Refining Semantic Mappings from Relational
Tables to Ontologies

Yuan An', Alex Borgida?, and John Mylopoulos®

! Department of Computer Science, University of Toronto, Canada
{yuana, jm}@cs.toronto.edu
2 Department of Computer Science, Rutgers University, USA
borgida@cs.rutgers.edu

Abstract. To support the Semantic Web, it will be necessary to con-
struct mappings between legacy database schemas and ontologies. We
have developed a prototype tool which starts from a simple set of corre-
spondences from table columns to ontology components, and then helps
derive algorithmically candidate logical mappings between complete ta-
bles and the ontology. We report here some refinements of this algorithm
inspired by an analysis of the ways in which relational schemas are stan-
dardly derived from Extended Entity Relationship diagrams, and relate
this to the main heuristic used by the Clio system [6], which maps be-
tween relational database schemas.

1 Introduction

In order to make the vision of the Semantic Web a reality, it will be necessary
to find semantic mappings between existing databases (the “deep web”) and
existing ontologies. Building such connections is nontrivial task because: (i) the
ontologies and schemas will have been derived independently; (i) the ontologies
(and schemas) could be very large; (iii) there will be relatively few people who
will be thoroughly familiar with any one of them; (iv) the construction would
have to be repeated when encountering new ontologies. For this reason, it would
be desirable to have computer tools to help find the logical mappings between
database schemas and ontologies.
Specifically, we assume a framework where we are given

1. An ontology, expressed in some language, such as OWL or UML, which has a
semantics that can be captured by First Order Predicate Logic through the
use of unary and binary predicates, representing concepts and properties.
The ontology language should support domain, range and cardinality re-
strictions on properties and their inverses, and differentiate datatype valued
properties (“attributes” in UML).

2. A relational schema, where for each table we have standard information
available in SQL DDL declarations, including constraints concerning the
primary key, foreign keys, and absence of null values.

Employee (4.N) (1,1) Department Worksite
-hasSsn works_for -hasNumber -hasNumber
-hasName -hasName controls -hasName
-hasAddress - -
hacage manages @y ©oN[

1) 0,1)

Fig. 1. Company Ontology.

Our general objective is to find a mapping relating predicates in the ontology and
relational tables [5]. Currently, we are obtaining for each table T'(A4,...,4,) a
formula ¢ that is a (disjunction of) conjunction of ontology atoms. For example,
given the ontology in Figure 1, and relational table schema Emp(ssn, name, dept,
proj), we may expect an answer of the form

T:Emp(ssn,name, dept, proj):-
O : Employee(x), O : hasSsn(xz, ssn), O : hasName(x, name),
O : Department(y), O : works _for(z,y), O : hasNumber(y, dept).
O : Worksite(z), O : controls(y, z), O : hasName(z, proj).

where, for clarity, we use prefixes 7 and O to distinguish predicates in the
relational schema and the ontology.

2 The MAPONTO Approach.

To achieve the above objective, we envision a 2-step process, where (a) the
columns A; of each table are linked to elements in the ontology (mostly datatype-
valued properties); then (b) a formula of the kind described above is proposed by
the tool on the basis of heuristics. Since considerable effort has been devoted to
step (a) in the database and ontology integration literature, we have concentrated
on step (b). Because the answers produced are inherently heuristic, our tool
offers a partially ordered list of formulae, where more highly ranked proposals
are assumed to be more likely.

The basic idea underlying our current tool (detailed in [1]) is to represent the
ontology as a graph consisting of nodes (corresponding to concepts) connected
by edges (corresponding to properties). Semantic connections in the ontology,
expressed in the formula ¢, are then based on paths in this graph, and we
hypothesize a version of Occam’s razor: fewer connections are better. This has
lead us to look for minimal-cost spanning trees connecting the concepts which
have one or more properties corresponding to table columns — called Steiner
trees. Such a tree is then translated to a logical formula by “joining” the concepts
and properties encountered in it. For example, if concepts C' and D are connected
by the tree consisting of edges p and ¢, traversing intermediate node G, the
formula produced is C (), p(x,y), G(y), q(y,), D(2).2

3 The algorithm in [1] is considerably more elaborate; among others, sometimes copies
are made of certain nodes in the graph, so that more than one variable can range
over a concept.

This paper presents some refinements to this algorithm, their motivation
based on techniques for mapping from Extended ER diagrams to relational
database schemas, and their relationship to other previous research.

2.1 Related Work

The framework of our approach is clearly inspired by the Clio system [6,§],
which attempts to find mappings between two relational schemas. In fact, in
Section 4.2, we will relate the key heuristic underlying Clio to our work.

The general framework for connecting ontologies and relational schemas us-
ing logical formulas has a long history [2, 5], although in all previous cases the
specification is done entirely by the designer.

