our domain of citation graph of scientific literature, we notice that since
we have a moderately size graph comparing to web graph, we would be able toidentify research
communities by balanced minimum cut graph partitioning. Actually, we define our notion of com-
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munity analogous to web community defined in [12], and we propose a heuristicapproach to solve
the balanced minimum cut graph partitioning problem to identify communities in our context of the
citation graph. We detail our approach in corresponding later section.



3 Description of dataset: digital library and autonomous citation in-
dex: ResearchIndex

ResearchIndex[15] is a Web-based digital library and citation database of scientific literature which
are accessible from WWW. Traditionally, most published scientific literature appears in paper doc-
uments such as scholarly journals or conference proceedings. But withthe WWW becoming an
important distribution medium for scientific research, Web publications are often available, and
they also eliminate the time lag between the completion of research and the availability of such
publication in terms of paper documents. In order to assist the user in findingrelevant Web based
research publications, Bollacker, Lawrence and Giles[17] developedCiteSeer, an “assistant agent”
which improves research paper searching. Their results produce the prominent digital library and
citation database of Computer Science literature:ResearchIndex.

As a citation database,ResearchIndexkeeps staying up-to-date with recently published articles.
ResearchIndexshould complement commercial citation indices such as the Institute for Scientific
Information’s Science Citation Index(SCI). But in our study, we consider thatResearchIndexis suf-
ficiently accurate and useful. A citation index catalogues the citations that an article makes, linking
the articles with the cited works. Citation indices were originally designed mainly for information
retrieval and to allow navigate the literature in unique ways, such as backward in time(through the
list of cited articles) or forward in time(to find more recent, related articles). The availability ofRe-
searchIndexprovides the opportunity to us to build snapshots of citation graphs of computerscience
literature for our study by autonomously queryingResearchIndex.

As being the dataset of this study,ResearchIndexhas its inherent shortcomings. First of all,
ResearchIndexwas created by a robot crawling the Web, the information of its database is that
which is only accessible in the Web. Secondly, the same paper cited by different articles may
appear in different formats, it may not appear in the database ofResearchIndexuniquely. Thirdly,
the database ofResearchIndexonly gathers works in the Web beyond a point in time, older papers
may not present.

10



4 Terminology of graph theory and review of graph theoretic algo-
rithms

In this section we briefly review the topics of graph theory and useful terminology as well as graph-
theoretic algorithms. More details about graph theory could be found in [9]and in-depth develop-
ment and implementation of graph-theoretic algorithms are described in detail inLEDA [19].

A graph(undirected) is a pairG = (V, E) of sets satisfyingE ⊆ [V ]2;thus the elements ofE
are 2-element subsets ofV . The elements ofV are theverticesof graphG, the elements ofE
are itsedges.A graph with vertex setV is said to be a graph onv. The vertex set of a graphG is
referred to asV (G), its edge set asE(G). The number of vertices of a graphG is its order. A
vertexv is incident with an edge e ifv ∈ e. Two verticesx, y of G are adjacent, or neighbors, if
xy is an edge ofG. Two edgese 6= f are adjacent if they have an end in common. If all vertices
of G are pairwise adjacent, thenG is complete. A complete graph onn vertices is aKn. Pairwise
non-adjacent vertices or edges are called independent.

Let G′ = (V ′, E′), if V ′ ⊆ V andE′ ⊆ E, thenG′ is a subgraph ofG, written asG′ ⊆ G. if
G′ ⊆ G contains all the edgesxy ∈ E with x, y ∈ V ′, thenG′ is an induced subgraph ofG.

Thedegreeof a vertexv is the number of edges incident atv, denoted asd(v). A vertex of de-
gree 0 isisolated. The numberδ(G) = min{d(v)|v ∈ V } is theminimum degreeof G, the number
∆(G) = max{d(v)|v ∈ V } is itsmaximum degree. If all the vertices ofG have the same degreek,
thenG is k-regular. The number

d(G) =
1

|V |

∑

v∈V

d(v)

is theaverage degreeof G.

A non-empty graphG is called connected if any two of its vertices are linked by a path inG. G
is calledk-connectedif |G| > k andG − X is connected for every setX ⊆ V with |X| < k. The
greatest integerk such thatG is k-connected is theconnectivityκ(G) of G. If |G| > l andG−F is
connected for every setF ⊆ E of fewer thanl edges, thenG is calledl − edge − connected. The
greatest integerl such thatG is l-edge-connected is theedge-connectivityλ(G) of G.

An acyclicgraph, one not containing any cycles, is called aforest. A connected forest is called
tree.

Let r ≥ 2 be an integer, A graphG = (V, E) is calledr-partite if V admits a partition into
r classes such that every edge has its ends in different classes: vertices in the same partition class
must not be adjacent. Whenr = 2, it is calledbipartite.

A directed graph (or digraph)is a pair(V, E) of disjoint sets (of vertices and edges) together
with functions associating with eache ∈ E a sourcesource(e) ∈ V and atarget target(e) ∈ V .
In other words, each edge has twoendnodes, to which it is said to beincident, and a direction from
one(source)to another(target). The terminology and notation of digraph theory is similar to that
of undirected graph theory. In fact, to every digraph there corresponds a graph, obtained by letting
the edges to be the edges and ignoring the edge directions. Two edges of adigraph isparallel if
they have the same source and target, and a digraph issimpleis it has no loops or parallel edges. A
digraph may be simple as a digraph, but not as a graph.

Given a digraphG, theout-degreeof a vertexv is the number of edges incidentv letting v as
source;thein-degreeof a vertexv is the number of edges incidentv lettingv as target.

When we writee = vw, e ∈ E for an edge ofG, we mean thatv = source(e), w = target(e).

11
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An edge of a pathP = v0, e1, v1, ..., ek, vk is forward if source(ei) = vi−1 andtarget(ei) = vi

and isreverseotherwise. A path in which every edge is forward is adirected path or dipath. A
directed cycleis a dipath that is also a cycle.

