
From Goals to Aspects: Discovering Aspects from Requirements Goal
Models

Yijun Yu, Julio Cesar Sampaio do Prado Leite, John Mylopoulos
Department of Computer Science, University of Toronto

Abstract

Aspect-oriented programming (AOP) has been at-
tracting much attention in the Software Engineer-
ing community by advocating that programs should be
structured according to programmer concerns, such as
“efficient use of memory”. However, like other pro-
gramming paradigms in their early days, AOP hasnt
addressed yet earlier phases of software development.
In particular, it is still an open question how one iden-
tifies aspects early on in the software development pro-
cess. This paper proposes an answer to this question.
Specifically, we show that aspects can be discovered
during goal-oriented requirements analysis. Our pro-
posal includes a systematic process for discovering as-
pects from relationships between functional and non-
functional goals. We illustrate the proposed process
with a case study adapted from the literature.

1. Introduction

Aspect-oriented programming (AOP) is founded on
the idea of aspect [4] as a cross-cutting concern dur-
ing software development. Aspects are usually “units
of system decomposition that are not functional” [12],
such as “no unauthorized access to data” or “efficient
use of memory”. Aspects cut across different com-
ponents of a software system. The basic premise of
aspect-oriented programming is that software struc-
tured according to aspects is easier to develop, under-
stand and maintain.

In name and in practice, aspect-oriented program-
ming is a programming methodology. However, this
methodology does not deal with the origins of aspects.
Where do aspects come from? Is there a systematic
way of discovering aspects early on during the software
development process? The main objective of this pa-
per is to propose an answer to these questions. Our
proposal is based on the notion of goal and the analy-
sis techniques developed in goal-oriented requirements
engineering. These techniques are shown to be useful
in guiding the discovery of aspects.

Goal-oriented requirements engineering[15, 22] fo-
cuses on goals which are ”roughly speaking, precur-
sors of requirements” [7]. Goal-based models support
the description and analysis of intentions that under-
lie a new software system. Some goal models, such
as i* [25, 13], also model the actors who behold these
intentions. Most variations of goal models in the lit-
erature use AND/OR trees to represent goal decom-
position [14, 23] and define a space of alternative so-
lutions to the problem of satisfying a root-level goal.
There are several proposals in the literature for (for-
mal) goal analysis techniques. For example, obstacle
analysis [23] explores possible obstacles to the satisfac-
tion of a goal. Along a different dimension, qualitative
goal analysis [9] allows qualitative contributions from
one goal to another, and shows how to formalize and
reason with them. In whatever form, goal-oriented re-
quirements engineering has been attracting consider-
able attention within the community [1, 18, 11, 2].

The rest of the paper is structured as follows. Sec-
tion 2 presents a quick introduction to aspect-oriented
programming, while section 3 defines a particular type
of goal model, called a V-graph. Section 4 describes
a systematic process for discovering candidate aspects
while doing goal analysis; section 5 illustrates the as-
pect discovery process using a case study of media shop
requirement analysis. Section 6 compares the candi-
date aspects with aspects found in an open-source im-
plementation of a media shop system, and proposes
abstract aspects as a way of documenting candidate
aspects for later phases. Section 7 concludes the paper
and sketches directions for future research.

2. Aspect Oriented Programming

An aspect, such as “efficient use of memory” is a
cross-cutting concern for a software system. Dealing
with code fragments that address a single aspect in
different components of a software system has been a
great challenge for software engineers. Structured De-
sign [24] did recognize the importance of packing com-
monalities into modules. This is also known in pro-

Yijun Yu

gramming as the DRY principle, that is, “Don’t Repeat
Yourself”. Accordingly, a good design should include
components with high fan-in. Figures 1 and figure 2
show how structured design and aspect-oriented pro-
gramming view the factoring out of common concerns
in complementary ways.

Figure 1. AOP view of aspects in source code
(AspectJ).