Data reverse engineering is the process of taking an existing database schema,
(and instances), and recovering some corresponding conceptual schema. Various
approaches have been proposed (e.g., [7]), with a comprehensive introduction
provided by Hainaut [4]. Our problem differs in two ways: we are given an ezisting
ontology, which needs to be connected to the database; and the ontology will
likely contain much superfluous information that will not appear in the schema.
(For example, a C'ity might be locatedIn a Province, and a Province locatedIn
a Country, yet the relational table may only have columns for city/Name and
countryName.) Conversely, we have to face the fact that some aspects of the
database (e.g., aritificial identifiers), may not appear in the ontology.

3 From Extended ER to Relational Schema

Our new proposal is based on the methodology of relational schema design
from Extended Entity-Relationship (EER) diagrams.* The principles behind this
widely-understood and practiced technique are to create a small number of ta-
bles that are in Boyce-Codd Normal Form (assuming that the only dependencies
are those due to keys in the EER diagram), preferring schemas where columns
do not have null values, which might waste space. The basic methodology can
be summarized as follows:

— For each regular entity type E create an “entity table” whose columns are
the attributes of E, and whose primary key is the key of E.

— For each weak entity type FE, create an “entity table” whose columns are
the attributes of F, together with the key of the owner entity type O, and
any attributes of the “identifying relationship”. The primary key of the table
consists of the concatenation of the key for O and the identifying attribute(s)
of E.

— For each relationship type R create a “relationship table” whose columns are
the primary keys of the participating entity types, together with attributes
of R. The key of the table is determined by the cardinality of relationship:

if R connects entities A and B, with keys K4 and Kp respectively then
e if R is an N:M relationship, then the key is the union of K4 and Kp;

e if Ris a N:1 relationship, then the key is just K 4, while for 1:N relation-
ships the key is Kp;

4 We assume the reader is familiar with standard EER terminology, e.g., [3]-

e if R is 1:1, the key should be that of the entity whose participation in
the relationship is total (i.e., has cardinality lower bound 1); otherwise
the choice of key is arbitrary.

— Repeatedly merge any pair of tables that have the same key by unioning the
set, of attributes and eliminating the duplicate key attributes. In some cases
(e.g., merging a N:1 relationship which is not “total”), the result may have
columns that could now be null. Such merges are less desirable.

Finally, an important aspect of the relational schema design is imposing appro-
priate foreign key and non-null constraints during the above construction.

The above mapping results in a schema that is very natural for humans to un-
derstand, and may well be the one encountered in practice, unless denormalized
in order to improve query processing.

4 New Heuristics for Finding Mappings

The search for a low-cost Steiner tree® may return a number of results, some
of which may be intuitively better than others, especially if the table is not
“denormalized”. For example, in the semantic mapping for the 7 : Emp ex-
ample earlier, the tool should prefer works _for, rather than manages, as the
connection between Employee and Department. On the other hand, for a ta-
ble 7 : Project(name, supervisor, ...), the connection of O : Worksite with
O : Employee would more likely involve the composition of controls™' with
manages~! rather than with works _for—!.

To achieve this, we propose that the spanning sub-trees be ranked according
to the following rules:

1. In growing a tree, edges with cardinality upper-bound 1 should be preferred.
Edges which also have cardinality lower-bound 1 are given even higher pref-
erence.

2. If the relational table has a key that is the composite of foreign keys k4,
kp,..., and there are single anchor nodes® for each of the keys ka,..., then
those trees are preferred in which every pair of anchor nodes is connected by
a path on which some edge has cardinality upper bound higher than 1. (The
simplest case of this is an edge for a property p such that the cardinality
upper bound of p and its inverse are larger than 1.)

3. If the relational table has a key K = K¢ + A; + ..., where K¢ is a foreign
key, and the A; are not part of a foreign key appearing in K, then the real
anchor node is not the node (call it C”) which has properties matching K¢;
instead, it is some other node D, which has a l-upper bound path to C’,
such that D has some attributes for A;.

5 From our motivation, minimality is not strictly necessary, and it may be hard to
ensure, since the problem is NP-hard.

% An anchor node is a concept which has datatype properties corresponding to columns
in the table key

4.1 Motivating the New Heuristics

Suppose the ontology corresponds ezactly to the conceptual model used for
database design, and the relational schema is obtained according to Section 3.
Furthermore, let us restrict ourselves to the case when the EER diagrams that
can be represented directly in ontologies, by mapping entity types into concepts,
and binary relationship types and attributes into properties.

An analysis of the algorithm in Section 3 shows that every table produced by
it will have key K of the form (i) Kg for an entity table, possibly merged with
some N:1 or 1:1 relationship tables involving that entity; (ii) same as (i), but
corresponding to N:1/1:1 relationships that were not merged in with the entity
because the participation was not total; (iii) K4 + Kp, where entities A and B
are in an N:M relationship; (iv) Kg + 41 + ..., for a weak entity table, where
Aj... do not form a key; (v) the analogue of (ii) for weak entities.