Let G = (V, E) be a directed graph and letv andw be two vertices ofG. w is reachablefrom v
if there is a path inG from v to w, i.e., if eitherv = w or there is a sequencee1, ....ek of edges ofG
with k ≥ 1, v = source(e1), w = target(ek), andtarget(ei) = source(ei+1) for all i, 1 ≤ i < k.

A directed graphG is calledstrongly connectedif from any node ofG there is a path to any other
node ofG. A Strongly Connected Component(SCC)of a graphG is a maximal strongly connected
subgraph.LEDA[19] implemented a procedure to compute Strongly Connected Component as:

int STRONG COMPONENTS(const graph & G, node array<int> & comp num)

This procedure returns the number of strongly connected components ofG and computes a
nodearray< int > compnumwith encoding the strongly connected components ofG. It runs
in linear timeO(n + m), wheren = |V | andm = |E|.

Let G = (V, E) be an undirected graph, AWeakly Connected Component(WCC)of G is a max-
imal connected subgraph ofG. The procedure implemented inLEDA[19]

int COMPONENTS(const graph & G, node array<int>& comp num)

computes the number of connected components ofG. It runs in linear timeO(n + m), where
n = |V | andm = |E|.

A connected undirected graphG = (V, E) is calledbiconnectedif G− v is connected for every
v ∈ V . Here

G − v = (V − v, {e; e ∈ E and v ∩ e = ∅})

is the graph obtained by removing the vertexv and all edges incident tov from G. A Biconnected
Component(BCC)is a maximal biconnected subgraph. A vertexv is called acutvertexof G if G−v
is not connected. The procedure inLEDA[19]

int BICONNECTED COMPONENTS(const graph& G, edge array<int> &
comp num)

returns the number of bccs of undirected version ofG and the running time isO(n + m).

Let G = (V, E) be an undirected graph(self-loops and parallel edges are allowed) and let
w : E → R≥0(R is real set) be anon-negativeweight function on the edges ofG. A cut C of
G is any subset ofV with φ 6= C 6= V . The weight of a cut is the total weight of the edges crossing
the cut, i.e.,

w(C) =
∑

e∈E;|e∩C|=1

w(e)

A minimum cutis a cut of minimum weight. The function implemented inLEDA [19]

int MIN CUT(const graph & G,const edge array<int>& weight,
list<node> & C, bool use heuristic=true)
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takes a graphG and a weight function on the edges and computes a minimum cut. The running
time of the algorithm isO(nm + n2 log n).

Let G = (V, E) be a directed graph, lets andt be distinct vertices inG andcap : E → R≥0(R
is real set) be a non-negative function on the edges ofG. For an edgee, we callcap(e) thecapacity
of e. An (s, t)− flow is a functionf : E → R≥0 satisfying the capacity constrains and the conser-
vation constrains:

(1) 0 ≤ f(e) ≤ cap(e) for ∀e ∈ E

(2)
∑

e;source(e)=v f(e) =
∑

e;target(e)=v f(e) for ∀v ∈ V \{s, t}

We call s and t the source and the sink of the flow problem, respectively. The value of a flow
f , denoted|f |, is the excess of the sink, i.e.,

|f | =
∑

e;source(e)=t

f(e) −
∑

e;target(e)=t

f(e)

A flow is calledmaximum, if its value is at least as large as the value of any other flow. The function
implemented inLEDA[19]

NT MAX FLOW T(const graph& G, node s, node t, const edge array<NT>
& cap, edge array<NT> & f)

computes a maximum flowf in the network(G, s, t, cap) and returns the value of the flow.

We close this section with the famous max-flow-min-cut theorem. An(s, t) − cut is a setS of
nodes withs ∈ S andt not inS. The capacity of a cut is the total capacity of the edges leaving the
cut, i.e.,

cap(S) =
∑

e∈E∩(S×T )

cap(e)

Then

max{|f | : f a (s, t) − flow} = min{cap(S) : S a (s, t) − cut}



5 Characteristics of the Citation Graph of Computer Science Litera-
ture

It has been observed that a number of random networks spanning as diverse fields as the WWW
or the people interaction social network exhibit consistent characteristics[2] that are independent
of the nature of the system and the identity of its constituents. One such characteristic is that
the in- and out- degrees follow Power law distributions. In addition, with the availability of large
dataset of WWW, people have studied the linkage structure of web graph and developed approaches
of exploiting link structure for information discovery. People’s investigationof scientific citation
numbers in Physics [26] only shows the existence of power law in degree distributions without
exploring its citation graph. The availability of digital library and citation index enables us to
build the citation graph formed by computer science literature as an example of huge networks
with thousands of nodes and millions of edges. We now examine the Citation Graph of Computer
Science Literature in greater detail. In this section, our study is answering questions such like: does
the citation graph, as other huge networks display, exhibits the power law distribution existing in
its degrees? how is the connectivity of the citation graph? can we find aggregate information of
the citation graph by applying those developed efficient graph-theoretic algorithms? what does the
macroscopic structure of the citation graph look like? Consequently, in this section, we not only
verify its degree distributions, but also explore its connectivity, componentsand interior structure.

5.1 Building Citation Graph by querying ResearchIndex

The first step of characterizing the citation graph is building it from citation database. After con-
structing a robot, we built citation graphs by queryingResearchIndexautonomously. We choose
three subtopics of computer science as start points to fulfill our task of building citation graph. The
three topics are:Neural Networks, Automata and Software Engineering.

After we provide the topics toResearchIndex, it will retrieve 1000-2000 papers related to each
of these topics. For each topic, taking returned papers as a base setβ, we start building citation
graphCG through following procedure:

1. while |CG| < predefined threshold and new paper is adding to β
2. for each v ∈ β has not been visited
3. add v’s neighbors who point to v to β
4. add v’s neighbors to whom are pointed by v to β
5. mark v visited
6. let CG be the graph induced by papers in β
7. end while

We have observed that there are two types of articles inResearchIndex: one type of articles con-
tributes fully information to citation graph, they are inResearchIndex’s database; another type of
articles only contributes half information to citation graph, i.e., we have no way toknow who are
their references, they were brought intoResearchIndexby references of other papers, but they are
not inResearchIndex’s database themselves.

