
Professor Yashar Ganjali
Department of Computer Science
University of Toronto

yganjali@cs.toronto.edu
http://www.cs.toronto.edu/~yganjali

Some slides courtesy of J. Rexford (Princeton), N. Foster (Cornell) and N. Feamster (Georgia Tech), all used with permission.

http://cs.toronto.edu
http://www.cs.toronto.edu/~yganjali

Announcements
� Final project proposal

� Due: Friday, January 31st (5PM)

� In class presentations
� Volunteer?

� Today:
� Programming software-defined networks
� Final project ideas

CSC 2229 - Software-Defined Networking 2University of Toronto – Winter 2020

Programming SDNs
� The Good

� Network-wide visibility
� Direct control over the switches
� Simple data-plane abstraction

� The Bad
� Low-level programming interface
� Functionality tied to hardware
� Explicit resource control

� The Ugly
� Non-modular, non-compositional
� Challenging distributed

programming
Images by Billy Perkins

CSC 2229 - Software-Defined Networking University of Toronto – Winter 2020 3

Programming OpenFlow is Not Easy
� OpenFlow and NOX make it possible to implement

exciting new network services
� Unfortunately, they do not make it easy.

� Combining different applications is not straightforward

� OpenFlow provides a very low-level abstraction

� We have a two-tier architecture

� Network of switches is susceptible to race conditions

CSC 2229 - Software-Defined Networking 4University of Toronto – Winter 2020

Problem 1: Anti-Modularity
� Combining different applications is challenging

� Example: monitor + route + firewall + load balancing
� How these applications will work together?
� How are messages from switches delivered to these

applications
How are messages from these apps aggregated to be
sent to switches?

� Do OpenFlow and NOX provide a way for each app to
perform its job without impacting other apps?

� Question: How can we combine these applications?

CSC 2229 - Software-Defined Networking 5University of Toronto – Winter 2020

Combining Many Networking Tasks

CSC 2229 - Software-Defined Networking 6University of Toronto – Winter 2020

Controller Platform

Monolithic
application

Hard to program, test, debug, reuse, port, …

Modular Controller Applications

CSC 2229 - Software-Defined Networking 7University of Toronto – Winter 2020

Easier to program, test, and debug
Greater reusability and portability

A module for
each task

Controller Platform

Beyond Multi-Tenancy

CSC 2229 - Software-Defined Networking 8University of Toronto – Winter 2020

...
Each module controls a
different portion of the traffic

Relatively easy to partition rule space, link
bandwidth, and network events across modules

Controller Platform

Modules Affect the Same Traffic

CSC 2229 - Software-Defined Networking 9University of Toronto – Winter 2020

How to combine modules into a complete application?

Each module
partially specifies
the handling of
the traffic

Controller Platform

� Consider a simple network

Anti-Modularity Example

CSC 2229 - Software-Defined Networking 10University of Toronto – Winter 2020

� Want to add two
applications

� Simple repeater
� Port 1 à Port 2
� Port 2 à Port 1

� Web monitor
� Packet and byte counts
� Incoming web traffic

Events:
� switch_join(switch):

triggered when switch
joins the network

� stats_in(switch , xid ,
pattern , packets , bytes
), triggered when switch
returns the packets and
bytes counters in
response to a request for
statistics about rules
contained in pattern

Commands:
� install(switch, pattern,

priority, timeout,
actions): installs a rule in
the flow table of switch

� query_stats(switch,
pattern): issues a request
for statistics from all rules
contained in pattern on
switch

NOX Events and Commands

CSC 2229 - Software-Defined Networking 11University of Toronto – Winter 2020

Anti-Modularity Example

CSC 2229 - Software-Defined Networking 12University of Toronto – Winter 2020

Overlapping rules
- repeater first: no counting web traffic
- Monitor first: no repeating

Anti-Modularity Example

CSC 2229 - Software-Defined Networking 13University of Toronto – Winter 2020

Programming OpenFlow is Not Easy
� OpenFlow and NOX now make it possible to implement

exciting new network services
� Unfortunately, they do not make it easy.

� Combining different applications is not straightforward

� OpenFlow provides a very low-level abstraction

� We have a two-tier architecture

� Network of switches is susceptible to race conditions

CSC 2229 - Software-Defined Networking 14University of Toronto – Winter 2020

Problem 2: Low-Level API
� OpenFlow is a low-level programming interface

� Derived from the features of the switch hardware
� Rather than ease of use

� Programmer must describe low-level details that do not
affect the overall behavior of the program

� Example: to implement simple set difference we require
� Multiple rules
� Priorities
� All need to be managed by the programmer

� Focusing on the big picture not easy

CSC 2229 - Software-Defined Networking 15University of Toronto – Winter 2020

Low-Level API Example
� Extend the repeater and monitoring

� Monitor all incoming web traffic except traffic destined
to 10.0.0.9 (on internal network)

� We need to express a logical “difference” of patterns
� OpenFlow can only express positive constraints

CSC 2229 - Software-Defined Networking 16University of Toronto – Winter 2020

Programming OpenFlow is Not Easy
� OpenFlow and NOX now make it possible to implement

exciting new network services
� Unfortunately, they do not make it easy.

