
Handout	#	5:	
Scaling	Controllers	in	SDN	-	Kandoo

Professor	Yashar	Ganjali	
Department	of	Computer	Science	
University	of	Toronto	

yganjali@cs.toronto.edu	
h>p://www.cs.toronto.edu/~yganjali

CSC	2229	–	So?ware-Defined	Networking

Joint	work	with	Soheil	Hassas	Yeganeh	

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

EVENTS

2

Control Plane

Data Plane

• Rare
• Link state changes

• Frequent and Exhaustive
• Network-wide stat collection
• Packet-ins (if flow-entries are not

installed proactively)

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

SCALABILITY ISSUES

3

Control Plane

Data Plane

Frequent events stress
the control plane.

Stress the
control channels.

Stress controller’s resources.

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

EXISTING
SOLUTIONS

4

Distributed Controllers: Data Plane Extensions:

Control Plane Control Plane

• Consider this as an intrinsic limitation.
• HyperFlow, Onix, Devolved Controllers, ...

• Delegate more responsibilities to the data
plane.

• DIFANE, DevoFlow, ...

Control Plane

Data Plane

Control Plane

Data Plane

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

EXISTING
SOLUTIONS

5

Control Plane Control Plane Control Plane

Data Plane

Control Plane

Data Plane

Still, high control
channel consumption.

Need to

modify the

data pla
ne.

Comes at th
e

cost of

visibility.

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

PROBLEM
STATEMENT

6

Control Plane Control Plane Control Plane

Data Plane

Control Plane

Data Plane

How to handle frequent events close to the metal without modifying OpenFlow?

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

THE IDEA

7

OFFLOADING
 LOCAL CONTROL APPS
 TO
 LOCAL RESOURCES.

Applications that do

not need the

network-wide state.

Resources close

to switches.

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

• But, there are many apps
that are local in scope:

• Applications that require only
local switch state.

Local Apps

• An assumption in
distributed controllers:

• All control apps require the
network-wide state.

8

Controller

Controller Controlle

App

App

App

SwitchSwitchSwitches

Local App

Switch

Local App

Switch

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

• Local applications:

• Learning Switch

• Local Policy Enforcer

• Link Discovery

• Local components in
control applications:

• Elephant Flow Detection in
an Elephant Flow
Rerouting application.

LOCAL APPS

9

Local apps have implicit

parallelism.

Local App

Switch

Local App

Switch

Local App

Switch

Local App

Switch

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

End-Host

LOCAL RESOURCES

10

Switch

Programmable
Switch

On the same hosts running

software switches.

Inside programmable
switches.

We can offload local apps to computing resources next to
switches.

Local App

Soft. Switch

End-Host

Hosts close to
switches.

Local App

Switch

Local App

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

KANDOO

• Two layers of controllers:
• A logically centralized Root Controller.

• Local Controllers.

11

Local controllers run local apps.

Root Controller
Root Controller

Switch

Local
Controller

Switch Switch Switch Switch

Local
Controller

Local
Controller

Root Controller

Rare
Events

Frequent
Events

The root
controller runs
non-local apps.

Local controllers shield the root
controller.

Lightweight and easy to implement.

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

AN EXAMPLE:
ELEPHANT FLOW REROUTEING

12

SwitchSwitch Switch

OF Controller

Appreroute

Appdetect

Stat ReplyStat Request

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

Root Controller

Appreroute

Flow-Entry Flow-Entry

AN EXAMPLE:
ELEPHANT FLOW REROUTEING

13

SwitchSwitch Switch

Local Controller

Appdetect

Local Controller

Appdetect

Local Controller

Appdetect

Application-specific events.

Kandoo’s event channels.

Scales linearly
with the
number of
switches.

Eelephant

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

SIMPLE, YET FLEXIBLE,
ARCHITECTURE

14

Root Ctrl

SwitchSwitch Switch

Local Ctrl

Root Ctrl

SwitchSwitch Switch

Local Ctrl

Soft. SwitchSoft. Switch

Local CtrlLocal Ctrl

Root Ctrl

SwitchSwitch Switch Soft. SwitchSoft. Switch

Local Ctrl Local Ctrl Local Ctrl Local Ctrl Local Ctrl

Scale at the edge.

Normal OpenFlow.

One loca
l

contro
ller

per sw
itch!

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

EVALUATION
SUMMARY
• Implemented Kandoo:

• Handles 1.3 Mp/s on a single
core of Xeon E7-4807.

• Elephant Flow Rerouting:

• In an emulated environment.

• More than 5x less channel
consumption.

• Significantly better scalability in
regards to the network size.

15

Host Host Host Host

Local Controller 0

Local Controller 1 Local Controller N

Root Controller

Appreroute

Appdetect

Appdetect

Appdetect

Learning
Switch

Learning
Switch

Learning
Switch

Core Switch

ToR Switch 1 ToR Switch N

0
500

1000
1500
2000
2500
3000

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
es

sa
ge

s P
er

 S
ec

on
d

Ratio of Elephant to Mouse Flows

Normal OpenFlow Controller
Kandoo's Root Controller

0
1000
2000
3000
4000
5000
6000

2 3 4 5 6 7

M
es

sa
ge

s P
er

 S
ec

on
d

Fanout

Normal Open!ow
Root Controller

CSC2229 -- Software-Defined Networking University of Toronto -- Winter 2020

FINAL COMMENTS
• Controller scalability is a concern in SDN

• Control channels

• Controller resources

• Distributed controllers alleviate the problem to some extent
• Many complications

• Developers are not shielded
• As originally promised

• Troubleshooting, debugging still complex

• Next: we’ll see how these problems have been addressed
16