After crawling for months, three citation graphs were built and one union citation graph was
created by combining these three citation graphs. A preliminary analysis of thecollection of citation
graphs is shown in Table 1.

14
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(1) (2) (3) (4)
Number of Number of Number of papers Number of citations
papers papers without citation over (2) of most-cited paper
be visited in database

citation graph–N.N. 109,519 23,371 16,555 739
citation graph–Automata 117,702 28,168 19,809 503
citation graph–S.E. 94,179 19,018 12,934 186
union citation graph 261,708 57,239 37,348 739

Table 1: The preliminary analysis of the collection of citation graphs.

5.2 Measurements of Citation Graphs of Computer Science Literature

In this section we describe empirical observations drawn from a number ofour measurement ex-
periments on the citation graphs obtained by queryingResearchIndexas above. The measurements
include degree distribution results and diameters.

5.2.1 Degree distributions

We begin by considering the in-degree of nodes in the citation graph. “Distribution with an inverse
polynomial tail have been observed in a number of contexts. The earliest observation is in the
context of economic models [21]. Subsequently, these statistical behaviorhave been observed in
context of literacy vocabulary [14], sociological models [13] etc”1. Most recently, people have
observed that the degree distributions in web graph [2, 3] and the scientific citations [26] follow
power law as well.

In our context of citation graph of computer science literature, we also observed that the in-
degree distributions follow a power law: the fraction of papers with in-degreei is proportional to
1/iγ for someγ > 1.

Our empirical experiments on all three citation graphs built from different topics as well as the
union citation graph confirmed this result at a variety of scales. In all theseexperiments, the value
of the exponentγ in the power law for in-degrees is a remarkably consistent 1.71.

Figure 3 is a log-log plot of the in-degree distribution of the union citation graph. The tail end
of the distribution is ‘messy’ - there are only a few papers with a large numberof citations. For
example, the most cited papers had 739 citations, but the next most cited papers had 639 citations.
It might be tempted to fit the curve in Figure 3 to a line to extract the exponentγ. However, there
are so few data points in that range, simply fitting a straight line to the data would give not good
slope. To get the proper fit, we need to bin the data into exponentially wider bins as shown in Figure
4. The valueγ = 1.71 is derived from the slope of the line providing the best linear fit to the data
in the figure.

The out-degree of a paper in our citation graphs depends on the age of the paper, since older
papers will have fewer references that are in the database. Therefore, these out-degrees do not give
an accurate picture of the out-degrees of nodes in the complete citation graphs, and therefore their
distribution has not been considered here.

1see [3]
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Figure 3: The in-degree distribution in the union citation graph in computer science literature sub-
scribe to the power law.

Figure 4: To bin the in-degree data into exponentially wider bins in the union citation graph in
computer science literature:it subscribes to the power law with exponent=1.71.
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5.2.2 Diameters

We turn next to the diameter measurement of citation graphs. In this study, the diameter is defined
as the maximum over all ordered pairs(u, v) of the shortest path fromu to v in citation graph.
We measured two types of diameters of citation graph: directed diameter and undirected diameter.
Directed diameter is measured by directed shortest path or dipath, while undirected diameter is
obtained by treating edges without direction.

Before we measure diameters, we tested the connectivity of citation graph in terms of undirected
graph. The results revealed that the citation graph is not connected. However,≈ 80%− 90% of the
nodes are in one connected component, while the rest form a few very small components. Details
are described in Section 5.3. Focusing on connected component, we measure the diameters upon
the giant connected component of citation graph.

Applying Dijkstra’s shortest path algorithm on the giant connected components of citation graphs
built from three different topics and union graph, we show the diameters indifferent graphs in Table
2.

graph directed undirected
size diameter diameter

citation graph–N.N. 23,371 24 18
citation graph–Automata 28,168 33 19
citation graph–S.E. 19,018 22 16
union citation graph 57,239 37 19
average 29 18

Table 2: The diameters of citation graphs built from different topics as wellas union citation graph.
Topic: N.N.: Neural Networks, S.E.: Software Engineering.

Ignoring the orientation of edges in citation graph, we observed that the citation graph is a
‘small world’, the undirected diameter is around 18, consistent at variety of scales and topics. In
contrast, we don’t have such ‘small world’ indirectedcitation graph. Our statistical study shows
that the probability of existing a directed path between any pair of nodes is only 2%, even though
the measured directed diameter is around 30.

5.3 Reachability and components

We now consider the connectivity of Citation Graph of Computer Science Literature, involving
examining the various types of connected components and reachability of nodes. Given a citation
graphG = (V, E), we will view G as a directed graph as well as undirected graph by ignoring the
direction of all edges. We now ask how well-connected the citation graph is.Its connectivity can be
examined in terms of both directed version and undirected version ofG. For the undirected version
of G, we ask: is the citation graph connected? what is its biconnectivity? For the directed version
of G, we make crucial use of the orientation of edges: is the citation graph strongly connected?

We apply a set of algorithms that compute reachability information and structural information of
directed and undirected citation graphs:Weakly Connected Component(WCC), Strongly Connected
Component(SCC) and Biconnected Component(BCC).

As we mentioned before, we created three subgraphs formed by articles related to three different
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topics and one union graph. These raw graphs contain both nodes inResearchIndex’s database as
well as nodes not inResearchIndex’ database. We cleaned up raw graphs by discarding nodes who
are not inResearchIndex’s database, keeping only the nodes that contribute full information to cita-
tion graphs. After clean up, the graph sizes become: subgraph coming from neural networks papers
contains 23,371 nodes; subgraph coming from automata papers contains 28,167 nodes; subgraph
coming from software engineering contains 19,017 nodes; union graph contains 57,238 nodes (see
Table 1). Our connected component experiments are applied to those cleaned up graphs.