� Combining different applications is not straightforward

� OpenFlow provides a very low-level abstraction

� We have a two-tier architecture

� Network of switches is susceptible to race conditions

CSC 2229 - Software-Defined Networking 17University of Toronto – Winter 2020

Problem 3: Two-Tiered System
� Control program manages networks by

� Installing/uninstalling switch-level rules

� Programmer needs to specify communication patterns
between controller and switches
� Deal with tricky concurrency issues

� Controller does not have full visibility
� Sees only packets that the switches do not know how to handle.
� Previously installed rules

� Reduce the load on the controller
� Make it difficult to reason

� Detour: proactive vs. reactive rule installation

CSC 2229 - Software-Defined Networking 18University of Toronto – Winter 2020

Two-Tiered Programming Example
� Extending the original repeater

� Monitor the total amount of incoming traffic
� By destination host

� Cannot install all of the rules we need in advance
� Address of each host is unknown a priori

� The controller must dynamically install rules for the
packets seen at run time

CSC 2229 - Software-Defined Networking 19University of Toronto – Winter 2020

Two-Tiered Programming Example

� Two programs depended on each other
� Complex concurrency issues can arise
� Reading/understanding the code is difficult
� Details are sources of significant distraction

CSC 2229 - Software-Defined Networking 20University of Toronto – Winter 2020

Programming OpenFlow is Not Easy
� OpenFlow and NOX now make it possible to implement

exciting new network services
� Unfortunately, they do not make it easy.

� Combining different applications is not straightforward

� OpenFlow provides a very low-level abstraction

� We have a two-tier architecture

� Network of switches is susceptible to race conditions

CSC 2229 - Software-Defined Networking 21University of Toronto – Winter 2020

Switch 1

Switch 2

SDN Controller

Host A
Host B

Problem 4: Race Conditions
� Race conditions can cause complications

� We have a distributed system
� Of switches
� And controllers

� Example 1: rule install delay
� One new flow
� Multiple packets

CSC 2229 - Software-Defined Networking 22University of Toronto – Winter 2020

Race Conditions Example
� Example 2: firewall application

� Running on multiple switches
� Allow A initiate a flow to B

� Two way
� But, block flows started by B

CSC 2229 - Software-Defined Networking 23University of Toronto – Winter 2020

Firewall

Switch 1

Switch 2

SDN Controller

Host A
Host B

Race Conditions Example
� Example 2: firewall application

� Running on multiple switches
� Allow A initiate a flow to B

� Two way
� But, block flows started by B

CSC 2229 - Software-Defined Networking 24University of Toronto – Winter 2020

Firewall

Switch 1

Switch 2

SDN Controller

Host A
Host B

Northbound API
� Programming abstraction

for applications
� Hides low-level details
� Helps orchestrate and

combine applications

� Example uses
� Path computation
� Loop avoidance
� Routing
� Security

CSC 2229 - Software-Defined Networking 25University of Toronto – Winter 2020

SDN Control Platform
Fi

re
w

al
l

Lo
ad

 B
al

an
ce

r

A
p

p
li

ca
ti

o
n

A
p

p
li

ca
ti

o
n

A
p

p
li

ca
ti

o
n

Switch

Switch

Switch

Switch

Northbound API

Southbound API

Who Will Use the Northbound API?
� Service providers
� Sophisticated network operators

� Or, enthusiastic network administrators
� Vendors
� Researchers
� Or anyone who wants to add new capabilities to their

network

CSC 2229 - Software-Defined Networking 26University of Toronto – Winter 2020

Benefits of the Northbound API
� Vendor independence
� Ability to quickly modify or customize control

applications through simple programming

� Example applications:
� Large virtual switch
� Security applications
� Resource management and control
� Middlebox integration

CSC 2229 - Software-Defined Networking 27University of Toronto – Winter 2020

Frenetic Language
� Declarative Design

� What the programmer might want
� Rather than how the hardware implements it.

� Modular Design
� Primitives have limited network-wide effects and semantics
� Independent of the context in which they are used.

