
Estimating Drivable Collision-Free Space from Monocular Video

Jian Yao
University of Toronto

yaojian@cs.toronto.edu

Srikumar Ramalingam
MERL

ramalingam@merl.com

Yuichi Taguchi
MERL

taguchi@merl.com

Yohei Miki
Mitsubishi Electric Corporation

Miki.Yohei@cb.MitsubishiElectric.co.jp

Raquel Urtasun
University of Toronto

urtasun@cs.toronto.edu

Abstract

In this paper we propose a novel algorithm for estimat-
ing the drivable collision-free space for autonomous nav-
igation of on-road and on-water vehicles. In contrast to
previous approaches that use stereo cameras or LIDAR, we
show a method to solve this problem using a single cam-
era. Inspired by the success of many vision algorithms that
employ dynamic programming for efficient inference, we re-
duce the free space estimation task to an inference problem
on a 1D graph, where each node represents a column in the
image and its label denotes a position that separates the free
space from the obstacles. Our algorithm exploits several
image and geometric features based on edges, color, and
homography to define potential functions on the 1D graph,
whose parameters are learned through structured SVM. We
show promising results on the challenging KITTI dataset as
well as video collected from boats.

1. Introduction
The holy grail in mobile robotics and automotive re-

search is to be able to perform navigation without any
user interaction. Although this problem has been of inter-
est for several decades, the recent successes of self-driving
cars (e.g., Google car, competitors in DARPA urban chal-
lenge [7]) have demonstrated that this dream might actually
happen in the near future. Robotics researchers have mainly
focused in building simultaneous localization and mapping
(SLAM) systems using both 2D and 3D sensors [32, 35].
In computer vision, research has focused on a wide vari-
ety of problems such as stereo [19, 30], scene understand-
ing [24], image-based localization [18, 6], and pedestrian
detection [10].

A common assumption has been that if we are able to
develop robust and accurate solutions to these problems,
we should be able to solve autonomous navigation relying

Figure 1. (Top row) An image captured from the front of a car
while driving on a road. The red curve shows the ground truth free
space where the car can move without colliding with other cars
and obstacles. The yellow curve shows the free space estimated
using our algorithm. The blue marked region is the ground truth
road classification. The numbers indicate the 3D distance from
the camera to the obstacle estimated by our approach. (Bottom
row) An image captured from a boat. The single yellow curve
represents the free space where our result and the ground truth
coincide visually.

mainly on visual information. Geiger et al.[16] developed
the KITTI benchmark to test vision algorithms in the con-
text of self-driving cars. Although tremendous progress has
been done since its creation two years ago, existing methods
are not accurate enough to replace LIDAR-based navigation
systems.

In this paper we are interested in addressing two impor-
tant questions towards autonomous navigation: What is the
most critical information necessary to avoid obstacles? Can
we come up with a cost-effective approach to obtain this
critical information? It can easily be seen that the most
critical information is the drivable free space that can be
immediately reached by the autonomous vehicle without
collision. In order to estimate the immediate drivable free
space, existing self-driving cars typically utilize a LIDAR
scanning in every direction. Badino et al. [3] showed that

stereo cameras can be used to replace the LIDAR in solving
this task. But, is a stereo pair really necessary?

Our main contribution is to show that this task can be
computed using a single camera mounted on a moving plat-
form (i.e., car, boat). When depth information (from stereo
or LIDAR) is available, the drivable free-space can be eas-
ily computed by identifying the obstacles above the ground
plane. This process is, however, non trivial when utilizing a
single camera. Monocular approaches typically rely on im-
age edges or geometry to segment the ground plane. Unfor-
tunately, computing reliably obstacle boundaries is a hard
problem. In roads, we often observe strong gradients from
cross-walks and lane markings, which are not obstacles. In
the case of water, there is often strong gradients from the re-
flection of nearby boats, buildings, and sky. Ground plane
estimation might not be reliable due to non-flat roads [23].
Furthermore, moving vehicles pose additional challenges in
the monocular setting.