5.3.1 Weakly connected components

Mathematically, aWeakly Connected Component(WCC)of undirected graphG = (V, E) is a max-
imal connected subgraph ofG. A WCC of a citation graph is a set of articles each of which is
reachable from any other if links may be followed either forwards or backwards. In the context of a
citation graph, links stand for the citations from one article to other articles citedin the former one.
The WCC structure of a citation graph gives us an aggregate picture of groups of articles that are
loosely related to each other.

The results drawn from the weakly connected component experiments on citation graphs are
shown in Table 3. The results reveal that the citation graph is well connected–a significant constant
fraction≈ 80% − 90% of all nodes fall into one giant connected component. It is remarkable that
the same general results on connectivity are observed in each of the three topic subgraphs. In turn,
the same behavior is observed for the union graph, suggesting a certain degree of self-similarity.

graph size of largest percentage of size of second
size WCC largest WCC largest WCC

citation graph–N.N. 23,371 18,603 79.6% 21
citation graph–Automata 28,168 25,922 92% 20
citation graph–S.E. 19,018 16,723 87.9% 12
union citation graph 57,239 50,228 87.8% 21

Table 3: The results of Weakly Connected Component experiments on different citation graphs:
the majority (≈ 90%) of articles are connected to each other if links are treated as without direc-
tions.citation graph:N.N stands for Neural Networks; S.E. stands for Software Engineering.

Derived from the results of WCC experiments, a picture represents the connected component of
the citation graph is shown in Figure 5.

5.3.2 Strongly connected components

We turn next to the extraction ofStrongly Connected Component(SCC)of the connected components
of the three topical citation graphs and their union graph. AStrongly Connected Component(SCC)
of a directed graph is a maximal subgraph such that for all pairs of vertices (u, v) of the subgraph,
there exists a directed path (dipath) fromu to v. In the context of the citation graph, a dipath from
u to v means that articleu directly cites articlev or articleu cites a intermediate articlew, w cites
next intermediate article and so on, until it reaches articlev indirectly. Since there is a temporal
direction between citing article and cited article, if articleu directly or indirectly cites articlev, then
v would not cite back tou. As a result, we might expect that there is no SCC in the citation graph.
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Figure 5: The connectivity of the citation graph: around 90% of the nodesfall into a giant connected
component, the rest forms a several very small components.

But contrary to our expectation, the results of SCC experiments on the collection of citation graphs
reveal that there exist one to three sizable SCC’s in each of the citation graphs, as well as a few very
small SCC’s. The results drawn from the experiments are shown in Table 4.

graph size of largest size of second size of third
size SCC largest SCC largest SCC

citation graph–N.N. 18,603 144 14 10
citation graph–Automata 25,922 192 29 24
citation graph–S.E. 16,723 17 11 8
union citation graph 50,228 239 155 60

Table 4: The results of Strongly Connected Component experiments on different citation graphs:
there exist many small SCCs, among them there are one -three bigger SCC(s), the rest are even
smaller comparing those bigger ones. citation graph:N.N stands for Neural Networks; S.E. stands
for Software Engineering.

In order to know which publications formed the SCCs, i.e. how the directed cycles were gener-
ated in those citation graphs, we extracted some SCCs from citation graphs and searched articles of
these SCCs directly inResearchIndex’s database to find their titles, abstracts, authors, journals and
published years. Our study shows that several types of publications formed SCCs: (1) publications
written by same authors tend to cite each other, they usually produce self-citations, (2) publications
which are tightly relevant tend to cite each other, e.g., publications, whose authors in same insti-
tute, dealing with same specialty and getting published concurrently are highly relevant and tend to
cite each other, (3) publication which got published in different publicationtypes such as journals,
inproceedings or technical reports in different time formed directed cycles with other publications.
Such a publication was considered as the same one during our creation process of citation graph.
(4) books or other publications which got published in several editions in different time often acted
as jump points in citation graph. Since different editions of publication were treated as the same
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one node in citation graph, acting as jump point forming directed cycles in citationgraph; that is
the reason of the existence of one to three bigger SCCs, while (1) - (3) types of articles often fell
into even smaller SCCs containing 2-5 articles. For example, the paper entitled “Option Decision
Trees with Majority Votes(1997)” by R. Kohavi appearing on “Machine Learning:Proceedings of
the Fourteenth International Conference” and the paper entitled “Data Mining using MLC++ – A
Machine Learning Library in C++(1997)” by R. Kohavi and others appearing on “Tools with Arti-
ficial Intelligence” are cited by each other. One more example is, there are three papers who are pa-
per1 entitled “Efficient Distribution-free Learning of Probabilistic Concepts(1994)” by M.J.Kearns
et al. appearing on “Computational Learning Theory and Natural Learning Systems, Volume I”,
paper2 entitled “Toward Efficient Agnostic Learning(1992)” by M.J.Kearns et al. appearing on “In
Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory” and paper3
entitled “Learning Switching Concepts(1992)” by A. Blum appearing on “COLT:Proceedings of
the Workshop on Computational Learning Theory” forming a directed cycleon which paper1 cites
paper2, paper2 cites paper3 and paper3 cites the earlier appearanceof paper1 on “In Proceedings of
the Thirty-First Annual Symposium on Foundation of Computer Science(1990)”.

A conceptual map that is elicited from analysis of results of SCC experiment on the union ci-
tation graph is depicted in Figure 6. A number of small SCCs are embedded in a well connected
background net. This background net is a directed acyclic structure, i.e., there is no directed cycle
in background net.

Figure 6: The directed connectivity of the citation graph: a number of small SCCs embedded in a
background net;the background net is a directed acyclic graph.

5.3.3 Biconnected components

We are not satisfied with the coarse structural information drawn from WCCexperiments on the
undirected version of the citation graph such that there exists a unique giant connected component.



21

However, our effort of further refining the structure of the citation graph by looking at SCC which
makes use of orientation of edges revealed that this giant connected component does not generally
contain any large strongly connected subgraphs–we couldn’t obtain explicit aggregate information
in terms of directed version of the citation graph. Consequently, we turn ourfocus to stronger
connectivity measure in terms of undirected graph–biconnectivity.

