CSC 458/2209 – Computer Networks

Handout # 7: The Internet Protocol, Routing and Forwarding

Professor Yashar Ganjali Department of Computer Science University of Toronto

yganjali@cs.toronto.edu

http://www.cs.toronto.edu/~yganjali

Announcements

- Don't forget the programming assignment.
 - Due: Friday Oct. 11th at 5pm.
 - Take advantage of tutorials, and piazza.
 - Don't leave it to the last minute.
- Problem set 1 out on Sep. 24th
 - Friday Oct. 4th at 5 pm
 - Submit electronically on MarkUs.
 - File name: ps1.pdf
- This week's tutorial
 - Problem set 1

Announcements – Cont'd

- Reading for next week
 - Chapter 4 of the textbook
- Midterm exam
 - Section L0101: Thu. Oct. 17th, 1-3 PM
 - Section L5101: Tue. Oct. 22nd, 6-8 PM
 - Section L0201: Tue. Oct. 22nd, 1-3 PM
 - Same room and time as the lecture
 - For undergraduate and graduate students

The Story

- So far ...
 - Layers, and protocols
 - Link layer
 - Interconnecting LANs
 - Hubs, switches, and bridges
 - The Internet Protocol
 - IP datagram, fragmentation
 - Naming and addressing
 - CIDR, DNS
- This time
 - Routing and forwarding

Application
Presentation
Session
Transport
Network
Data Link
Physical

Packet Routing and Forwarding

Forwarding IP datagrams

- Class-based vs. CIDR
- Routing Techniques
 - Naïve: Flooding
 - Distance vector: Distributed Bellman Ford Algorithm
 - Link state: Dijkstra's Shortest Path First-based Algorithm

Hop-by-Hop Packet Forwarding

- Each router has a forwarding table
 - Maps destination addresses...
 - ... to outgoing interfaces
- Upon receiving a packet
 - Inspect the destination IP address in the header
 - Index into the table
 - Determine the outgoing interface
 - Forward the packet out that interface
- Then, the next router in the path repeats
 - And the packet travels along the path to the destination

Inside a Router

Inside a Router

CSC 458/CSC 2209 – Computer Networks

Forwarding in an IP Router

- Lookup packet DA in forwarding table.
 - If known, forward to correct port.
 - If unknown, drop packet.
- Decrement TTL, update header Checksum.
- Forward packet to outgoing interface.
- Transmit packet onto link.

Question: How is the address looked up in a real router?

Separate Table Entries Per Address

- If a router had a forwarding entry per IP address
 - Match destination address of incoming packet
 - ... to the forwarding-table entry
 - ... to determine the outgoing interface

Separate Entry Class-based Address

- If the router had an entry per class-based prefix
 - Mixture of Class A, B, and C addresses
 - Depends on the first couple of bits of the destination
- Identify the mask automatically from the address
 - First bit of 0: class A address (/8)
 - First two bits of 10: class B address (/16)
 - First three bits of 110: class C address (/24)
- Then, look in the forwarding table for the match
 - E.g., 1.2.3.4 maps to 1.2.3.0/24
 - Then, look up the entry for 1.2.3.0/24
 - ... to identify the outgoing interface

Example – Class-based Addressing

Exact Match: There are many well-known ways to find an exact match in a table.

CIDR Makes Packet Forwarding Harder

- There's no such thing as a free lunch
 - CIDR allows efficient use of the limited address space
 - But, CIDR makes packet forwarding much harder
- Forwarding table may have many matches
 - E.g., table entries for 201.10.0.0/21 and 201.10.6.0/23
 - The IP address 201.10.6.17 would match both!