Our approach addresses all these challenges by framing
the problem as the one of inference in a 1D Markov random
field (MRF), where each node represents a column in the
image and its label denotes a position in the ground plane
that separates the free space (that can be reached without
collision) from the obstacles. Note that if we have an es-
timate of the ground plane and a calibrated camera, this
parametrization can be directly used to estimate the distance
to the obstacles (see Fig. 1). Towards this goal, we exploit
several image and geometric features based on edges, color,
and homography to encode the potential functions that de-
fine our energy. As our graph forms a chain, efficient and
exact inference can be computed using dynamic program-
ming. Furthermore, we learn the importance of all cues
using structured SVMs. We demonstrate the effectiveness
of our approach on two scenarios, the challenging KITTI
autonomous driving benchmark [16] as well as videos cap-
tured while maneuvering a boat near a dock. In the remain-
der of the paper, we first discuss related work and clarify our
contributions. We then present our monocular free space es-
timation approach, followed by experimental evaluation and
conclusions.

2. Related Work
In the past decade, many approaches have been pro-

posed for automatic navigation with obstacle avoidance.
The works of [9, 2, 17, 33, 25, 21] have the same goal as
us, but the sensors they employed are different. In particu-
lar, they utilized laser range finders, accurate pose estima-
tion systems and GPS, while we employ a single low-cost
monocular camera.

The concept of occupancy grids, first introduced in [12],
is closely related to the free space estimation problem. An
occupancy grid refers to a 2D grid where every cell mod-
els the occupancy evidence of the environment. They are

typically estimated using a laser range finder or an array
of ultrasonic sensors for autonomous navigation of mobile
robots [35]. Free space has been also estimated using stereo
cameras [14, 3]. In [14], the ground plane as well as obsta-
cles above the ground were estimated using a stereo system.
Badino et al. [3] used dynamic programming to solve the
free space estimation problem. This was later extended to
compute both the free space as well as the height of obsta-
cles in [4]. This is typically referred to as the stixel world,
which is a simplified model of the world using a ground
plane and a set of vertical sticks on the ground represent-
ing obstacles. This can be compactly represented on the
image using two curves, where the first curve runs on the
ground plane enclosing the free space that can be immedi-
ately reached without collision, and the second curve en-
codes the height of all the vertical obstacles at the boundary
of the free space. In order to compute the stixel world, semi-
global stereo matching algorithm (SGM) was used [19]. Re-
cently, it was shown that stixels can be computed with a
stereo camera, but without explicit depth estimation [5]. In
[1, 31, 26] free space is estimated using binary classifica-
tion. They use a different notion of free space which, unlike
ours, includes the space behind obstacles. As a consequence
efficient and/or exact inference is not possible as the result-
ing graphical model has loops.

Our work is related to estimating the geometric layout of
outdoor scenes. Hoiem et al. [20] showed that it is possible
to reliably classify the pixels in a given image into ground,
buildings, and sky. Similar to this geometric layout estima-
tion problem, we also explore several appearance and ge-
ometric features. Felzenszwalb and Veksler [13] modeled
the scene using two horizontal curves that divide the image
into three regions: top, middle, and bottom. Exact infer-
ence is possible, however the complexity is prohibitive for
real-time applications when employing large images.

The general idea of using dynamic programming for
column-wise matching was used in [8] for estimating the 3D
models of buildings. Gallup et al. [15] generalized this work
to several layers of height maps for modeling urban scenes.
In contrast, we are interested in scenes with challenging
traffic conditions rather than buildings. Furthermore, we
exploit temporal information in order to produce smoothly
varying results on video sequences. Monocular videos have
been used to develop SLAM algorithms [28, 11, 22, 29, 27].
These approaches provide sparse or dense point clouds and
do not explicitly estimate the free space.

Our main contributions can be summarized as follows:

• We propose a fast and exact inference algorithm for
estimating planar free space using monocular video.

• We show promising experimental results on the KITTI
benchmark as well as videos captured from a boat.

Figure 2. The 1D graph used in estimating the free space in both
scenarios related to automobiles and boats. The graph consists of
a set of nodes denoted by yi corresponding to the w columns of
the image. Each node represents a discrete variable whose value
comes from a set of labels given by the h rows in the image. On
labeling these nodes, we obtain a curve that defines the free space
in front of the automobile or boat. The labels are ordered in such
a manner that the bottom pixel has a label 1 and the top pixel has
a label h.