A Biconnected Component(BCC)in the citation graph is a set of nodes such that two nodesu
andv are biconnected if there is no third nodew so thatw lies on allu − v paths if links may
be followed either forwards or backwards. Applying the biconnected component algorithm on the
giant connected components of citation graphs, we find that each giant connected component of
each citation graph contains a giant biconnected component. The giant biconnected component acts
as a central biconnected nucleus, with small pieces connected to this nucleus by cutvertices, and
other single trivial nodes connected to this nucleus or some small pieces. A coarse tree structure in
terms of biconnected components is a bipartite,H = (A ∪ B, E), whereA is the set of cutvertices
andB is the set of its BCCs. Thus, we can intuitively picture the structure of citation graph as
Figure 7.

Figure 7: The biconnectivity of the citation graph:a giant BCC acts as nucleus, with small pieces
connected to it by cutvertices, and other single trivial nodes connected tonucleus or some small
pieces. Such a bipartite is formed by a set of cutvertices and a set of BCCs.

The numerical analysis of sizes of BCCs indicated that≈ 58% of all nodes account for the giant
biconnected nucleus, the rest≈ 40% of all nodes are in trivial BCCs each of which contains single
distinct node, remaining≈ 2% of all nodes fall into a few small pieces. A histogram of size analysis
is depicted in Figure 8. Our analysis of the big BCC shows that there are 43%of its nodes without
incoming link, and rest of its nodes have both incoming and outgoing links.

5.3.4 Aggregate picture

By performing a set of connected component algorithms, we are able to elicitan aggregate picture
of the citation graph as an undirected graph. Our analysis of WCC experiment indicates that≈ 90%
of the nodes form a giant Weakly Connected Component(WCC); such a single giant WCC can be
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Figure 8: Analysis of sizes of BCCs: average 58% of the nodes form thegiant biconnected nucleus,
average 40% of the nodes are in trivial BCCs connected to other non-trivial BCCs, average 2% of
the nodes fall into a few small pieces. Citation graph:N.N. stands for NeuralNetworks, S.E. stands
for Software Engineering, Union stands for Union citation graph.

divided into two parts: one part contains almost 68.5% of the nodes without any incoming link,
suggesting that 68.5% of publications have not been cited yet, another part contains the rest of
publications with at least one citation. Finally, in such a giant WCC, around 58% of nodes form a
big Biconnected Component(BCC) act as a biconnected nucleus, with a fewsmall BCCs connected
to this nucleus by cut vertices, and all rest of nodes fall into trivial BCCseach of which consists of
single distinct node connected to this nucleus or some other small pieces. Theaggregate picture is
shown in Figure 1 and Figure 2.

5.4 Does connectivity depend on some key articles?

We have observed that the citation graph is well connected–90% of the nodes in a giant connected
component containing another biconnected nucleus, 58% of the nodes, ifwe treat citation graph
as undirected graph. The result that the in-degree distributions follow thePower law indicates that
there are a few nodes of large in-degree. We are interested in determiningwhether the widespread
connectivity of the citation graph results from a few nodes of large in-degree acting as “authorities”.
As to the out-degree, since we clean up the raw citation graph by discardingnodes without complete
contributions to the citation graph, the out-degree of the kept nodes does not actually represent the
number of references of the corresponding papers. Yet we are still interested in knowing whether
the connectivity of the citation graph depends on nodes with large out-degree acting as “hubs” in
the citation graph. We test this connectivity by removing those nodes with largein-degree or out-
degree, and computing again the size of the largest WCC. The results are shown in Table 5 and
Table 6.
Testing connectivity of union citation graph

Surprisingly, the results show that the widespread connectivity does notdepend on “hubs” and
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size of graph 50,228
k 200 150 100 50 10 5 4 3

size of graph 50,222 50,215 50,152 49,775 46,850 43,962 42,969 41,246
after removing
size of largest 50,107 49,990 48,973 43,073 26,098 14,677 9,963 1,140

WCC

Table 5: Sizes of the largest Weakly Connected Components(WCCs) whennodes with in-degree at
leastk are removed from the giant connected component of union citation graph

size of graph 50,228
k 200 150 100 50 10 5 4 3

size of graph 50,225 50,225 50,224 50,205 48,061 43,964 42,238 39,622
after removing
size of largest 50,202 50,202 50,198 50,131 46,092 37,556 33,279 26,489

WCC

Table 6: Sizes of the largest Weakly Connected Components(WCCs) whennodes with out-degree
at leastk are removed from the giant connected component of union citation graph

“authorities”. Indeed, even if all links to nodes with in-degree 5 or higherare removed(certainly
including links to every well-known articles on computer science), the graphstill contains a giant
Weakly Connected Component(WCC). Similarly, if all links to nodes with out-degree 3 or higher
are removed, the graph is still well connected. In order to measure how is the graph connected after
removing “authorities ” and “hubs”, two histograms are obtained, representing the percentage of the
giant WCC over the graph after removing “authorities” and “hubs” in Figure 9 and Figure 10.

The analysis of sizes of giant WCCs indicate that “authorities” have more heavy influence on
connectivity than “hubs”, relatively. Since even nodes with 3 out-degree are removed, there still
are more than 60% nodes falling in a giant WCC; in contrast, when “authorities” with in-degree 3
are removed, the graph has a great number of isolated components. Our observations drawn from
widespread connectivity tests have two interesting aspects: first, the connectivity of citation graph
is extremely resilient and does not due to the existence of “hubs” and “authorities”; second, “hubs”
and “authorities” are embedded in a graph that is well connected without theircontributions.

5.5 Minimum cuts

A question related to understanding the structure of the citation graph is how tofind thematically
cohesive communities. So far, our study of various types of connected components has resulted in a
well-connected citation graph with a giant biconnected nucleus. The next question is whether there
is any further structure within that nucleus. We attack this problem using minimumcut algorithms,
both for global minimum cut and for minimum cuts between specific pairs of nodes.

