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EVENTS
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Control Plane 

Data Plane 

• Rare
• Link state changes

• Frequent and Exhaustive 
• Network-wide stat collection
• Packet-ins (if flow-entries are not 

installed proactively)
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SCALABILITY ISSUES
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Control Plane 

Data Plane 

Frequent events stress 
the control plane.

Stress the 
control channels.

Stress controller’s resources.
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EXISTING 
SOLUTIONS
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Distributed Controllers: Data Plane Extensions:

Control Plane Control Plane 

• Consider this as an intrinsic limitation.
• HyperFlow, Onix, Devolved Controllers, ...

• Delegate more responsibilities to the data 
plane.

• DIFANE, DevoFlow, ...

Control Plane 

Data Plane 

Control Plane 

Data Plane 
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EXISTING 
SOLUTIONS
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Control Plane Control Plane Control Plane 

Data Plane 

Control Plane 

Data Plane 

Still, high control 
channel consumption.

Need to 

modify the 

data pla
ne.

Comes at th
e 

cost of 

visibility.
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PROBLEM 
STATEMENT
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Control Plane Control Plane Control Plane 

Data Plane 

Control Plane 

Data Plane 

How to handle frequent events close to the metal without modifying OpenFlow?
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THE IDEA
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OFFLOADING
   LOCAL CONTROL APPS
      TO
        LOCAL RESOURCES.

Applications that do 

not need the 

network-wide state.

Resources close 

to switches.
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• But, there are many apps 
that are local in scope:

• Applications that require only 
local switch state.

Local Apps

• An assumption in 
distributed controllers:

• All control apps require the 
network-wide state.
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Controller

Controller Controlle

App

App

App

SwitchSwitchSwitches

Local App

Switch

Local App

Switch
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• Local applications:

• Learning Switch

• Local Policy Enforcer

• Link Discovery

• Local components in 
control applications:

• Elephant Flow Detection in 
an Elephant Flow 
Rerouting application.

LOCAL APPS
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Local apps have implicit 

parallelism.

Local App

Switch

Local App

Switch

Local App

Switch

Local App

Switch
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End-Host

LOCAL RESOURCES

10

Switch

Programmable
Switch

On the same hosts running 

software switches.

Inside programmable 
switches.

We can offload local apps to computing resources next to 
switches.

Local App

Soft. Switch

End-Host

Hosts close to 
switches.

Local App

Switch

Local App
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KANDOO

• Two layers of controllers:
• A logically centralized Root Controller.

• Local Controllers.
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Local controllers run local apps.

Root Controller
Root Controller

Switch

Local 
Controller

Switch Switch Switch Switch

Local 
Controller

Local
Controller

Root Controller

Rare
Events

Frequent
Events

The root 
controller runs 
non-local apps.

Local controllers shield the root 
controller.

Lightweight and easy to implement.
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AN EXAMPLE: 
ELEPHANT FLOW REROUTEING
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SwitchSwitch Switch

OF Controller

Appreroute

Appdetect

Stat ReplyStat Request
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Root Controller

Appreroute

Flow-Entry Flow-Entry

AN EXAMPLE: 
ELEPHANT FLOW REROUTEING
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SwitchSwitch Switch

Local Controller

Appdetect

Local Controller

Appdetect

Local Controller

Appdetect

Application-specific events.

Kandoo’s event channels.

Scales linearly 
with the 
number of 
switches.

Eelephant
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SIMPLE, YET FLEXIBLE, 
ARCHITECTURE
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Root Ctrl

SwitchSwitch Switch

Local Ctrl

Root Ctrl

SwitchSwitch Switch

Local Ctrl

Soft. SwitchSoft. Switch

Local CtrlLocal Ctrl

Root Ctrl

SwitchSwitch Switch Soft. SwitchSoft. Switch

Local Ctrl Local Ctrl Local Ctrl Local Ctrl Local Ctrl

Scale at the edge.

Normal OpenFlow.

One loca
l 

contro
ller 

per sw
itch!
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EVALUATION 
SUMMARY
• Implemented Kandoo:

• Handles 1.3 Mp/s on a single 
core of Xeon E7-4807.

• Elephant Flow Rerouting:

• In an emulated environment.

• More than 5x less channel 
consumption.

• Significantly better scalability in 
regards to the network size. 
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FINAL COMMENTS
• Controller scalability is a concern in SDN

• Control channels

• Controller resources

• Distributed controllers alleviate the problem to some extent
• Many complications

• Developers are not shielded
• As originally promised

• Troubleshooting, debugging still complex

• Next: we’ll see how these problems have been addressed
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