3. Monocular Free Space Estimation

In this paper we are interested in the problem of com-
puting the drivable free space given monocular imagery in
the context of both marine and urban navigation. Towards
this goal, we express the problem as the one of inference
in a Markov random field (MRF), which estimates for each
image column, the vertical coordinate of the pixel that sepa-
rates the free space from obstacles. This defines a 1D curve
in the image as shown in Fig. 2. In what follows, we will
give more details on the energy functions, potentials, infer-
ence, and parameter learning.

3.1. Energy function

Let It denote the image at time t in a video. Let the
dimensions of the image be w × h, where w and h are
the width and height respectively. We model the prob-
lem in such a manner that we have w discrete variables
yi, i ∈ {1, · · · , w} and each variable can take a value
from h discrete labels, yi ∈ {1, · · · , h}. Let us consider
the 1D chain graph G = {V, E}, where the vertices are
given by V = {1, · · · , w} and the edges are given by
(i, i + 1) ∈ E , i ∈ {1, · · · , w − 1} as illustrated in Fig. 2.
Note that we can further restrict the states of yi as it can
never be above the horizon (i.e., the horizon is always above
the ground plane). Using the training images, we compute
a bound for the horizon line and use it to restrict the labels
in the inference procedure. Note that more sophisticated
horizon estimation algorithms can be used.

In order to compute the curve for image It, we make
use of the features from images It and It−1. Our energy

function E can be summarized as

E(y, It, It−1) = −wTφ(y, It, It−1), (1)

where y = (y1, · · · , yw), and the potentials decompose into
unary and pairwise terms:

E(y, It, It−1) = −
∑
u∈U

∑
i

wT
uφu(yi)︸ ︷︷ ︸

unary

−
∑

(i,j)∈E

wT
p φp(yi, yj)︸ ︷︷ ︸

pairwise

.

(2)

Our unary potentials exploit appearance, edges as well as
temporal information (in the form of homography), while
our pairwise potentials encode spatial smoothness in the 1D
curve. The parameters for our energy are w = {wu,wp},
with wu and wp the unary and pairwise parameters respec-
tively. As described below, we learn both sets of parameters
using structured prediction. We now describe the potentials
in more detail.

Appearance: We use two GMMs, each with 5 compo-
nents, to model the probability for each pixel to be fore-
ground (i.e., road/sea) or background, and use Expecta-
tion Maximization (EM) to learn the parameters. Since the
GMMs can be noisy, we use a location prior to enforce pix-
els that are always road to be so. We simply employ the
training data to determine this region. Our goal is then to
estimate the free space in such a manner that the curve lies
on the boundary between road and non-road (or water and
obstacles). Towards this, we derive a potential that looks at
the entropy of the distribution in patches around the labels:

φappearance(yi = k) = H(i, k)

h∑
j=k

H(i, j). (3)

Here the entropy H(i, j) is computed in terms of the distri-
bution of road/non-road pixels in a patch centered at pixel
location (i, j). The entropy H(i, j) should be high near the
boundary between road/non-road pixels. Since we are look-
ing for a curve that passes through the boundary between
the closest set of obstacles and the road, we use a cumula-
tive sum that prefers pixels that are closer to the car and the
ones with non-zeroH(i, k) values.

Edge Information: This potential encourages the curve
to be aligned with contours. As there are many contours
in the image, we would like to encode that edges that are
located at the bottom of the image or closer to the camera in
3D space are preferred. To take this into account, we define
a potential which accumulates edge evidence as

φedge(yi = k) = e(i, k)

h∑
j=k

e(i, j), (4)

where e(i, j) = 1 if there is an edge at the pixel (i, j),
and 0 otherwise. The edges are obtained by simply using
the Canny edge detector with default parameters. Note that
more sophisticated edge detectors could be employed.

