
Professor Yashar Ganjali
Department of Computer Science
University of Toronto

yganjali@cs.toronto.edu
http://www.cs.toronto.edu/~yganjali

mailto:yganjali@cs.toronto.edu
http://www.cs.toronto.edu/~yganjali

Announcements
� Problem Set 2

� Posted on class website.
� Due: Nov. 15th at 5pm
� Submit electronically as ps2.pdf

� Programming Assignment 2
� Will be posted later in the week
� New assignment to avoid relying on first assignment
� Simpler, and completed individually.
� Due: Nov. 22nd at 5pm

CSC 458/CSC 2209 – Computer Networks 2University of Toronto – Fall 2019

Announcements
� Problem Set 1

� Marks are released on MarkUs.
� Please contact Nafiseh and Kasra for remark requests.

� Programming Assignment 1
� Marks will be posted next week

� Midterm
� Marked.
� Pick up your exam paper during the tutorial.

� Tutorials:
� PS2 review, sample problems, and midterm exam

papers.
CSC 458/CSC 2209 – Computer Networks 3University of Toronto – Fall 2019

Today’s Lecture
� Principles of congestion control

� Learning that congestion is occurring
� Adapting to alleviate the congestion

� TCP congestion control
� Additive-increase, multiplicative-decrease
� Slow start and slow-start restart

� Related TCP mechanisms
� Nagle’s algorithm and delayed acknowledgments

� Active Queue Management (AQM)
� Random Early Detection (RED)
� Explicit Congestion Notification (ECN)

CSC 458/CSC 2209 – Computer Networks 4University of Toronto – Fall 2019

CSC 458/CSC 2209 – Computer Networks 5University of Toronto – Fall 2019

What is Congestion?

H1

H2

R1 H3

A1(t)
10Mb/s

D(t)
1.5Mb/s

A2(t)
100Mb/s

A1(t)

A2(t)
X(t)

D(t)

A1(t)

A2(t)

D(t)

X(t)

Cumulative
bytes

t

Flow Control vs. Congestion Control
� Flow control

� Keeping one fast sender from overwhelming a slow
receiver

� Congestion control
� Keep a set of senders from overloading the network

� Different concepts, but similar mechanisms
� TCP flow control: receiver window
� TCP congestion control: congestion window
� TCP window: min{congestion window, receiver

window}

CSC 458/CSC 2209 – Computer Networks 6University of Toronto – Fall 2019

CSC 458/CSC 2209 – Computer Networks 7University of Toronto – Fall 2019

Time Scales of Congestion

Too many users using a
link during a peak hour

TCP flows filling up all
available bandwidth

Two packets colliding
at a router – also
referred to as contention

7:00 8:00 9:00

1s 2s 3s

100µs 200µs 300µs

CSC 458/CSC 2209 – Computer Networks 8University of Toronto – Fall 2019

Dealing with Congestion
Example: two flows arriving at a router

Strategy
Drop one of the flows

Buffer one flow until the other
has departed, then send it

Re-Schedule one of the two flows
for a later time

Ask both flows to reduce their
rates

R1
?

A1(t)

A2(t)

Congestion is Unavoidable
� Two packets arrive at the same time

� The node can only transmit one
� … and either buffer or drop the other

� If many packets arrive in a short period of time
� The node cannot keep up with the arriving traffic
� … and the buffer may eventually overflow

CSC 458/CSC 2209 – Computer Networks 9University of Toronto – Fall 2019

Arguably Congestion is Good!
� We use packet switching because it makes efficient

use of the links. Therefore, buffers in the routers are
frequently occupied.

� If buffers are always empty, delay is low, but our
usage of the network is low.

� If buffers are always occupied, delay is high, but we
are using the network more efficiently.

� So how much congestion is too much?