� Single-tier Programming
� See-every-packet abstraction

� Race-free Semantics
� Automatic race detection and packet suppression

� Cost control
� Core query logic can be executed on network switches

CSC 2229 - Software-Defined Networking 28University of Toronto – Winter 2020

Network Control Loop

CSC 2229 - Software-Defined Networking University of Toronto – Winter 2020

Read
state

OpenFlow
Switches

Write
policy

Compute Policy

29

Language-Based Abstractions

Query
abstractions

OpenFlow
Switches

Update
abstractions

Writing/combining
modules

University of Toronto – Winter 2020CSC 2229 - Software-Defined Networking 30

Frenetic Language
� Abstractions for querying network state

� An integrated query language
� Select, filter, group, sample sets of packets or statistics
� Designed so that computation can occur on data plane

� Abstractions for specifying a forwarding policy
� A functional stream processing library (based on FRP)

� Generate streams of network policies
� Transform, split, merge, filter policies and other streams

� Implementation
� A collection of Python libraries on top of NOX

CSC 2229 - Software-Defined Networking 31University of Toronto – Winter 2020

Frenetic Queries

CSC 2229 - Software-Defined Networking 32University of Toronto – Winter 2020

Frenetic Queries

CSC 2229 - Software-Defined Networking 33University of Toronto – Winter 2020

Policy in OpenFlow
� Defining “policy” is complicated

� All rules in all switches
� Packet-in handlers
� Polling of counters

� Programming “policy” is error-prone
� Duplication between rules and handlers
� Frequent changes in policy (e.g., flowmods)
� Policy changes affect packets in flight

CSC 2229 - Software-Defined Networking 34University of Toronto – Winter 2020

Frenetic Forwarding Policies

CSC 2229 - Software-Defined Networking 35University of Toronto – Winter 2020

� Rules are created using the Rule Constructor, which takes
a pattern and a list of actions as arguments

� Network policies associate rules with switches
� Dictionaries mapping switches to list of rules

� Policy events are infinite, time-indexed streams of values,
just like the events generated from queries
� Programs control the installation of policies in a network

over time by generating policy events
� Listeners are event consumers

� Print: send to console
� Send: transfer packet to switch and apply actions
� Register: apply network wide policy

Power of Policy as a Function
� Composition

� Parallel: Monitor + Route
� Sequential: Firewall >> Route

� A >> (B + C) >> D
� (A >> P) + (B >> P) (A + B)>>P

CSC 2229 - Software-Defined Networking 36University of Toronto – Winter 2020

Frenetic Forwarding Policies

CSC 2229 - Software-Defined Networking 37University of Toronto – Winter 2020

Parallel Composition

CSC 2229 - Software-Defined Networking 38University of Toronto – Winter 2020

Route on
destination

Monitor on
source +

dstip = 1.2.3.4 à fwd(1)
dstip = 3.4.5.6 à fwd(2)srcip = 5.6.7.8 à count

Controller Platform

Parallel Composition

CSC 2229 - Software-Defined Networking 39University of Toronto – Winter 2020

Route on
destination

Monitor on
source +

dstip = 1.2.3.4 à fwd(1)
dstip = 3.4.5.6 à fwd(2)srcip = 5.6.7.8 à count

srcip = 5.6.7.8, dstip = 1.2.3.4 à fwd(1), count
srcip = 5.6.7.8, dstip = 3.4.5.6 à fwd(2), count
srcip = 5.6.7.8 à count
dstip = 1.2.3.4 à fwd(1)
dstip = 3.4.5.6 à fwd(2)

Controller Platform

Sequential Composition

CSC 2229 - Software-Defined Networking 40University of Toronto – Winter 2020

RoutingLoad
Balancer >>

dstip = 10.0.0.1 à fwd(1)
dstip = 10.0.0.2 à fwd(2)

srcip = 0*, dstip=1.2.3.4 à dstip=10.0.0.1
srcip = 1*, dstip=1.2.3.4 à dstip=10.0.0.2

Controller Platform

Sequential Composition

CSC 2229 - Software-Defined Networking 41University of Toronto – Winter 2020

RoutingLoad
Balancer >>

dstip = 10.0.0.1 à fwd(1)
dstip = 10.0.0.2 à fwd(2)

srcip = 0*, dstip=1.2.3.4 à dstip=10.0.0.1
srcip = 1*, dstip=1.2.3.4 à dstip=10.0.0.2

srcip = 0*, dstip = 1.2.3.4 à dstip = 10.0.0.1, fwd(1)
srcip = 1*, dstip = 1.2.3.4 à dstip = 10.0.0.2, fwd(2)

Controller Platform

Dividing the Traffic Over Modules
� Predicates

� Specify which traffic traverses which modules
� Based on input port and packet-header fields

CSC 2229 - Software-Defined Networking 42University of Toronto – Winter 2020

Routing

Load
Balancer

Monitor

Routing

Non-web
dstport != 80

Web traffic
dstport = 80 >>

+

Program Composition

CSC 2229 - Software-Defined Networking 43University of Toronto – Winter 2020

Frenetic Runtime System

CSC 2229 - Software-Defined Networking 44University of Toronto – Winter 2020