Longest Prefix Match Forwarding

- Forwarding tables in IP routers
 - Maps each IP prefix to next-hop link(s)
- Destination-based forwarding
 - Packet has a destination address
 - Router identifies longest-matching prefix
 - Cute algorithmic problem: very fast lookups

How a Router Forwards Datagrams

e.g. 128.9.16.14 => Port 2

Prefix	Next-hop	Port
65/8	128.17.16.1	3
128.9/16	128.17.14.1	2
128.9.16/20	128.17.14.1	2
128.9.19/24	128.17.10.1	7
128.9.25/24	128.17.14.1	2
128.9.176/20	128.17.20.1	1
142.12/19	128.17.16.1	3

Forwarding Table

Simplest Algorithm is Too Slow

- Scan the forwarding table one entry at a time
 - See if the destination matches the entry
 - If so, check the size of the mask for the prefix
 - Keep track of the entry with longest-matching prefix
- Overhead is linear in size of the forwarding table
 - Today, that means 400,000-500,000 entries!
 - And, the router may have just a few nanoseconds
 - ... before the next packet is arriving
- Need greater efficiency to keep up with line rate
 - Better algorithms
 - Hardware implementations

Lookup Performance Required

Line	Line Rate	Pktsize=40B	Pktsize=240B
T1	1.5Mbps	4.68 Kpps	0.78 Kpps
OC3	155Mbps	480 Kpps	80 Kpps
OC12	622Mbps	1.94 Mpps	323 Kpps
OC48	2.5Gbps	7.81 Mpps	1.3 Mpps
OC192	10 Gbps	31.25 Mpps	5.21 Mpps

Fast Lookups

- The are algorithms that are faster than linear scan
 - Proportional to number of bits in the address
- We can use special hardware
 - Content Addressable Memories (CAMs)
 - Allows look-ups on a key rather than flat address
- Huge innovations in the mid-to-late 1990s
 - After CIDR was introduced (in 1994)
 - ... and longest-prefix match was a major bottleneck

Where do Forwarding Tables Come From?

- Routers have forwarding tables
 - Map prefix to outgoing link(s)
- Entries can be statically configured
 - E.g., "map 12.34.158.0/24 to Serial0/0.1"
- But, this doesn't adapt
 - To failures
 - To new equipment
 - To the need to balance load
 - ...
- That is where other technologies come in...
 - Routing protocols, DHCP, and ARP

Packet Routing and Forwarding

- Forwarding IP datagrams
 - Class-based vs. CIDR

Routing Techniques

- Naïve: Flooding
- Distance vector: Distributed Bellman Ford Algorithm
- Link state: Dijkstra's Shortest Path First-based Algorithm

Routing is a very complex subject, and has many aspects. Here, we will concentrate on the basics.

The Problem

What is Routing?

- A famous quotation from RFC 791
 - "A name indicates what we seek. An address indicates where it is. A route indicates how we get there."
 -- Jon Postel

Forwarding vs. Routing

- Forwarding: data plane
 - Directing a data packet to an outgoing link
 - Individual router using a forwarding table
- Routing: control plane
 - Computing paths the packets will follow
 - Routers talking amongst themselves
 - Individual router creating a forwarding table

Why Does Routing Matter?

- End-to-end performance
 - Quality of the path affects user performance
 - Propagation delay, throughput, and packet loss
- Use of network resources
 - Balance of the traffic over the routers and links
 - Avoiding congestion by directing traffic to lightlyloaded links
- Transient disruptions during changes
 - Failures, maintenance, and load balancing
 - Limiting packet loss and delay during changes

Example Network

<u>Objective</u>: Determine the route from A to B that minimizes the path cost.

Example Network

In this simple case, solution is clear from inspection

What about this Network...!?

Technique 1: Naïve Approach

Flood! -- Routers forward packets to all ports except the ingress port.

- Advantages:
 - Simple
 - Every destination in the network is reachable.
- Disadvantages:
 - Some routers receive a packet multiple times.
 - Packets can go round in loops forever.
 - Inefficient.

Lowest Cost Routes

<u>Objective</u>: Find the lowest cost route from each of $(R_1, ..., R_7)$ to R_8 .