Columns in tables of category (i) and (ii) correspond to datatype properties
of a concept Cr (possibly a subclass), as well as properties of entities related
to it by N:1/1:1 relationships. All of these appear as properties of Cr with
upper bound 1 in the ontology. Moreover, the preference for total participation
corresponds to lower-bound 1. Hence case 1 of our heuristic.

Tables in category (iii), which can be recognized from their key structure,
and which have columns corresponding to N:M relationships between properties
of anchor entities, would be miss-treated by the algorithm, which would prefer
N:1/1:1 linking properties. Hence case 2 of our heuristic.

Tables corresponding to weak entities are another source of problems, since
weak entities are an artifact of the EER data model, and are not specially marked
in standard ontologies. Once again, we recognize weak entities from the table
key structure, and then try to find the concept corresponding to the weak entity,
and the (chain of) relationships/properties to the strong entity identifying it.

Our algorithm generalizes all these cases to the situation when a relationship
in the EER model might be the composition of several properties in the ontology,
by permitting the Steiner tree to traverse additional edges, if necessary, as long
as their upper bound is 1.

4.2 Relationship to Clio Heuristics

Recall that Clio tries to find a logical mapping from a source to a target relational
(or XML) schema, starting from correspondences between columns of tables in
them. The core of Clio is the generation, in both the source and target schema,
of “logical relations” [8] — maximal sets of logically related schema elements,
particularly table columns. This is accomplished as follows: if table R has a
foreign key to table T, then (a) R and T are joined over this foreign key to yield
a larger table, R, and (b) the process is repeated on R’".

First, as we noted, in MAPONTO ontology subtrees give rise to formulas rep-
resenting joins similar to Clio’s logical relations.

Now suppose ontology properties p(z,y) and ¢(y, z) meet at concept G(y).
If these were relational tables, columns y of p and ¢ would be foreign keys for

7 This is related to the notion of “chase” in relational databases.

G. Clio would only suggest p(z,y) X G(y) or G(y) x q(y, z) as joins building
alternative logical relations. The reason for avoiding p(x,y) X G(y) X q(y, 2), is
that from practical experience, this could lead to too many alternatives®. Step
1 of the new heuristics will make MAPONTO also downgrade such joins if the
relationship corresponding to ¢ is M:N. Moreover, if ¢ represented a N:1/1:1
relationship then according to Section 3, table ¢ could have been merged with
E to yield F'(y,z) <= G(y) % q(y, z). In this schema, Clio would in fact join
p and E’, as would our algorithm, since ¢ has cardinality upper bound 1.

The iterative nature of Clio’s algorithm is also captured by our tree growing
algorithm.

5 Conclusions and Future Work

Establishing manually semantic mappings between database schemas and on-
tologies is time-consuming and error-prone, especially, when the mappers are
not fully cognizant of the ontology, which could be very large. We are devel-
oping a tool, MAPONTO, to support creating such mappings, and have carried
out several experiments using it [1]. In this paper, we have presented certain
refinements of the algorithm intended to deal with several problems we have
encountered, together with explanations tying the heuristics to the well-known
mapping of EER diagrams to relational schemas, and the heuristics used in Clio.

We defer to a later paper the treatment of n-ary relationships, the less stan-
dard tabular representations of semantic relationships (such as the representation
of subclass hierarchies using concept names as values in columns), denormalized
relations, and more complex mappings.

References

1. Y. An, A. Borgida, and J. Mylopoulos. Building Semantic Mappings between
Database Schemas and Ontologies. Submitted for publication.

2. D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. “Data inte-
gration in data warehousing”, J. Cooperative Information Systems. 10(8), 2001.

3. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison-Wesley.
2000.

4. J.-L. Hainaut. Database reverse engineering. http://citeseer.ist.psu.edu/article/
hainaut98database.html. 1998.

5. J. Madhavan, P.A. Bernstein, P. Domingos, A.Y. Halevy. “Representing and Rea-
soning about Mappings between Domain Models”, AAAI 2002: 80-86

6. R.J. Miller, L. M. Haas, and M. A. Hernandez. Schema mapping as query discovery.
In 26th VLDB. 2000.

7. V. M. Markowitz and J. A. Makowsky. Identifying Extended Entity-Relationship
Object Structures in Relational Schemas. IEEE Transactions on Software Engi-
neering 16(8). 1990.

8. L. Popa, Y. Velegrakis, R. J. Miller, M. Hernandes, R. Fagin. "Translating web
data”, VLDB 2002.

8 Y.Velegrakis, personal communication, 2004.