A typical aspect expressed in AspectJ1 syntax is as
follows:

aspect DisplayUpdating {
pointcut move():

call(void FigureElement.moveBy(int, int)) ||

call(void Line.setP1(Point)) ||

call(void Line.setP2(Point)) ||

call(void Point.setX(int)) ||

call(void Point.setY(int));

after() returning: move() {
Display.update();

}
}

The aspect DisplayUpdating includes the advice Dis-
play.update() that will be weaved in the component
code after the move() pointcut. A pointcut is a vir-
tual address for the inclusion of the advice in a compo-
nent. This virtual address is resolved through match-
ing. For example, every time a Line.setP1(Point) ap-
pears in a component, the advice, Display.update() will
be weaved in that component.

The great benefit of software structured according
to aspects is the ability to separate issues, Figure 3,
and leave it to a pattern matching procedure to weave
the issues together at the correct time.

Although the original AOP paper [12] pointed that
aspects are mainly non-functional concerns, there has
been no clear link with the notion of non-functional

1This example is taken from [10]

Figure 2. Don’t repeat yourself (DRY) princi-
ple: increase fan-in.

Figure 3. An aspect hides the high fan-in com-
mon part from a structured design.

requirements. [14, 5, 6] propose that non-functional
requirements are first class requirements, that is, re-
quirements that are elicited, modeled and analyzed as
the software is developed. We adopt their framework
and show in the rest of the paper how the analysis of
functional and non-functional requirements can lead to
the discovery of aspects.

3. The V-graph model

In order to reason about the interplay of functional
and non-functional requirements we focus on a partic-
ular type of a goal model called a V-graph.

The V-graph is a graph with an overall shape of
the letter V (Figure 4). The top two vertices of the
V represent respectively functional and non-functional
requirements in terms of goal models. Following [14]
we represent non-functional requirements in terms of
softgoals, i.e., goals with no clear-cut definition. Both
models are AND/OR trees with lateral correlation links
(see Table 1). The bottom vertice of the V represent
tasks that contribute to the satisfaction of both goals
and softgoals.

This model allows for the description of intentional
nodes (goals and softgoals), as well as operational ones

2

Yijun Yu

Figure 4. A V shape goal graph links a task of
the goal hierarchy to a softgoal as its opera-
tionalization.

Table 1. Contribution and correlation link
types.

link type and or make help hurt break
contrib. Y Y Y Y Y Y
correlat. N N Y Y Y Y

(tasks.) Following the NFR framework [5], we name
each goal and task with two descriptors: a type and a
topic. The topic is related to contextual information,
such as the concepts that are important for a given ap-
plication. Types have two different instantiations: for
goals and tasks they describe a generic function; while
for softgoals they describe a generic non-functional re-
quirement, such as performance, safety, security, and
traceability.

Figures 5 depicts two goal/softgoal trees, with cor-
relation links among them.

Figure 5. Decomposition of the goal and soft-
goals following type and topic taxonomy.

Of course, in order to produce a V-graph we need an
integrated process of elicitation, modeling and analysis.
The focus of this paper is on modeling and analysis,

with the help of a goal analysis tool [9].

4. Building V-graphs and discovering as-
pects

The (manual) process we are proposing constitutes
a systematic way for the refinement of a V-graph. The
process ends when all root goals are satisfied and all
softgoals are satisficed2. At this stage, we are able
to identify candidate aspects by identifying tasks that
have a high fan-in. The resulting graph can be further
refined if candidate aspects are grouped into what we
call abstract aspects.

The process of building V-graphs is iterative. Dur-
ing each step, the goal analysis tool is used to detect
conflicts and deteriorations. A conflict occurs in a goal
model when a given labeling of leaf goals as satisfied or
denied leads to other goals being labeled both satisfied
and denied. A deterioration occurs when the labeling
of softgoals during one step of the iteration is weaker
(lower) than during the previous step of the iteration.