Temporal Smoothness: One possibility to encode
smoothness is to estimate the curves in two consecutive im-
ages jointly by considering pairwise connections between
nodes in the two images. The standard approach would be
to constrain the labeling of a pixel p(i, j) in image It with
neighboring pixels of p(i′, j′) in image It−1. This would
lead to a graph that is not tree-structured. As a result,
inference becomes NP-hard. Instead, we use homography
to impose smoothness across images and still maintain
the 1D chain graph during inference. The basic idea is
simple, instead of using smoothness across nearby pixels,
we compute a homography matrix based on the ground
plane. This gives us a one-to-one mapping from a pixel
on the ground in one image to its corresponding pixel on
the ground in the previous image. This also provides a
mapping between the free space curve in one image to the
other, as shown in Fig.4. LetH(t, t−1) be the homography
matrix that maps a pixel location (i, j) in image It to a
pixel location (i′, j′) in image It−1, given by i′

j′

1

 = H(t, t− 1)

 i
j
1

 . (5)

We write the potential as

φhomography(yi = j) = φu(yi′ = j′), (6)

where u ∈ U \ homography and φu(yi′ = j′) is the unary
potential in image It−1, and yi′ is computed as in Eq. (5).

Spatial Smoothness: We employ a truncated quadratic
penalty to encourage the curve to be smooth. Note that the
curve is non-smooth only when there are obstacles, which
happens only at a few columns. Thus,

φp(yi, yj) =

{
exp(−α(yi − yj)2) if |yi − yj | ≤ T
λd otherwise

(7)
where α, λd, and T are constants.

3.2. Learning and Inference

Inference consists in computing the MAP estimate, or
minimum energy configuration. This can be done as follows

max
y

wTφ(y, It, It−1). (8)

Our graphical model forms a chain, and thus exact inference
can be done using dynamic programming, with a complex-
ity of O(wn2), with w the width of the image and n the

number of labels for each variable after imposing the con-
straint from the horizon.

We employ structured SVMs [34, 36] to learn the param-
eters of the model by:

min
w,{ξi}

1

2
‖w‖2 + C

∑
i

ξi (9)

s.t. ξi ≥ wT (φi(y)− φi(y(i))) + ∆(y,y(i)), ∀y.
ξi ≥ 0, ∀i = 1, . . . , N.

Here, y(i) is the ground-truth curve for the i-th instance,
∆(y,y(i)) the loss function, and N the total number of
training examples. The loss function is a truncated version
of the relative gap given by

∆(yi, y) =

{
|y − yi| if |y − yi| ≤ T
T if |y − yi| > T

(10)

where T is a constant. We use the cutting plane algorithm
of [36], where at each iteration we have to solve the fol-
lowing loss augmented inference to find the most violated
constraint:

∀i, max
y

wT
(
φi(y)− φi(y(i))

)
+ ∆(y,y(i)). (11)

As the loss decomposes into unary potentials, the loss-
augmented inference can be solved exactly via dynamic
programming.

4. Experiments
In this section we show our experimental evaluation. We

begin our discussion by describing the datasets we employ.
We then show our quantitative and qualitative evaluation in
both marine and urban free space domains.

4.1. Datasets

We used two different datasets for evaluation based on
urban and marine scenes.

KITTI: We use the training set from the road challenge
in KITTI [16]. The dataset includes 289 monocular video
sequences for road detection. The images include road
scenes under moderate traffic conditions as shown in Fig. 7.
We labeled the drivable collision-free space for all images.

Boat: We mounted a GoPro camera on a boat and col-
lected monocular video sequences while maneuvering the
boat near a dock. We manually labeled 200 consecutive im-
ages and use the first 100 for training and the remaining 100
images for testing. We extracted images at 5 fps due to the
slow motion of the boat.

We compute the homography using SIFT correspon-
dences in a RANSAC framework. In the case of water, we
look for correspondences only near the previous free space

Figure 3. (First row) Two images from KITTI road detection dataset. (Second row) Edge features. (Third row) Segmentation computed
using GMM. (Fourth row) Appearance features. All the features are color-coded, where red denotes high value and blue denotes low value.

Figure 4. On the top, we show the ground-truth free-space curve in image It−1. Using the estimated homography, we show the free-space
curve on the next image It under only the homography transform.

curve as we typically have too many spurious correspon-
dences on water. Note that the edges from reflections of
objects on water will not match using the homography ma-
trix, and thus we can filter them from our curve. In the case
of road scenes, we use the SIFT matches below the previ-
ous free space curve to compute the homography matrix, as
refections are not a problem.