A Spanning Tree

- The solution is a spanning tree with R8 as the root of the tree.
- Tree: There are no loops.
- Spanning: All nodes included.
- We'll see two algorithms that build spanning trees automatically:
 - The distributed Bellman-Ford algorithm
 - Dijkstra's shortest path first algorithm

Technique 2: Distance Vector Distributed Bellman-Ford Algorithm

- Define distances at each node x
 - d_x(y) = cost of least-cost path from x to y
- Update distances based on neighbors
 - d_x(y) = min {c(x,v) + d_v(y)} over all neighbors v

Distance Vector Algorithm

- c(x,v) = cost for direct link from x to v
 - Node x maintains costs of direct links c(x,v)
- D_x(y) = estimate of least cost from x to y
 - Node x maintains distance vector $D_x = [D_x(y): y \in N]$
- Node x maintains its neighbors' distance vectors
 - For each neighbor v, x maintains $D_v = [D_v(y): y \in N]$
- Each node v periodically sends D_v to its neighbors
 - And neighbors update their own distance vectors
 - $D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$
- Over time, the distance vector D_x converges

Distance Vector Algorithm

- Iterative, asynchronous: each local iteration caused by:
 - Local link cost change
 - Distance vector update message from neighbor
- Distributed:
 - Each node notifies neighbors only when its DV changes
 - Neighbors then notify their neighbors if necessary

Each node:

Distance Vector Example: Step 1

Optimum 1-hop paths

Та	able fo	r A	Та	ble for	В							
Dst	Cst	Нор	Dst	Cst	Нор		E		2			С
А	0	А	А	4	А		\mathbf{r}	\sim	3	-	1	
В	4	В	В	0	В		2			F		
С	∞	-	С	8	_		-	6		$\overline{}$		
D	8	-	D	3	D						1	3
Е	2	E	E	8	_	(A		4			
F	6	F	F	1	F						B	
Та	able fo	r C	Та	ble for	D	Та	ible foi	٢E	Та	ble fo	r F	
Ta Dst	able fo Cst	r C Hop	Ta Dst	ble for Cst	D Hop	Ta Dst	ble for Cst	E Hop	Ta Dst	ble for Cst	F Hop	
Ta Dst A	able fo Cst ∞	r C Hop –	Ta Dst A	ble for Cst ∞	D Hop –	Ta Dst A	ible for Cst 2	E Hop A	Ta Dst A	<mark>ble for</mark> Cst 6	F Hop A	
Dst A B	able fo Cst ∞ ∞	r C Hop –	Ta Dst A B	ble for Cst ∞ 3	D Hop – B	Ta Dst A B	ble for Cst 2 ∞	E Hop A –	Ta Dst A B	ble for Cst 6 1	F Hop A B	
Ta Dst A B C	able fo Cst ∞ ∞	r C Hop – – C	Ta Dst A B C	ble for Cst ∞ 3 1	D Hop – B C	Ta Dst A B C	ble for Cst 2 ∞	E Hop A –	Ta Dst A B C	ble for Cst 6 1 1	F Hop A B C	
Dst A B C D	able fo Cst ∞ ∞ 0 1	r C Hop – C D	Ta Dst A B C D	ble for Cst ∞ 3 1 0	D Hop – B C D	Ta Dst A B C D	ble for Cst 2 ∞ ∞	E Hop A -	Ta Dst A B C D	ble for Cst 6 1 1 2	F Hop A B C –	
Ta Dst A B C D E	able fo Cst ∞ 0 1 ∞	r C Hop – C D –	Ta Dst A B C D E	ble for Cst 3 1 0 ∞	D Hop – B C D –	Ta Dst A B C D E	ble for Cst 2 ∞ ∞ 0	E Hop A -	Ta Dst A B C D E	ble for Cst 6 1 1 ∞ 3	F Hop A B C -	