Below we present the proposed process us-
ing a programming language-like notation.

procedure AspectFinder
input r: node /* root goal */, s: {node} /* softgoals */
output a: {aspect} and g: graph<node, link>
pre-condition {r} ∪ s are named nodes,

a = φ and g =< φ, φ >
post-condtion IsSatisfied(g, r) and IsSatisficed(g, s),

a 6= φ and g 6=< φ, φ >
begin
g ⇐ Correlate(r, s, g)
while (not (IsSatisfied(g, r) and IsSatisficed(g, s))

or NodeToDecompose(g) 6= φ)
g, conflict ⇐ Decompose (g, conflict)
if conflict then
g ⇐ ResolveConflict(g, conflict)

end while
a ⇐ ListAspects(g)

end

AspectFinder is the root procedure. Some clarifica-
tions are need here:

1. node denotes a graph node, can be a goal, a task
or a softgoal;

2. {node } denotes a set of nodes;

2Herbert Simon [20] used the term satisfice to denote the idea
of “good enough” solutions to an untractable problem. The NFR
framework [5] is founded on the premise that non-functional re-
quirements (softgoals) are “satisficed” when they admit a partial,
but good enough solution.

3

Yijun Yu

Table 2. Combinations of goal labels.
label name satisfice (s), denial(d)

S satisfied s = 1 and d = 0
D denied s = 0 and d = 1
U undetermined s = 0 and d = 0
FS fully satisfice s = 1 and d = 0
PS partially satisfice 0.5 < s < 1 and s + d = 1
UN undetermined s + d < 1
PD partially denial 0 < s < 0.5 and s + d = 1
FD fully denial s = 0 and d = 1
CF conflicting s + d > 1

3. { aspect } denotes a set of aspects;

4. and graph<node, link> is a graph template type
in C++ terminology instantiated with node and
link.

The stop condition for the iteration is defined in
terms of the following predicates:

• IsSatisfied(g, r) tests if a goal r is satisfied in goal
graph g, i.e., returns one of the following labels [9]:
{S, D, U } and IsSatisficed(g, s) tests if softgoal s
is satisficed in the goal graph g, i.e., returns one
of {FS, PS, UN, PD, FD, CF } as explained in
Table 2.

• NodeToDecompose(g) finds out the subset of
nodes of g that are either undetermined or un-
satisfied goals/tasks, or unsatisficed softgoals.

The AspectFinder is defined as follows.

procedure Correlate
input r: node, s: {node}, g: graph<node, link>
output g: graph<node, link>)
pre-condition g =< φ, φ >
post-condition g =< {r} ∪ s, L > where

L: {link} 6= φ and ∃t ∈ s such that < r, t >∈ L.
begin
for each t in s
g ⇐ AddLink(< r, t >, g) /*correlation link */

end
g ⇐ MarkSatisfied(RootGoal(g))
g ⇐ LabelPropagation(g)

end Correlate

Correlate establishes an initial relationship between
root functional goals and softgoals. This relationship is
represented by one or more correlation links. Correlate
uses procedures that are defined below:

• AddLink(< n1, n2 >, g) will place a link between
nodes n1, n2 in g;

• MarkSatisfied(RootGoal(g)) will mark a root goal
of g satisfied;

• LabelPropagation(g) is an algorithm described
in [9] that propagates the truth labels of the leaf
nodes upward to the top-level nodes according to
the types of goal dependency links.

procedure Decompose
input g: graph<node, link>
output g: graph<node, link>, conflict: boolean
pre-condition g is consistent
post-condition g is consistent, g has more nodes
begin
gpre ⇐ g
for each t: node in NodeToDecompose(g)
subnodes ⇐ CreateNodes(subnodes)
for each s in subnodes
g ⇐ AddNode(s, g)
if not s ∈ NodeToDecompose(g) then
g ⇐ MarkAsTask(s, g)

g ⇐ AddLink(< s, t >, g) /*contribution link*/
end
g, conflict ⇐ CorrelationDecompose(gpre, g, conflict)

end
end

Decompose refines the V-graph, using the following
procedures:

• CreateNodes creates a set of new nodes in the
graph by the human;

• AddNode(s, g) inserts a s into graph g;