Mathematically, an (edge) cutC of graphH = (V, E) is a set of edges which, when removed,
disconnect the graph. The size of a cut is the number of edges in the cut. Given an edge weight
functionw : E → R, a minimum cut is a cut whose total weight is minimum.
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Figure 9: Analysis of sizes of giant WCC after removing “authorities”: the height of each
bar indicates the percentage of the largest WCC of the graph after removing nodes withk =
200, 150, 100, 50, 10, 5, 4, 3 in-degree.

Figure 10: Analysis of sizes of giant WCC after removing “hubs”: the height of each bar
indicates the percentage of the largest WCC of the graph after removing nodes with k =
200, 150, 100, 50, 10, 5, 4, 3 out-degree
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Our min-cut experiments focus on the giant connected component of unioncitation graph. After
extracting the giant connected componentH = (V, E) from the union citation graph, we assign
edge weightw(e) = 1, for all e ∈ E, and we apply the global minimum cut algorithm onH. In
order to explore the interior structure of graphH, we implemented the min-cut exploring procedure
as below:
1. procedure Explore Min Cut(H = (V, E))
2. while |H| > 0
3. compute min-cut C of H
4. calculate edge weight over crossing edge set F
5. let H1 = (C, E1) be graph induced by C
6. let H2 = (V − C, E2) be graph induced by V − C
7. Explore Min Cut(H1)
8. Explore Min Cut(H2)
9. end while

Most of the resulting cuts of the above procedure reveals are trivial cuts, each of which separates
only one node from the rest of the graph.

When the procedureExploreMin Cut(H) is applied to graphH recursively until the fragments
become trivially small, we find that the percentage of trivial cuts is 99%.

From these experiments we conclude that the interior link structure of the citation graph is dense;
also that there isnosuch explicit community information discernible through global minimum cuts,
and we need more sophisticated tools for finding communities in citation graph.

Since the global minimum cut approach does not give us communities, we turn tothe computa-
tion of minimum cuts between specific nodes. If two nodes are selected to belong to different topics,
then possibly the minimum cut between them might separate the papers belongingto the two topics.
To investigate this hypothesis we selected authority papers (papers with large in-degree) belonging
to the topics of Neural Networks, Automata and Software Engineering, andwe computed the mini-
mum cuts of the union graph between pairs of such papers. For the minimum cut computation, we
made two modifications to the (directed) union graph of 50,228 nodes:

1. We add the reverse edges to all the edges of the graph, so as to effectively treat it as an
undirected graph.

2. We add node capacities equal to 1, by the following construction. We replace each nodev by
two nodesvin andvout and an edge fromvin to vout, and we connect all the edges intov to vin and
all the edges out ofv to vout. All edges have capacity 1, thus allowing us to associate capacities 1
to all the nodes, as well.

The resulting graph has 100,456 nodes.

From these experiments we obtain highly unbalanced partitions of the union graph. The cut sizes
are similar to the in-degree of the nodes, and the smaller partition contains at most a few hundred
nodes while the larger partition contains the rest of the nodes (approximately99,000).



6 Conclusion and future work

We now make conclusion of our work and indicate the revealed challenges that future work needs
to resolve.

6.1 Conclusion

To the extent of traditional scientific citation analysis, our study of characterizing the citation graph
of computer science literature facilitates understanding the intellectual structures in computer sci-
ence based on citation index of computer science literature. First of all, the degree distributions
provide basic insights about the relative popularity of publications in computer science. At a ba-
sic level, most publications are minimally recognized– only 1/3 of publications arecited, and 83%
of those cited publications are cited 10 times or less. Publication with citations greater than 10 is
relatively rarer. Secondly, being ignored the direction of links representing the citations from one
article to others, the citation graph is well connected, manifesting a ‘small world’. However, it is
worthwhile to note that the probability of existing a directed path between any pair of nodes is only
2%, if the links may only be followed forwards. Thirdly, our approaches of structural analysis of ci-
tation graph augment the traditional citation co-citation analysis of scientific literature. Particularly,
the integration of various citation patterns and the graph theoretic analysis provides a rich represen-
tation of a knowledge domain. People can apply such structural analysis to discover patterns and
make valuable connections between publications or authors.

6.2 Future work

There a number of interesting further directions suggested by this study. First, the citation of a
scientific article is a function of time, suggesting that the structure of citation graph is dynamic
instead of static. In real life, the reputation of paper is fading with time. But not all papers are being
known and forgotten in same time function. Intuitively, some well-known papers are getting more
and more citations, then replaced by newly emerging papers in same specialty;some papers have not
been cited yet, probably never; some papers drew attention in a certain period of time, then forgotten
quickly. All these varieties of citations affects the structure of citation graphover time. We have not
taken time factor into consideration in our study of characterizing. There are a number of interesting
and fundamental questions that can be asked about the evolution of citationgraph, involving both
evolution of in-degree of individual articles and evolution of link topology ofthe graph. With the
assistance of citation indices and digital libraries, we can easily build citation graphs with time
stamp and individual nodes with time stamps too. Applying same graph-theoretic algorithm as in
this study, we can obtained more statistical measures relating to characteristicsof citation graph,
such that the life expectancy of computer science articles, age distributions. Moreover, it challenges
us to develop more sophisticated tools to study the evolution of local link structure of citation graph
for predicting the research trends. Also, we can study the life span of specialties and communities,
helping the researchers and scientists to predict their research outputs.

