CSC 458/2209 — Computer Networks

Handout # 13:
Congestion Control

Professor Yashar Ganjali
Department of Computer Science

University of Toronto

yganjali@cs.toronto.edu

http://www.cs.toronto.edu/~yganjali

mailto:yganjali@cs.toronto.edu
http://www.cs.toronto.edu/~yganjali

Announcements

® Problem Set 2
e Will be posted early next week
e Due: Nov. 15t at 5pm

e Submit electronically as ps2.pdf

® Programming Assignment 2
e Will be posted later next week
e New assignment to avoid relying on first assignment
e Simpler, and completed individually.
e Due: Nov. 22" at 5pm

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

Announcements

® Problem Set 1

e Marks will be posted by the end of the week.

e Please contact Nafiseh and Kasra for remark requests.
® Programming Assignment 1

e Marks will be posted next week
* Midterm

e Marked next week

e Tutorials:

e No tutorial this week
e Next week: PS2 review and sample problems

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

Today’s Lecture

® Principles of congestion control
e Learning that congestion is occurring
e Adapting to alleviate the congestion
® TCP congestion control
e Additive-increase, multiplicative-decrease
e Slow start and slow-start restart
® Related TCP mechanisms
e Nagle’s algorithm and delayed acknowledgments
* Active Queue Management (AQM)
e Random Early Detection (RED)
e Explicit Congestion Notification (ECN)

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

What is Congestion?

D(t)
1.5Mb/s @

A,(t)

100Mb/s
A,(t)
A e,
AZ(t) A (t) X(t)
Cumulative Vo ol
bytes Al(t

X(t)

D(t)

t

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

Flow Control vs. Congestion Control

* Flow control

e Keeping one fast sender from overwhelming a slow
receiver

® Congestion control
e Keep a set of senders from overloading the network

* Different concepts, but similar mechanisms
e TCP flow control: receiver window
e TCP congestion control: congestion window

e TCP window: min{congestion window, receiver
window}

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

Time Scales of Congestion

Too many users using a
link during a peak hour

TCP flows filling up all
available bandwidth

v

Two packets colliding

at a router — also

\4

referred to as contention 1oo|us

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

[[
200us 300us

Dealing with Congestion

Example: two flows arriving at a router

Aq(t) ; ?
R1 '
0 -_D
Strategy

Drop one of the flows

Buffer one flow until the other
has departed, then send it

Re-Schedule one of the two flows
for a later time

Ask both flows to reduce their
rates

||F ‘,

Congestion is Unavoidable

® Two packets arrive at the same time
e The node can only transmit one
e ... and either buffer or drop the other

* If many packets arrive in a short period of time
e The node cannot keep up with the arriving traffic
e ... and the buffer may eventually overflow

sk llll—

/> _____

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

Arguably Congestion is Good!

® We use packet switching because it makes efficient
use of the links. Therefore, buffers in the routers are
frequently occupied.

* If buffers are always empty, delay is low, but our
usage of the network is low.

* If buffers are always occupied, delay is high, but we
are using the network more efficiently.

® So how much congestion is too much?

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 10

Congestion Collapse

e Definition: Increase in network load results in a
decrease of useful work done

®* Many possible causes

e Spurious retransmissions of packets still in flight
 Classical congestion collapse
» Solution: better timers and TCP congestion control
e Undelivered packets

» Packets consume resources and are dropped elsewhere
in network

» Solution: congestion control for ALL traffic

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 1

What Do We Want, Really?
® High throughput

e Throughput: measured performance of a system

e E.g., number of bits/second of data that get through
* Low delay

e Delay: time required to deliver a packet or message

e E.g., number of msec to deliver a packet

® These two metrics are sometimes at odds
e E.g., suppose you drive a link as hard as possible
e ... then, throughput will be high, but delay will be, too

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 12

Load, Delay, and Power

Typical behavior of queuing
systems with random arrivals:

Average
Packet delay

Power =

Power

A simple metric of how well the
network is performing:

Load
Delay

Load

Goal: maximize power

“optimal Load

load”

Fairness

e Effective utilization is not the only goal
e We also want to be fair to the various flows
e ... but what the heck does that mean?
® Simple definition: equal shares of the bandwidth
e N flows that each get 1/N of the bandwidth?
e But, what if the flows traverse different paths?