• NodeToDecompose(g) gathers the goals and sub-
goals that have not been decomposed, or dealt
with in terms of a task.

procedure ResolveConflict
input g: graph<node, link>
output g: graph<node, link>, conflict: boolean
pre-condition g is consistent, conflict = True
post-condition g is consistent, conflict = False
begin
gpre ⇐ g
g ⇐ RemoveConflictingLinks(g)
g, conflict ⇐ CorrelationDecompose(gpre, g, conflict)

end

4

Yijun Yu

ResolveConflict uses the procedure,
RemoveConflictingLinks(g), that removes links
from a source node that has been labelled ”denied” by
the label propagation algorithm

procedure CorrelationDecompose
input gpre, g: graph<node, link>
output g: graph<node, link>, conflict: boolean
pre-condition gpre is consistent
post-condition g is consistent
begin
g ⇐ MarkGoalGraph(g,{U, S, D })
while (CorrelationLinkToDecompose(gpre) 6= φ

or IsNotConsistent(gpre, g))
l ⇐ GetACorrelationLink(gpre, l)
g ⇐ RemoveLink(l, g)
g ⇐ AddLinks(CreateLinks(l), g)
g ⇐ LabelPropagation(g)

end
g, conflict ⇐ LabelPropagation(g)

end

CorrelationDecomposition uses the procedures that
are, briefly, described below:

• MarkGoalGraph(g, ...) initializes task nodes (as-
sociated to leaf goal nodes) with a satisfied/denied
label specified by the user, and all other goal nodes
as undetermined to facilitate the label propagation
algorithm.

• CreateLinks(l) where l =< r, s > creates new links
between subgoals of r and subsoftgoals of s speci-
fied by the user;

• CorrelationLinkToDecompose looks for all the cor-
relation links except for those from tasks to leaf
softgoals.

procedure Deteriorates
input gpre, g: graph<node, link>
output noDeterioration: boolean
begin
r0, s0 ⇐ RootGoal(gpre), Softgoals(gpre)
r, s ⇐ RootGoal(g), Softgoals(g)
noDeterioration ⇐ IsSatisfied(gpre, r0) and IsSatisfied(g, r)

and ∀n ∈ s0 ∩ s:
LessThan(IsSatisficed(gpre, n), IsSatisficed(g, n))

end

Within the Deteriorates procedure,
LessThan(label1, label2) compares two labels ac-

cording to the label order (FD < PD < UN < PS <
FS).

procedure ListAspects(g)
input g: graph<node, link>
output as: {aspect}
pre-condition In the goal graph g, all goals are
satisfied and all softgoals are satisficed.
There is no conflict and all correlation links
are consistently decomposed into contribution
links from tasks to softgoals.

post-condition as 6= φ
begin
as ⇐ φ
for each n in Softgoals(g) such that

n is the direct parent of a task
a: aspect ⇐ CreateAspect(n, a)
for each < t, n >∈ Links(g) where t ∈ Tasks(g)
a ⇐ AddAdvice(t, a)
for each f ∈ CrosscuttingGoals(t, g)
a ⇐ AddToPointcuts(f , a)

end
end
as ⇐ as ∪{a}

end
end

ListAspects(g) gathers a set of tasks that contribute
to a softgoal, that is, there is a contribution link <
t, s > and more than one chain of contribution links
{t →, · · · ,→ f} where t is a task, s is a softgoal, f is
the functional goal crosscutted by t.

Figure 6 shows a pictorial view of the process of
modeling V-graphs. Initially, a set of objectives in-
cluding one or more functional goals and several non-
functional softgoals are listed. Then requirements engi-
neers and domain experts decompose goals (softgoals)
into subgoals (subsoftgoals) or tasks, and correlate the
goals/tasks from the functional perspective to the soft-
goals/operationalizations from the non-functional one.
The refinement process must be monotonic (no dete-
riorations) and resolve conflicts through a formal goal
analysis until goals are satisfied and softgoals are sat-
isficed.