CSC 458/CSC 2209 – Computer Networks 10University of Toronto – Fall 2019

Congestion Collapse
� Definition: Increase in network load results in a

decrease of useful work done
� Many possible causes

� Spurious retransmissions of packets still in flight
� Classical congestion collapse
� Solution: better timers and TCP congestion control

� Undelivered packets
� Packets consume resources and are dropped elsewhere

in network
� Solution: congestion control for ALL traffic

CSC 458/CSC 2209 – Computer Networks 11University of Toronto – Fall 2019

What Do We Want, Really?
� High throughput

� Throughput: measured performance of a system
� E.g., number of bits/second of data that get through

� Low delay
� Delay: time required to deliver a packet or message
� E.g., number of msec to deliver a packet

� These two metrics are sometimes at odds
� E.g., suppose you drive a link as hard as possible
� … then, throughput will be high, but delay will be, too

CSC 458/CSC 2209 – Computer Networks 12University of Toronto – Fall 2019

CSC 458/CSC 2209 – Computer Networks 13University of Toronto – Fall 2019

Load, Delay, and Power

Average
Packet delay

Load

Typical behavior of queuing
systems with random arrivals:

Power

Load

A simple metric of how well the
network is performing:

LoadPower
Delay

=

“optimal
load”

Goal: maximize power

Fairness
� Effective utilization is not the only goal

� We also want to be fair to the various flows
� … but what the heck does that mean?

� Simple definition: equal shares of the bandwidth
� N flows that each get 1/N of the bandwidth?
� But, what if the flows traverse different paths?

CSC 458/CSC 2209 – Computer Networks 14University of Toronto – Fall 2019

Resource Allocation vs. Congestion Control
� Resource allocation

� How nodes meet competing demands for resources
� E.g., link bandwidth and buffer space
� When to say no, and to whom

� Congestion control
� How nodes prevent or respond to overload conditions
� E.g., persuade hosts to stop sending, or slow down
� Typically has notions of fairness (i.e., sharing the pain)

CSC 458/CSC 2209 – Computer Networks 15University of Toronto – Fall 2019

Simple Resource Allocation
� Simplest approach: FIFO queue and drop-tail
� Link bandwidth: first-in first-out queue

� Packets transmitted in the order they arrive

� Buffer space: drop-tail queuing
� If the queue is full, drop the incoming packet

CSC 458/CSC 2209 – Computer Networks 16University of Toronto – Fall 2019

Simple Congestion Detection
� Packet loss

� Packet gets dropped along the way
� Packet delay

� Packet experiences high delay

� How does TCP sender learn this?
� Loss

� Timeout
� Triple-duplicate acknowledgment

� Delay
� Round-trip time estimate

CSC 458/CSC 2209 – Computer Networks 17University of Toronto – Fall 2019

Options for Congestion Control
� Implemented by host versus network
� Reservation-based, versus feedback-based
� Window-based versus rate-based.

CSC 458/CSC 2209 – Computer Networks 18University of Toronto – Fall 2019

TCP Congestion Control
� TCP implements host-based, feedback-based,

window-based congestion control.
� TCP sources attempts to determine how much

capacity is available
� TCP sends packets, then reacts to observable events

(loss).

CSC 458/CSC 2209 – Computer Networks 19University of Toronto – Fall 2019

Idea of TCP Congestion Control
� Each source determines the available capacity

� … so it knows how many packets to have in transit
� Congestion window

� Maximum # of unacknowledged bytes to have in transit
� The congestion-control equivalent of receiver window
� MaxWindow = min{congestion window, receiver window}
� Send at the rate of the slowest component: receiver or

network
� Adapting the congestion window

� Decrease upon losing a packet: backing off
� Increase upon success: optimistically exploring

CSC 458/CSC 2209 – Computer Networks 20University of Toronto – Fall 2019

Additive Increase, Multiplicative Decrease
� How much to increase and decrease?