Distance Vector Example: Step 2

Optimum 2-hop paths

Та	ble for	A	Та	ble for	В							
Dst	Cst	Нор	Dst	Cst	Нор		E		2			C
А	0	А	А	4	А		\mathbf{r}	\sim	3	-	1	
В	4	В	В	0	В		2			F		
С	7	F	С	2	F		-	6		$\overline{}$		
D	7	В	D	3	D						1	3
Е	2	Е	Е	4	F	(A		4			
F	5	Е	F	1	F						B	
Та	ble for	° C	Та	ble for	D	Та	ible foi	Ē	Та	ble foi	r F	
Ta Dst	ble for Cst	C Hop	Ta Dst	ble for Cst	D Hop	Ta Dst	ble for Cst	E Hop	Ta Dst	ble for Cst	F Hop	
Ta Dst A	ble for Cst 7	C Hop F	Ta Dst A	ble for Cst 7	D Hop B	Ta Dst A	ible for Cst 2	E Hop A	Ta Dst A	ible for Cst 5	F Hop B	
Ta Dst A B	ble for Cst 7 2	C Hop F F	Ta Dst A B	ble for Cst 7 3	D Hop B B	Ta Dst A B	ble for Cst 2 4	E Hop A F	Ta Dst A B	ble for Cst 5 1	F Hop B B	
Ta Dst A B C	ble for Cst 7 2 0	C Hop F F C	Ta Dst A B C	ble for Cst 7 3 1	D Hop B B C	Ta Dst A B C	ble for Cst 2 4 4	E Hop A F F	Ta Dst A B C	ble for Cst 5 1 1	F Hop B B C	
Ta Dst A B C D	ble for Cst 7 2 0 1	C Hop F F C D	Ta Dst A B C D	ble for Cst 7 3 1 0	D Hop B B C D	Ta Dst A B C D	ble for Cst 2 4 4 4	E Hop A F F -	Ta Dst A B C D	ble for Cst 5 1 1 2	F Hop B B C C	
Ta Dst A B C D E	ble for Cst 7 2 0 1 4	C Hop F F C D F	Ta Dst A B C D E	ble for Cst 7 3 1 0 ∞	D Hop B B C D -	Ta Dst A B C D E	ble for Cst 2 4 4 2 0	E Hop A F F F E	Ta Dst A B C D E	ble for Cst 5 1 1 2 3	F Hop B B C C C E	

Distance Vector Example: Step 3

Optimum 3-hop paths

Та	ble for	A	Та	ble for	В							
Dst	Cst	Нор	Dst	Cst	Нор		E		2			С
А	0	А	А	4	А		\mathbf{r}	\sim	3	-	1	
В	4	В	В	0	В		2			F		1
С	6	E	С	2	F		-	6		$\overline{}$		
D	7	В	D	3	D						1	3
E	2	Е	Е	4	F	(A		4			
F	5	Е	F	1	F						В	
					144444444444							
Та	ble for	C	Та	ble for	D	Та	ble for	Ē	Та	ble foi	r F	
Ta Dst	ble for Cst	C Hop	Ta Dst	ble for Cst	D Hop	Ta Dst	ble for Cst	E Hop	Ta Dst	ble for Cst	F Hop	
Ta Dst A	ble for Cst 6	<mark>C Hop</mark> F	Ta Dst A	ble for Cst 7	D Hop B	Ta Dst A	ible for Cst 2	E Hop A	Ta Dst A	<mark>ble for</mark> Cst 5	F Hop B	
Ta Dst A B	ble for Cst 6 2	C Hop F F	Ta Dst A B	ble for Cst 7 3	D Hop B B	Ta Dst A B	ble for Cst 2 4	E Hop A F	Ta Dst A B	ble for Cst 5 1	F Hop B B	
Ta Dst A B C	ble for Cst 6 2 0	C Hop F F C	Ta Dst A B C	ble for Cst 7 3 1	D Hop B B C	Ta Dst A B C	ble for Cst 2 4 4	E Hop A F F	Ta Dst A B C	ble for Cst 5 1 1	F Hop B B C	
Ta Dst A B C D	ble for Cst 6 2 0 1	C Hop F F C D	Ta Dst A B C D	ble for Cst 7 3 1 0	D Hop B B C D	Ta Dst A B C D	ble for Cst 2 4 4 5	E Hop A F F F	Ta Dst A B C D	ble for Cst 5 1 1 2	F Hop B B C C	
Ta Dst A B C D E	ble for Cst 6 2 0 1 4	C Hop F F C D F	Ta Dst A B C D E	ble for Cst 7 3 1 0 5	D Hop B B C D C	Ta Dst A B C D E	ble for Cst 2 4 4 5 0	E Hop A F F F E	Ta Dst A B C D E	ble for Cst 5 1 1 2 3	F Hop B B C C C E	