5. Analyzing V-graphs to discover as-
pects: An Example

We use the Media Shop example to illustrate the ap-
plication of our procedure. The Media Shop example
has been used in the context of intentional modeling [3]
and is a good example to show the interplay of func-
tional and non-functional goals. Through Figures 7

5

Yijun Yu

Figure 6. Discover aspects during the goal
oriented requirement engineering

to 12 we show several steps of the AspectFinder pro-
cess. Figure 13 presents the final graph and Figure 14
presents the output of the analysis tool for the final
graph. Finally, the candidate aspects can be seen in
the center-right part of the final graph, Figure 13, that
is they are the operationalizations of the softgoals and
the relations to functional goals.

Once we have the elicited information regarding the
goals we can start the process. We start by listing root
goals and softgoals. Later we apply the Correlate pro-
cedure (see Section 3) to add correlation links. Figure 7
shows this for the Media Shop example.

⇒

Figure 7. Correlate

Given this graph, we invoke the LabelPropagation
procedure, which return FS (s=1, d=0) values for all
the nodes. This means that the graph is not deterio-
rating and has no conflicts, as shown in the right part
of Figure 8. Here we export the goal analysis result to
the graphviz tool [8] for the layout.

However, if we decompose the goal above using De-
compose, which propagates correlations through Corre-
lationDecompose, as shown in the left part of Figure 9,

⇒

Front
[shop]

S:1.000,D:0.000

Security
[system]

S:1.000,D:0.000 1.000000+

Usability
[ui]

S:1.000,D:0.000
1.000000+

Integrity
[data]

S:1.000,D:0.000

1.000000+

Responsiveness
[transaction]

S:1.000,D:0.000

1.000000+

Figure 8. Consistent Graph

this results in a deterioration, since the softgoal Re-
sponsiveness[transaction] becomes partially satisficed
(PS) after decomposition and was previously, in Fig-
ure 8, fully satisficed (FS).

⇒

Front
[shop]

S:1.000,D:0.000 Informing
[shop]

S:1.000,D:0.000

AND

Managing
[shop]

S:1.000,D:0.000

AND

Shopping
[shop]

S:1.000,D:0.000

AND

Security
[system]

S:1.000,D:0.000
1.000000+

Usability
[ui]

S:1.000,D:0.000
1.000000+

1.000000+

Integrity
[data]

S:1.000,D:0.000

1.000000+

1.000000+

0.500000+

Responsiveness
[transaction]

S:0.500,D:0.000

0.500000+

Figure 9. Detection of Inconsistent Decompo-
sition

With the feedback provided by the goal analysis
tool, (see Figure 6), the requirements engineer proposes
a different decomposition Figure 10) which removes the
deterioration.

At the left part of Figure 11 we show a part of the
Media Shop graph where the transaction goals are be-
ing decomposed into two tasks that by the correlation
links are related by “make” and “hurt” to the same
softgoal. The right part of the figure will show the re-
sult of the LabelPropagation procedure. Here we can
see a conflicting label for the softgoal “Responsiveness
[Transaction]”: S=1 and D=1.

With this feedback, the requirements engineer is
able to change the graph into a well formed graph, by
removing the links that caused the conflict.

As indicated earlier, Figure 13 is the V-graph for the
Media Shop example 3 We can now apply the proce-
dure ListAspect presented in Section 3. Table 3 shows

3For space reasons, we only show part of the example.

6

Yijun Yu

⇒

Figure 10. Decomposition with no deteriora-
tion

⇒

Responsiveness
[transaction]

S:1.000,D:1.000

Session
Cookie

[transaction]
S:1.000,D:0.000

1.000000+

Database
Table

[transaction]
S:1.000,D:0.000

1.000000-

Transaction
[cart]

S:1.000,D:0.000

OR

OR

Transaction
[account]

S:1.000,D:0.000
OR

OR

Transaction
[product]

S:1.000,D:0.000

OR

OR

Transaction
[stock]

S:1.000,D:0.000

OR

OR

Figure 11. Conflict detection for the softgoal
“Responsiveness [transaction]"

the aspects (the operationalized softgoals, related func-
tional goals, as well as related functional tasks). These
aspects are named after the operationalized softgoal.