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

Resource Allocation vs. Congestion Control

® Resource allocation
e How nodes meet competing demands for resources
e E.g., link bandwidth and buffer space
e When to say no, and to whom
® Congestion control
e How nodes prevent or respond to overload conditions
e E.g., persuade hosts to stop sending, or slow down
e Typically has notions of fairness (i.e., sharing the pain)

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 15

Simple Resource Allocation

e Simplest approach: FIFO queue and drop-tail

* Link bandwidth: first-in first-out queue
e Packets transmitted in the order they arrive

& B

® Buffer space: drop-tail queuing

e If the queue is full, drop the incoming packet

>

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

16

Simple Congestion Detection

® Packet loss

e Packet gets dropped along the way
® Packet delay

e Packet experiences high delay

® How does TCP sender learn this?
e | OSS

e Timeout
» Triple-duplicate acknowledgment

e Delay

e Round-trip time estimate

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

17

Options for Congestion Control

* Implemented by host versus network
® Reservation-based, versus feedback-based
* Window-based versus rate-based.

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

18

TCP Congestion Control

® TCP implements host-based, feedback-based,
window-based congestion control.

® TCP sources attempts to determine how much
capacity is available

® TCP sends packets, then reacts to observable events
(loss).

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

19

Idea of TCP Congestion Control

® Each source determines the available capacity

e ...s0 it knows how many packets to have in transit

® Congestion window
e Maximum # of unacknowledged bytes to have in transit
e The congestion-control equivalent of receiver window
e MaxWindow = min{congestion window, receiver window}

e Send at the rate of the slowest component: receiver or
network

* Adapting the congestion window

e Decrease upon losing a packet: backing off
* Increase upon success: optimistically exploring

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 20

Additive Increase, Multiplicative Decrease

® How much to increase and decrease?
e Increase linearly, decrease multiplicatively
e A necessary condition for stability of TCP

e Consequences of over-sized window are much worse
than having an under-sized window

« Over-sized window: packets dropped and retransmitted
» Under-sized window: somewhat lower throughput

* Multiplicative decrease
e On loss of packet, divide congestion window in half

* Additive increase
e On success for last window of data, increase linearly

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 21

Additive Increase

00 [1 1

Src

v

Dest

Actually, TCP uses bytes, not segments to count:

When ACK is received:
cwnd+ = MSS(

cwnd

MSS j

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

22

Leads to the TCP “Sawtooth”

Window

Loss

CSC 458/CSC 2209 — Computer Networks

University of Toronto — Fall 2019

23

Congestion Window Evolution

Only W packets
may be outstanding

W=1 l
b | 74
util = 0%
/N
W
N
V4
time

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 24

Congestion Window Evolution

util = 0%

time

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 25

Practical Details

® Congestion window

e Represented in bytes, not in packets (Why?)

e Packets have MSS (Maximum Segment Size) bytes
® |Increasing the congestion window

e Increase by MSS on success for last window of data

e In practice, increase a fraction of MSS per received ACK
» # packets per window: CWND / MSS
e Increment per ACK: MSS * (MSS / CWND)

® Decreasing the congestion window
e Never drop congestion window below 1 MSS

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 26

TCP Sending Rate

* What is the sending rate of TCP?

* Acknowledgement for sent packet is received after
one RTT

e Amount of data sent until ACK is received is the
current window size W

® Therefore sending rate is R = W/RTT

* |s the TCP sending rate saw tooth shaped as well?

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

27

TCP Sending Rate and Buffers

TCPSIM: Time evolution of a TCP flow#(RTT 142ms, BW 8000kb, buffer 142 pkts of 1000 bytes)

6000 | T T | T T 1 | |
: : : Packet Drops [Pkits/s*10] ——
5000 I T T T I T Sending Rate [Pkis/s] -------- _

: : : : : Cong. Window [Pkts*10] -
) i R AR S R s S
00D
2000 - """"""" """"""""" """"" """""""" """"""" """" """ """""""" —

oL :/l i | | E | | i o | 1
0 10 20 30 40 50 60 70 80 90 100
160 | | | | | ! | ! 1
140 ; ; ; S e uffer Occupancy [Pkis] .
120 S I B e i N i -
100 ; | | B B S R i e -
80 | s ; | R T i S e =
60 ,, oneennenees -]
AQ Hb b e SR .
20 D02t RS e SR Bl SRR -
0] | | |
40 50 60 70 80 90 100

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 28

Getting Started

Need to start with a small CWND to avoid overloading the network.

Window

A

v
v
v v
v
TR S /
/IA,_
But, could take a long
time to get started! t

v

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 29

“Slow Start” Phase

e Start with a small congestion window
e |nitially, CWND is 1 MSS
e So, initial sending rate is MSS/R

® That could be pretty wasteful
e Might be much less than the actual bandwidth
e Linear increase takes a long time to accelerate
® Slow-start phase (really “fast start”)
e Sender starts at a slow rate (hence the name)
e ... but increases the rate exponentially
e ... until the first loss event

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

30

Slow Start in Action

Double CWND per round-trip time

Increase CWND by 1 for each ACK received

|
Src [T iy ||| T |_|_||_|_|F8_ﬂl_|_|

- / \o’o

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 31

Slow Start and the TCP Sawtooth

Window

A

Loss

| N

o

Exponential “slow start” t

Why is it called slow-start? Because TCP originally had
no congestion control mechanism. The source would just
start by sending a whole window’s worth of data.