Second, there is a challenge of “hubs” and “authorities” analysis in citationgraph. We have re-
viewed the related work for analyzing “hubs” and “authorities” in web graph in section 2. Although
we have claimed that scientific citation graph and web graph are governed by different principles,
and the equilibrium between “hubs” and “authorities” is an appropriate model for certain environ-
ment such as WWW, we do notice that there are a number of ‘survey’ and ‘review’ papers existing
in many specialties of computer science field. Kleinberg [16] has made a comprehensive compari-
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son of scientific citation standing and hub/authority measure in WWW. Our question is whether to
ignore the existence of ‘survey’ or ‘review’ papers acting as “hubs”in scientific citation. Since most
work in measuring the scientific citation is based on one-level model such as the method extended
by PageRank [25], we expect that such two-level [16] model as hub/authority will give us insights
to identify authorities in scientific citation graph. All ‘survey’ and ‘review’ papers acting as “hubs”
in citation graph emerged in a certain time when a specialty has developed to a certain stage. Com-
bining the evolution of graph discussed above, we can study the changesof citations of papers cited
by “hubs” after survey or review. It will shed more lights on life spans ofspecialties.

Third, community identification and similarity calculation are still interesting problems tostudy.
People have developed many other approaches purely exploiting link topology to find communities
or compute similarity in web graph, involving hub/authority model[8], max flow-min cut[12]. The
hub/authority model focuses on distill authorities from a corpus of tons of relevant pages, while
max flow-min cut has mainly been used in focused crawling. Both are efficient and effective in
the sense of online replying. In the case of identifying specialties and predicting research trends in
long-term sense, we believe that graph decomposition and partitioning are appropriate models. It
should be pointed out that the balanced graph partitioning problem is NP-hard [20], but local search
strategies have been proposed for them [18, 11]. The strategy of assigning weights to edges for
different relationships between nodes is still not fully understood in accurate level.

Finally, we believe that characterizing the link topology of scientific citation graph has the po-
tential for beneficial overlap with a number of areas. one of these areasis the field of information
retrieval. On the other hand, combining textural content of individual nodes as well as link topology
of citation graph leads us to a promising future of knowledge discovery in thedomain of scien-
tific literature. One direction is how can we annotate autonomously the communities discovered by
graph partitioning process without human intervention? we expect that efficiently and effectively
discovering research patterns and filtering finer topics from broader range will boost the computer
scientists’ theoretical and practical research activities.
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A The citation graph in ResearchIndex

A.1 Article distributions in ResearchIndex

We apply a set of graph-theoretic algorithms on the citation graph to explore itslink topology.
There are several commercial citation indices such as ISI which contains many science fields in a
single citation index. These citation indices of many science fields couple with each other so that
to characterize citation graph in one special field becomes difficult by querying ISI citation indices.
Moreover, the term format in ISI is more appropriate to researches in information science. Our goals
of study mainly focus on exploring the linkage structure of Citation Graph of Computer Science Lit-
erature. We observed that theResearchIndexis an appropriate data resource for our study. We have
introduceResearchIndexas a digital library of computer science literature in Section 3.ResearchIn-
dexcontains almost all publications available across WWW and their citations in computer science
specialty. In this appendix, we introduce the considerations of queryingResearchIndexto create
citation graph and algorithms of our robot. Before we construct any robot to queryResearchIndex,
we have to understand the operation mechanisms ofResearchIndex. We need to answer several
questions as below:

1. What is the format of searching result ofResearchIndexafter submitting a query term?

2. How to effectively and efficiently perform the Breadth-First Searchin ResearchIndexto get
citation graph?

3. What does the citation graph roughly look like inResearchIndex?

The collection of computer science bibliographies[4] gives us the followingstatistical data in Table
7 about the literature in computer science by Oct. 2000:

How many publications inResearchIndex? In its homepage [15], it says that it contains around
300,000 documents and 4 million citations. But not all documents’ full-text and full-references are
available inResearchIndex’s database.ResearchIndexcontains two types of documents: one type
is that its full text had been downloaded into database ofResearchIndexand its full references had
got parsed; one type is that only its citation information had been parsed from the first type of doc-
uments and its full text is not available in the database ofResearchIndex. That means there are two
types of nodes in citation graph after queryingResearchIndex: one type of nodes have complete
contribution to citation graph; another type of nodes only have citation information without refer-
ence information, they have no complete contribution to citation graph. When therobot query the
database ofResearchIndex, it will retrieve both types of nodes, so it influence the effectiveness of
results of characterizing the citation graph.
Let’s define:
Complete node in citation graph:The retrieved node in citation graph has its complete incoming
links as well as outgoing links. In other words, if we start a certain searchalgorithm from this type
of node, we can reach its children as well as its parents.
End node in citation graph:The retrieved node in citation graph only has its incoming links from
other nodes, its outgoing links are lost. In other words, we couldn’t followthis type node to reach
its children.
Let’s guess how many complete nodes inResearchIndexcan be used to characterize the citation
graph:
(1) Using query topic: Neural Networks:
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Subject Area Journal Articles Conference PapersTechnical Report All Entries
Others/Unclassifieds 155307 119198 13306 321341
Theory/Foundations of CS 80255 34895 4828 135005
Mathematics 76043 5195 5795 99407
Artificial Intelligence 29460 29868 7405 90685
Parallel Processing 25930 28248 8717 75351
Computer Graphics 32649 20417 1555 61637
Technical Reports 303 467 53480 55235
Compiler 22003 10511 4805 48990
Softw.Eng./Formal Methods 17686 21363 2616 47607
Distributed Systems 18458 5199 2056 33163
Databases 11017 12387 2209 30607
Neural Networks 10605 6847 1470 23083
Human-Comp. Interaction 5628 12150 17 20316
Operating Systems 9017 6611 564 18672
Typesetting 4769 1365 170 9368
Logic Programming 1993 4946 583 8648
Object-Oriented 1382 3048 939 7133
Wavelets 1338 381 353 2867
Total 503843 323096 110868 1089115

Table 7: Statistics for the computer science bibliography collection
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When we supply the query term “Neural Networks” toResearchIndex, it replies the result as:’More
than 10,000 results found,only retrieve 2000..’.ResearchIndexgives the information of whether this
paper is in its database. Making a statistics on retrieved 1500 papers(Sincethe server is over-
loaded, theResearchIndexonly given 1500 results), we observed that 246 papers are in its database–
complete nodes, and 1254 papers are not in its database—end nodes.Therefore, we could estimate
that only 16.4% papers are complete nodes in citation graph related to the topic “Neural Networks”,
83.6% papers are end nodes in citation graph related to the topic “Neural Networks”.
(2) Using query topic:Information Retrieval:
When we supply the query term “Information Retrieval” toResearchIndex, it found more than
10,000 papers, but only retrieved 1000 papers due to the overloading of server. 175 papers are in its
database, 825 papers are not in database. Therefore, 17.5% papers are complete nodes and 82.5%
papers are end nodes in citation graph related the topic “Information Retrieval”.