4.2. Quantitative Evaluation

We evaluate our approach using two measures: relative
gap (G) and F1 score (F1).

Relative Gap: We first compute the difference between
the estimated curve and the ground truth curve. The relative
gap is then obtained as the ratio of the average difference
with respect to the height of the image h as

G(y,y∗) =
‖y − y∗‖1
n · h

, (12)

where y is the estimated curve and y∗ is the ground truth, h
is the height of the image, and n is the normalization con-

stant which takes the number of columns.

F1 Score: As in many vision problems, the ground truth
labeling may not be perfect. For autonomous navigation
applications, it is not a serious problem if the estimated free
space is smaller than the actual one. On the other hand,
it is more critical to not have any obstacles inside the free
space curve. In regards to this, we propose the F1 score
to measure the accuracy of classification of pixels under the
curve given by

F1 =
2× P ×R
P +R

, (13)

where P and R refer to the precision and recall, which will
be computed only on the pixels that are under the curve.

In order to understand the importance of each feature,
we trained and tested our approach using different com-
binations of features. Tables 1 and 2 show the G and F1
measures using different features for KITTI road dataset
and the boat dataset, respectively. As shown in the tables,
the appearance term is robust and effectively used together
with the smoothing term. The edge potential is also useful

E A H S G(%) F1(%)

! ! 13.29 57.18
! ! 7.07 77.08

! ! ! 5.97 80.93
! ! ! ! 5.45 82.51

Table 1. Drivable free space estimation result on KITTI bench-
mark dataset [16]. We denote edges, appearance, homography,
and smoothness using E, A, H, and S, respectively. Out of the 289
video sequences, we left out four sequences due to problems in
ground truth. Here we randomly selected 100 images for training
and 100 for testing and 85 for validation. The numbers above are
on test images.

E A H S G(%) F1(%)

! ! 2.47 96.23
! ! 2.38 96.37

! ! ! 2.36 96.39
! ! ! ! 2.43 96.3

Table 2. Drivable free space estimation result for boat dataset. We
denote edges, appearance, homography, and smoothness using E,
A, H, and S, respectively. We randomly select 100 frames for train-
ing and 100 for testing from a video.

in combination with the smoothness and appearance. Be-
sides, when the planar assumption of the free space is well
satisfied (e.g. road scenario), the homography potential in-
creases performance as well.

We tested different values of regularization parameter C
in structured SVM. As shown in Table 3, the accuracy of
our algorithm is not very sensitive to the regularization pa-
rameter.

We also compared our results with monocular classifica-
tion algorithms as shown in Table 4 and Table 5. We use
[20] for the road and [1, 31] for the water. We computed the
free space from these classification algorithms using two
approaches: (1) getting the curve directly from the classifi-
cation result, i.e., we use Eq. 3 to construct the unary fea-
ture and then maximize it; (2) estimating the curve when
using also the pairwise potentials (smoothness term used in
our algorithm). Using smoothness improves performance
as it reduces the effect of miss-classified labels in the seg-
mentation results. Our model significantly outperforms the
baselines.

C 0.005 0.01 0.1 1 2 5
G 2.42 2.43 2.42 2.40 2.39 2.43
F1 96.31 96.30 96.32 96.35 96.36 96.30

Table 3. For different values of C, the coefficient of regularization
used in the structured SVM, we evaluate our algorithm on the boat
dataset with all features.

G(%) F1(%)
[1, 31] 16.33 67.98

[1, 31]+Smooth 15.06 70.98
our model 2.36 96.39

Table 4. Comparison with water classification methods.

G(%) F1(%)
[20] 18.46 62.22

[20]+Smooth 16.42 64.31
our model 5.45 82.51

Table 5. Comparison with monocular road detection methods.

4.3. Distance To Obstacle

Using the calibration matrix K and the height of the
camera with respect to ground plane, we can compute the
3D distance from the obstacles (i.e., pixels in the1D curve)
to the camera center. Fig. 5 depicts the distances inferred
by our approach on the road scenario.