6. Discussion

As shown from Table 3, the proposed process was
able to identify candidate aspects. However, how can
we be sure that these candidate aspects that we have
listed are reasonable?

Apart from appealing to common sense, we have
also attempted an evaluation by matching these as-
pects against an open source implementation of the
Media Shop example. The source code is available
at OSCommerce [16], and its core contains about 65
KLOC in PHP.

After a thorough clone detection using Semantic De-
signs’ clone detector (CloneDR), it found that the high
fan-in aspects are among the 463 clone tuples found in
the weaved source code. Out of the 52036 LOC under
the clone detection analysis, 16833 LOC or 19.1% of
the total code are found as scattered clones [19].

It is interesting to note that the goal graphs ob-
tained from the proposed process can be simplified by
factoring out candidate aspects, as per Figure 15.

⇒

Responsiveness
[transaction]

S:1.000,D:0.000
Session
Cookie

[transaction]
S:1.000,D:0.000

1.000000+

Transaction
[cart]

OR

Transaction
[account]

Database
Table

[transaction]
S:1.000,D:0.000

OR

Transaction
[product]

OR

Transaction
[stock]

OR

Figure 12. Resolving conflicts

Figure 15. Separating aspects advised tasks
from the functional tasks.

In that sense, we are proposing abstract aspects as an
abstraction of aspects, intended to help requirements
engineers with respect to the scalability of their models.
Abstract aspects may defined in terms of a syntax such
as that shown below.

abstract aspect Responsiveness[transaction] {
pointcut frequentTransaction():

and(Preparing[cart,product]) ||

and(CheckingOut[cart, product, account, stock]);

required () by: frequentTransaction() {
SessionCookie[transaction]();

}
}

Here the abstract aspect Responsive-
ness[transaction] has the advice task Ses-
sionCookie[transaction] that is required by
the frequentTransaction() pointcut. In the
description of this pointcut, we will look
for addresses that match the two matching
conditions and(Preparing[cart,product]),
and(CheckingOut[cart, product, account,
stock]) . Note that Figure 13 is already a weaved
graph. As such, the description above can be traced.
However, Figure 16 shows the goal graph as if the
above abstract aspect was applied. The notion of
abstract aspect clearly needs further research.

7. Conclusions

We have proposed a systematic process whereby as-
pects can be discovered by conducting goal analysis
for a system-to-be. We have demonstrated the process

7

Yijun Yu

Figure 13. The final media shop goal graph after removing conflicts.

Table 3. Candidate aspects discovered for Media Shop example.
Aspect softgoal Advising task Crossing-cutting functional goals
Responsiveness
[transaction]

SessionCookie
[transaction] Preparing [cart, product], Checking Out [cart, product, account, stock]

Integrity [data]
DatabaseTable
[transaction]

Checking Out [cart, product, account, stock], Managing [shop], Searching
[shop], Reporting [shop]

Confidentiality
[system]

Password Pro-
tection [account] Checking Out [cart, product, account, stock]

Info. Flow Secu-
rity [system] SSL [protocol] Checking Out [cart, product, account, stock], Managing[shop]

Usability [lan-
guage]

Customizing
[English]

Preparing [cart, product], Checking Out [cart, product, account, stock],
Managing [shop], Searching [shop], Reporting [shop]

Usability [font] Infobox [font] Preparing [cart, product], Checking Out [cart, product, account, stock],
Managing [shop], Searching [shop], Reporting [shop]

Usability [layout]
Page Layout
[gui]

Preparing [cart, product], Checking Out [cart, product, account, stock],
Managing [shop], Searching [shop], Reporting [shop]

8

Yijun Yu

Front
[shop]

S:1.000,D:0.000

Informing
[shop]

S:1.000,D:0.000

AND

Managing
[shop]