� Increase linearly, decrease multiplicatively
� A necessary condition for stability of TCP
� Consequences of over-sized window are much worse

than having an under-sized window
� Over-sized window: packets dropped and retransmitted
� Under-sized window: somewhat lower throughput

� Multiplicative decrease
� On loss of packet, divide congestion window in half

� Additive increase
� On success for last window of data, increase linearly

CSC 458/CSC 2209 – Computer Networks 21University of Toronto – Fall 2019

CSC 458/CSC 2209 – Computer Networks 22University of Toronto – Fall 2019

Additive Increase

D A D D A A D D A AD A

Src

Dest

Actually, TCP uses bytes, not segments to count:
When ACK is received:

MSScwnd MSS
cwnd
æ ö+ = ç ÷
è ø

CSC 458/CSC 2209 – Computer Networks 23University of Toronto – Fall 2019

Leads to the TCP “Sawtooth”

t

Window

halved

Loss

CSC 458/CSC 2209 – Computer Networks 24University of Toronto – Fall 2019

Rule for adjusting W
• If an ACK is received: W ← W+1/W
• If a packet is lost: W ← W/2

Congestion Window Evolution

Only W packets
may be outstanding

CSC 458/CSC 2209 – Computer Networks 25University of Toronto – Fall 2019

Congestion Window Evolution

Practical Details
� Congestion window

� Represented in bytes, not in packets (Why?)
� Packets have MSS (Maximum Segment Size) bytes

� Increasing the congestion window
� Increase by MSS on success for last window of data
� In practice, increase a fraction of MSS per received ACK

� # packets per window: CWND / MSS
� Increment per ACK: MSS * (MSS / CWND)

� Decreasing the congestion window
� Never drop congestion window below 1 MSS

CSC 458/CSC 2209 – Computer Networks 26University of Toronto – Fall 2019

TCP Sending Rate
� What is the sending rate of TCP?
� Acknowledgement for sent packet is received after

one RTT
� Amount of data sent until ACK is received is the

current window size W
� Therefore sending rate is R = W/RTT

� Is the TCP sending rate saw tooth shaped as well?

CSC 458/CSC 2209 – Computer Networks 27University of Toronto – Fall 2019

TCP Sending Rate and Buffers

CSC 458/CSC 2209 – Computer Networks 28University of Toronto – Fall 2019

CSC 458/CSC 2209 – Computer Networks 29University of Toronto – Fall 2019

Getting Started

t

Window

But, could take a long
time to get started!

Need to start with a small CWND to avoid overloading the network.

“Slow Start” Phase
� Start with a small congestion window

� Initially, CWND is 1 MSS
� So, initial sending rate is MSS/RTT

� That could be pretty wasteful
� Might be much less than the actual bandwidth
� Linear increase takes a long time to accelerate

� Slow-start phase (really “fast start”)
� Sender starts at a slow rate (hence the name)
� … but increases the rate exponentially
� … until the first loss event

CSC 458/CSC 2209 – Computer Networks 30University of Toronto – Fall 2019

CSC 458/CSC 2209 – Computer Networks 31University of Toronto – Fall 2019

Slow Start in Action

Double CWND per round-trip time
=

Increase CWND by 1 for each ACK received

D A D D A A D D

A A

D

A

Src

Dest

D

A

1 2 4 8

CSC 458/CSC 2209 – Computer Networks 32University of Toronto – Fall 2019

Slow Start and the TCP Sawtooth

Loss

Exponential “slow start” t

Window

Why is it called slow-start? Because TCP originally had
no congestion control mechanism. The source would just

start by sending a whole window’s worth of data.

Two Kinds of Loss in TCP
� Triple duplicate ACK

� Packet n is lost, but packets n+1, n+2, etc. arrive
� Receiver sends duplicate acknowledgments
� … and the sender retransmits packet n quickly
� Do a multiplicative decrease and keep going

� Timeout
� Packet n is lost and detected via a timeout
� E.g., because all packets in flight were lost
� After the timeout, blasting away for the entire CWND
� … would trigger a very large burst in traffic
� So, better to start over with a low CWND

CSC 458/CSC 2209 – Computer Networks 33University of Toronto – Fall 2019

CSC 458/CSC 2209 – Computer Networks 34University of Toronto – Fall 2019

Repeating Slow Start After Timeout

t

Window

Slow-start restart: Go back to CWND of 1, but take advantage
of knowing the previous value of CWND.