From the statistics’ point of view, we estimated that the citation graph inResearchIndexhas 17%
complete nodes, other 83% nodes are end nodes. From this conclusion, wehave to be careful when
we explore the citation graph, since the end nodes don’t make complete contributions to citation
graph.

The robot would queryResearchIndexto obtain the citation graph using forward Breadth-First
Search, following the outgoing links of a set of start nodes obtained usingtopic searching. Since
we have estimated that there are 17% nodes are complete nodes, we can follow their outgoing links
to crawl the citation graph, but there will be a bunch of nodes only have outgoing links–in other
words, they may be new publications haven’t been cited by others yet(seeFigure11).

END part

COMPLETE part

NEW part

83%

17%

Figure 11: The macroscopic shape of citation graph inResearchIndex: 83% nodes only have in-
coming links from others–they are end nodes–call them END part. 17% nodes not only have in-
coming links, but also have outgoing links—they are complete nodes–call themCOMPLETE part.
A fraction of COMPLETE part only have outgoing links–those new papershaven’t been cited by
others–call them NEW part.

The BFS algorithm would probably lose them since they are no incoming links from others. To
deal with this problem, there are two ways: first, we try to obtain as many start nodes as possible to
perform forward BFS algorithm. Second, not only keep the outgoing adjacent list of each node, but
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also keep the incoming adjacent list of each node. we perform the BFS notonly forwards, but also
backwards to create the citation graph as completely as possible.

A.2 Considerations on queryingResearchIndex

Although there are many crawlers for crawling web pages, queryingResearchIndexto create the ci-
tation graph has some special issues. We need some special considerations for crawling the database
of ResearchIndex.

A.2.1 Make sure that the citation graph is accurate

When we crawl the database ofResearchIndexfor building the citation graph, we start from a set
of nodes obtained by topic querying such that supplying the topic term “Neural Networks” toRe-
searchIndexto get more than thousands of links to the database ofResearchIndex. Those thousands
of links form a FIFO queue of crawler, one link represents a node in citation graph.
NOTE:

1. How to compare two articles are exact same one during the BFS crawling process?

2. Need to update the incoming and outgoing adjacent list of encountered nodes during the BFS
crawling process.

3. How to deal with the timeout event when BFS is processing a child of a nodeafter having
updated the adjacency list of some incoming neighbors and outgoing neighbors of this node?
How to roll back? otherwise the citation graph is not accurate.

The ResearchIndexprovides two types of replied webpapes when retrieve citations for a specific
paper: Context page and DOC page. The context page provides the information such that: 1. How
many times this paper have been cited by others—incoming links. 2. A fraction ofpapers which
citing this paper. 3. The most important part:its bibentry. Since that two papershave the exact same
bibentry is unlikely to happen, we use the bibentries of papers to compare them to decide whether
they are the same one. The DOC page provides the references of this paper, therefore, we need
to extract this important information and follow them to get its children and updateits outgoing
adjacency list.

When forward BFS starts, crawler opens context pages to get the bibentry for the purpose to
compare papers. If this retrieved article hasn’t been processed, open its doc page to extract its
children. For each child, crawler needs to open each context page of this child to get its bibentry
and compare to other retrieved papers and update its adjacent lists. When timeout event happens
during processing, we have to roll back or restore its links in the end of queue for processing later.

A.3 High level design of robot for queryingResearchIndex

The crawler which is constructed for queryingResearchIndexto build the citation graph has to be
able to deal with those questions mentioned in section A.2.1. The object diagramis in Figure12.

From the object diagram, it can be found that there are several main classes:
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Paper Addresses AddressQueue

CitationGraph Crawler

ParseTokenList

HTMLTokenList

HTMLTokenizer

HTMLParser

HTMLTag HTMLText

Id,title,inNeighbors,
outNeighbors,address,
isDone

ContextUrl,
DocUrl

Nodes AddressQueue,
CitationGraph

1

1...*

1 1 1 0..*

1

111

Figure 12: Object diagram of crawler for queryingResearchIndex:Using UML(Unified Modeling
Language) notations.
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1. class Paper:the node of citation graph holds its properties such as title,adjacent lists.

2. class Addresses:holds the context url and document url inResearchIndex.

3. class Neighbors:adjacent list avoiding duplicate items.

4. class CitationGraph:citation graph stored in Hashtable for efficiently random access.

5. class ParseTokenList:utility class to parse the answers ofResearchIndex.

6. class Http:be able to deal with the timeout of socket connection with theResearchIndexserver.

7. Other help classes: AddressQueue, HTMLToken, HTMLTokenList,HTMLTag, HTMLText,
HTMLTokenizer, HTMLParser etc.

The flow chart of crawler as Figure13
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Figure 13: The flow chart of crawler for queryingResearchIndex.
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A.4 Algorithm of robot for querying ResearchIndex

1. Initialize the addressQueue of papers from disk;
2. Initialize the citationGraph from disk;
3. While addressQueue is not empty do
4. if number of retrieved papers greater than a threshold
5. Break;
6. Pop the head of addressQueue;
7. If context URL is not empty do
8. Open context page;
9. Deal with timeout;
10. Get title;
11. If it was retrieved
12. If it was processed
13. Go to 6;
14. Open document page;
15. Construct a new node;
16. Process children page;
17. Update neighbors’ adjacent lists;
18. Deal with timeout;
19. Add children’s addresses to addressQueue;
20. Add this node to graph;
21. End while;
22. Write unfinished addresses to disk;
23. Write graph to disk;