S:1.000,D:0.000

AND

Shopping
[shop]

S:1.000,D:0.000

AND

Security
[system]

S:1.000,D:0.000

Confidentiality
[system]

S:1.000,D:0.000

AND

Info.
flow

Security
[system]

S:1.000,D:0.000

AND

Reporting
[shop]

S:1.000,D:0.000

Reporting
[stock]

S:1.000,D:0.000

AND

Reporting
[account]

S:1.000,D:0.000

AND

Reporting
[product]

S:1.000,D:0.000

AND

Transaction
[account]

S:1.000,D:0.000

AND
Transaction

[product]
S:1.000,D:0.000

AND

Transaction
[stock]

S:1.000,D:0.000

AND

Customization
[language]

S:1.000,D:0.000

AND Infobox
[font]

S:1.000,D:0.000

AND

Page
Layout
[gui]

S:1.000,D:0.000

AND

Searching
[shop]

S:1.000,D:0.000

Navigating
[stock]

S:1.000,D:0.000

AND

Searching
[stock]

S:1.000,D:0.000

AND

AND

AND

AND

AND

Managing
[product]

S:1.000,D:0.000

Managing
[account]

S:1.000,D:0.000

Managing
[stock]

S:1.000,D:0.000

Preparing
[cart,

product]
S:1.000,D:0.000

Selecting
[item,
cart]

S:1.000,D:0.000

AND

Adding
[item,
cart]

S:1.000,D:0.000

AND

Transaction
[cart]

S:1.000,D:0.000

AND

AND

AND

AND

Usability
[ui]

S:1.000,D:0.000

Usability
[language]

S:1.000,D:0.000

AND

Usability
[gui]

S:1.000,D:0.000AND

Getting
[account]

S:1.000,D:0.000

Password
Protection
[account]

S:1.000,D:0.0001.000000+

SSL
[protocol]

S:1.000,D:0.000

1.000000+

Customizing
[English]

S:1.000,D:0.000

1.000000+

Usability
[font]

S:1.000,D:0.000

1.000000+

Usability
[layout]

S:1.000,D:0.000

1.000000+

Checking
Out

[cart,
product,
account,
stock]

S:1.000,D:0.000

Clearing
[cart]

S:1.000,D:0.000AND

Updating
[account,
product]

S:1.000,D:0.000
AND

Updating
[product,

stock]
S:1.000,D:0.000

AND

Login/Logout
[account]

S:1.000,D:0.000

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

Integrity
[data]

S:1.000,D:0.000

Database
Table

[transaction]
S:1.000,D:0.000

1.000000+

Responsiveness
[transaction]

S:1.000,D:0.000

Session
Cookie

[transaction]
S:1.000,D:0.0001.000000+

OR

OR

OR

OR

AND
AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

OR

Figure 14. The evaluation result of the goal graph in Figure 13. All goals/tasks are satisfied and all
softgoals and operationalizations are satisficed and there are no conflicts.

9

Yijun Yu

Figure 16. Separating the advicing task of
the abstract aspect Responsiveness[transaction]
from the functional goals in its pointcut.

with a case study adopted from the literature, and we
have compared the resulting aspects with those found
in an independently-developed open source solution.

Compared to [21], we are providing a well-defined,
tool-supported process that they assume must be done
by an experienced software engineer. Compared to [17],
we are treating aspects at a higher level of abstraction,
in terms of goals, and doing so in a systematic way
based on formal analysis.

For future research, we plan to investigate further
the notion of abstract aspects, especially so in the con-
text of software reusability, also in reengineering legacy
code to make it aspect-oriented.

Acknowledgement

We thank Dr. Ira Baxter (Semantics Designs) for
the results reported on section 6 regarding the analysis
of osCommerce source code.

References

[1] A. I. Anton, R. A. Carter, A. Dagnino, J. H. Dempster, and
D. F. Siege. Deriving goals from a use-case based require-
ments specification. Requirement Engineering, 6(1):63–73,
2001.