Slow start in operation until
it reaches half of previous

cwnd.

timeout

Repeating Slow Start After Idle Period
� Suppose a TCP connection goes idle for a while

� E.g., Telnet session where you don’t type for an hour
� Eventually, the network conditions change

� Maybe many more flows are traversing the link
� E.g., maybe everybody has come back from lunch!

� Dangerous to start transmitting at the old rate
� Previously-idle TCP sender might blast the network
� … causing excessive congestion and packet loss

� So, some TCP implementations repeat slow start
� Slow-start restart after an idle period

CSC 458/CSC 2209 – Computer Networks 35University of Toronto – Fall 2019

Other TCP Mechanisms
� Nagle’s Algorithm and Delayed ACK

CSC 458/CSC 2209 – Computer Networks 36University of Toronto – Fall 2019

Motivation for Nagle’s Algorithm
� Interactive applications

� Telnet, ssh and rlogin
� Generate many small packets (e.g., keystrokes)

� Small packets are wasteful
� Mostly header (e.g., 40 bytes of header, 1 of data)

� Appealing to reduce the number of packets
� Could force every packet to have some minimum size
� … but, what if the person doesn’t type more

characters?
� Need to balance competing trade-offs

� Send larger packets
� … but don’t introduce much delay by waiting

CSC 458/CSC 2209 – Computer Networks 37University of Toronto – Fall 2019

Nagle’s Algorithm
� Wait if the amount of data is small

� Smaller than Maximum Segment Size (MSS)
� And some other packet is already in flight

� I.e., still awaiting the ACKs for previous packets
� That is, send at most one small packet per RTT

� … by waiting until all outstanding ACKs have arrived

� Influence on performance
� Interactive applications: enables batching of bytes
� Bulk transfer: transmits in MSS-sized packets anyway

CSC 458/CSC 2209 – Computer Networks 38University of Toronto – Fall 2019

vs.

ACK

Motivation for Delayed ACK
� TCP traffic is often bidirectional

� Data traveling in both directions
� ACKs traveling in both directions

� ACK packets have high overhead
� 40 bytes for the IP header and TCP header
� … and zero data traffic

� Piggybacking is appealing
� Host B can send an ACK to host A
� … as part of a data packet from B to A

CSC 458/CSC 2209 – Computer Networks 39University of Toronto – Fall 2019

TCP Header Allows Piggybacking

CSC 458/CSC 2209 – Computer Networks 40University of Toronto – Fall 2019

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RST
PSH
URG
ACK

CSC 458/CSC 2209 – Computer Networks 41University of Toronto – Fall 2019

Example of Piggybacking

Data

Data+ACK

Data

A B

ACK

Data

Data + ACK

B has data to send

A has data to send

B doesn’t have data to send

Increasing Likelihood of Piggybacking
� Increase piggybacking

� TCP allows the receiver to wait to
send the ACK

� … in the hope that the host will
have data to send

� Example: rlogin or telnet
� Host A types characters at a UNIX

prompt
� Host B receives the character and

executes a command
� … and then data are generated
� Would be nice if B could send the

ACK with the new data

CSC 458/CSC 2209 – Computer Networks 42University of Toronto – Fall 2019

Data

Data+ACK

Data

A B

ACK

Data

Data + ACK

Delayed ACK
� Delay sending an ACK

� Upon receiving a packet, the host B sets a timer
� Typically, 200 msec or 500 msec

� If B’s application generates data, go ahead and send
� And piggyback the ACK bit

� If the timer expires, send a (non-piggybacked) ACK
� Limiting the wait

� Timer of 200 msec or 500 msec
� ACK every other full-sized packet

CSC 458/CSC 2209 – Computer Networks 43University of Toronto – Fall 2019

Conclusions
� Congestion is inevitable

� Internet does not reserve resources in advance
� TCP actively tries to push the envelope

� Congestion can be handled
� Additive increase, multiplicative decrease
� Slow start, and slow-start restart

� Active Queue Management can help
� Random Early Detection (RED)
� Explicit Congestion Notification (ECN)

CSC 458/CSC 2209 – Computer Networks 44University of Toronto – Fall 2019