Two Kinds of Loss in TCP

® Triple duplicate ACK
e Packet n is lost, but packets n+1, n+2, etc. arrive

e Receiver sends duplicate acknowledgments
e ... and the sender retransmits packet n quickly
e Do a multiplicative decrease and keep going
® Timeout
e Packet n is lost and detected via a timeout
e E.g., because all packets in flight were lost
o After the timeout, blasting away for the entire CWND
e ... would trigger a very large burst in traffic
e So, better to start over with a low CWND

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 33

Repeating Slow Start After Timeout

Window
A timeout

/

v’

Slow start in operation until
it reaches half of previous
cwnd.

Slow-start restart: Go back to CWND of 1, but take advantage
of knowing the previous value of CWND.

Repeating Slow Start After Idle Period

® Suppose a TCP connection goes idle for a while
e E.g., Telnet session where you don’t type for an hour
® Eventually, the network conditions change
e Maybe many more flows are traversing the link
e E.g., maybe everybody has come back from lunch!
® Dangerous to start transmitting at the old rate
e Previously-idle TCP sender might blast the network
e ... causing excessive congestion and packet loss
® So, some TCP implementations repeat slow start
e Slow-start restart after an idle period

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 35

Other TCP Mechanisms

® Nagle’s Algorithm and Delayed ACK

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

36

Motivation for Nagle’s Algorithm

* |Interactive applications
e Telnet, ssh and rlogin
e Generate many small packets (e.g., keystrokes)
* Small packets are wasteful
e Mostly header (e.g., 40 bytes of header, 1 of data)
® Appealing to reduce the number of packets
e Could force every packet to have some minimum size

e ... but, what if the person doesn’t type more
characters?

* Need to balance competing trade-offs
e Send larger packets
e ... but don’t introduce much delay by waiting

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 R

Nagle’s Algorithm

* Wait if the amount of data is small
e Smaller than Maximum Segment Size (MSS)
* And some other packet is already in flight
e |.e., still awaiting the ACKs for previous packets

® That is, send at most one small packet per RTT
e ... by waiting until all outstanding ACKs have arrived

ACK

HE BN -« H B N

* Influence on performance
e Interactive applications: enables batching of bytes
e Bulk transfer: transmits in MSS-sized packets anyway

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 38

Motivation for Delayed ACK

e TCP traffic is often bidirectional
e Data traveling in both directions
e ACKs traveling in both directions
* ACK packets have high overhead
e 40 bytes for the IP header and TCP header
e ... and zero data traffic
® Piggybacking is appealing
e Host B can send an ACK to host A
e ... as part of a data packet from B to A

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

39

TCP Header Allows Piggybacking

Flags: SYN
FIN
RST
PSH
URG
ACK

Source port Destination port

Sequence number

Acknowledgment
HdrLen| o | Flags | Advertised window
Checksum Urgent pointer

Options (variable)

Data

CSC 458/CSC 2209 — Computer Networks

University of Toronto — Fall 2019

40

Example of Piggybacking

A has data to send

CSC 458/CSC 2209 — Computer Networks

A

Data

W)

B

B has data to send

B doesn’t have data to send

University of Toronto — Fall 2019

41

Increasing Likelihood of Piggybacking

® Increase piggybacking

e TCP allows the receiver to wait to
send the ACK

e ...inthe hope that the host will
have data to send

® Example: rlogin or telnet

e Host A types characters at a UNIX
prompt

e Host B receives the character and
executes a command

e ... and then data are generated

e \Would be nice if B could send the
ACK with the new data

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

—

C

—

42

Delayed ACK
® Delay sending an ACK

e Upon receiving a packet, the host B sets a timer
» Typically, 200 msec or 500 msec

e If B's application generates data, go ahead and send
« And piggyback the ACK bit

e If the timer expires, send a (non-piggybacked) ACK

® Limiting the wait
e Timer of 200 msec or 500 msec
e ACK every other full-sized packet

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019 43

Conclusions

® Congestion is inevitable
e Internet does not reserve resources in advance
e TCP actively tries to push the envelope
® Congestion can be handled
e Additive increase, multiplicative decrease
e Slow start, and slow-start restart
® Active Queue Management can help
e Random Early Detection (RED)
e Explicit Congestion Notification (ECN)

CSC 458/CSC 2209 — Computer Networks University of Toronto — Fall 2019

44