[2] D. Bolchini, P. Paolini, and G. Randazzo. Adding hyper-
media requirements to goal-driven analysis. In RE 2003,
pages 127–137, 2003.

[3] J. Castro, M. Kolp, and J. Mylopoulos. Towards
requirements-driven information systems engineering: the
tropos project. Information Systems, 27(6):365–389, 2002.

[4] v. F. C. Chavez, F. A. Garcia, and C. J. P. Lucena.
Tutorial: Desenvolvimento de Software Orientado
a Aspectos” (in Portuguese). In The 17th Brazil-
ian Symposium on Software Engineering SBES,
(http://www.sbbd.fua.br/inenglish/paginaseng/sbes-
tutorials.htm), 2003.

[5] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishing, 1999.

[6] L. M. Cysneiros, J. C. S. do Prado Leite, and J. de Melo
Sabat Neto. A framework for integrating non-functional
requirements into conceptual models. requirements engi-
neering. Requirement Engineering, 6(2):97–115, 2001.

[7] M. S. Feather, T. Menzies, and J. R. Connelly. Relating
practitioner needs to research activities. In RE 2003, pages
352–, 2003.

[8] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo.
A technique for drawing directed graphs. IEEE TRANS.
SOFTW. ENG., 19(3):214–230, May 1993.

[9] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebas-
tiani. Reasoning with goal models. LNCS, 2503:167–??,
2002.

[10] E. Hilsdale and G. Kiczales. Aspect oriented programming
with AspectJ, xerox parc, http://www.aspectj.org.

[11] H. Kaiya, H. Horai, and M. Saeki. Agora: Attributed goal-
oriented requirements analysis method. In RE 2002, pages
13–22, 2002.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect oriented
programming. LNCS, 1241:220–242, Oct. 1997.

[13] L. Liu, E. Yu, and J. Mylopoulos. Security and privacy
requirements analysis within a social setting. In RE 2003,
pages 151–161, 2003.

[14] J. Mylopoulos, L. Chung, and B. Nixon. Representing
and using nonfunctional requirements: A process-oriented
approach. IEEE Transactions on Software Engineering,
18(6):483–497, June 1992.

[15] J. Mylopoulos, L. Chung, and E. Yu. From object-oriented
to goal-oriented requirements analysis. Communications of
the ACM, 42(1):31–37, Jan. 1999.

[16] pair Networks. oscommerce: Open Source E-Commerce
Solutions, http://www.oscommerce.com.

[17] A. Rashid, P. Sawyer, A. M. D. Moreira, and J. Arajo.
Early aspects: A model for aspect-oriented requirements
engineerin. In RE 2002, pages 199–202, 2002.

[18] C. Rolland and N. Prakash. From conceptual modelling to
requirements engineering. Annals of Software Engineering,
10:151–176, 2000.

[19] Semantics Designs. CloneDR,
http://www.semdesigns.com/products/DMS.

[20] H. A. Simon. The Science of the Artificial, 3rd Edition.
MIT Press, 1996.

[21] G. Sousa, I., and J. Castro. Adapting the NFR framework
to aspect-oriented requirement engineering. In The XVII
Brazilian Symposium on Software Engineering, Manaus,
Brazil, October, 2003, 2003.

[22] A. van Lamsweerde. Goal-oriented requirements engineer-
ing: From system objectives to UML models to precise soft-
ware specifications. In ICSE 2003, pages 744–745, 2003.

[23] A. van Lamsweerde and E. Letier. Handling obstacles in
goal-oriented requirements engineering. IEEE Trans. Soft-
ware Eng., 26(10):978–1005, 2000.

[24] E. Yourdon and L. L. Constantine. Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design, 1st ed. Prentice-Hall, 1979.

[25] E. S. K. Yu and J. Mylopoulos. From E-R to A-R –
modelling strategic actor relationships for business process
reengineering. Int. Journal of Intelligent and Cooperative
Information Systems, 4(2–3):125–144, 1995.

10

Yijun Yu