Bellman-Ford Algorithm

- Questions:
 - How long can the algorithm take to run?
 - How do we know that the algorithm always converges?
 - What happens when link costs change, or when routers/links fail?
- Topology changes make life hard for the Bellman-Ford algorithm...

A Problem with Bellman-Ford

Bad news travels slowly

Consider the calculation of distances to R₄:

Time	R ₁	R ₂	R ₃	
0	3,R ₂	2,R ₃	1, R ₄	$R_3 \longrightarrow R_4$ fails
1	3,R ₂	2,R ₃	3,R ₂	→ → → → → → → → → → → → → → → → → → →
2	3,R ₂	4,R ₃	3,R ₂	
3	5,R ₂	4,R ₃	5,R ₂	
•••	Counting t	o infinity"	•••	

Counting to Infinity Problem – Solutions

- Set infinity = "some small integer" (e.g. 16). Stop when count = 16.
- Split Horizon: Because R₂ received lowest cost path from R₃, it does not advertise cost to R₃
- Split-horizon with poison reverse: R₂ advertises infinity to R₃
- There are many problems with (and fixes for) the Bellman-Ford algorithm.

Technique 3: Link State

Dijkstra's Shortest Path First Algorithm

- Routers send out update messages whenever the state of an incident link changes.
 - Called "Link State Updates"
- Based on all link state updates received each router calculates lowest cost path to all others, starting from itself.
 - Use Dijkstra's single-source shortest path algorithm
 - Assume all updates are consistent
- At each step of the algorithm, router adds the next shortest (i.e. lowest-cost) path to the tree.
- Finds spanning tree rooted at the router.

Dijsktra's Algorithm

1 Initialization:

2 S =
$$\{u\}$$

- 3 for all nodes v
- 4 if v adjacent to u {

5
$$D(v) = c(u,v)$$

7

8 *Loop*

- 9 find w not in S with the smallest D(w)
- 10 add w to S
- 11 update D(v) for all v adjacent to w and not in S:
- 12 $D(v) = min\{D(v), D(w) + c(w,v)\}$

13 until all nodes in S

Dijkstra's Algorithm Example Find Routes for the Red (Leftmost) Node

Dijkstra's Algorithm Example

Shortest-Path Tree

Shortest-path tree from u

Forwarding table at u

Reliable Flooding of LSP

- The Link State Packet:
 - The ID of the router that created the LSP
 - List of directly connected neighbors, and cost
 - Sequence number
 - TTL

Reliable Flooding

• Resend LSP over all links other than incident link, if the sequence number is newer. Otherwise drop it.

Link State Detection:

- Link layer failure
- Loss of "hello" packets

Comparison of LS and DV algorithms

Message complexity

LS: with n nodes, E links, O(nE) messages sent

DV: exchange between neighbors only

Convergence time varies

Speed of Convergence

LS: O(n²) algorithm requires O(nE) messages

DV: convergence time varies

May be routing loops Count-to-infinity problem Robustness: what happens if router malfunctions?

<u>LS:</u>

Node can advertise incorrect *link* cost Each node computes only

its own table

<u>DV:</u>

DV node can advertise incorrect *path* costEach node's table used by others (error propagates)