4.4. Qualitative Evaluation

Qualitatively, we observed the free space using different
combinations of features. As shown in Fig. 6, we see an
improvement in the result as we add more features. Edges
and color are not sufficient to obtain the free space accu-
rately. We also looked at the best and the worst results for
the free space estimation for both KITTI (Fig. 7) and the
boat dataset (Fig. 8). Besides, we also show some results
from the boat video with no ground truth labeled in Fig. 9.
A full length video demonstrating our free space estimation
results is provided in the supplementary material, for a total
of more than 4000 frames.

4.5. Computation Time

Our approach takes 0.1s per image on average for the
computation of all features in Matlab. Our un-optimized
implementation of the inference algorithm in C++ takes on
average 0.1s per image. Note that one can use the optimized
DP implementation of [5] which runs at 135Hz.

5. Conclusions and Discussion
We have presented a free space estimation algorithm us-

ing monocular sequences. The approach was tested on two
different datasets involving road and water scenes. In con-
trast, prior work used stereo cameras or LIDARs for this
purpose and focus mainly on road scenarios. We designed
our algorithm using simple and light-weight techniques for
real-time feature computation and inference. Note that our
approach currently uses features from one previous frame to
estimate the free space in the current image. We could ex-
tend this easily to multiple images, still maintaining the 1D

28.93 m

7.50 m

59.2 m 51.4 m 51.4 m

21.5 m

39.6 m

21.2 m

11.2 m

Figure 5. The red curve is the result from our model. When the parameters of the camera are known, we can estimate the distance from the
obstacle to the camera (yellow text).

Figure 7. Example results from KITTI road dataset. The top four rows show some of the best performing scenes, demonstrating accurate
results given by our approach. The last row shows worst performing scenes; failure modes are typically due to road markings and confusion
between pavement and road.

Figure 6. The evolution of the free space curve as we use more
and more features. The yellow curve is the ground truth and the
red curve is our result. (First row) Original images. (Second row)
Edge. (Third row) Appearance. (Fourth row) Edge + Appearance.
(Fifth row) Edge + Appearance + Homography. All the results use
the smoothness term.

Figure 8. The first row shows top scoring results from the boat
sequence, while the second row shows low scoring results. The
red curve is our result and the yellow one is the ground truth.

Figure 9. Results selected from the full length of boat video se-
quences. There are no ground truth labeled for these frames.

chain graph while doing the inference. We notice that the
results of our algorithm degrade when there are road marks
and shadows in the image. We plan to resolve these is-
sues using depth features that can be extracted using motion
stereo algorithms as well as more sophisticated appearance
features. Note that however, most segmentation algorithms
are not suited for real-time applications, and thus cannot be
employed for our purpose. We also plan to use LIDAR to
generate ground truth, which can be used for better training
and evaluation of our results.

Acknowledgments: We thank Jay Thornton and Shin
Miura for useful discussions. We thank Sanja Fidler for
the 3D distance computation program. This work was sup-
ported by MERL.

References
[1] S. Achar, B. Sankaran, S. Nuske, S. Scherer, and S. Singh.

Self-supervised segmentation of river scenes. In ICRA, 2011.
[2] A. Angelova, L. Matthies, D. Helmick, and P. Perona. Fast

terrain classification using variable-length representation for
autonomous navigation. In CVPR, 2007.

[3] H. Badino, U. Franke, and R. Mester. Free space computa-
tion using stochastic occupancy grids and dynamic program-
ming. In ICCV Workshop on Dynamical Vision, 2007.

[4] H. Badino, U. Franke, and D. Pfeiffer. The stixel world -
a compact medium level representation of the 3d-world. In
DAGM, 2009.

[5] R. Benenson, R. Timofte, and L. Gool. Stixels estimation
without depth map computation. In ICCV, 2011.

[6] M. Brubaker, A. Geiger, and R. Urtasun. Lost! leveraging
the crowd for probabilistic visual self-localization. In CVPR,
2013.

[7] M. Buehler, K. Iagnemma, and S. Singh. The DARPA Urban
Challenge: Autonomous Vehicles in City Traffic. Springer,
2009.

[8] N. Cornelis, B. Leibe, K. Cornelis, and L. Gool. 3d city
modeling using cognitive loops. In CVPR, 2006.

[9] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and
G. Bradski. Self-supervised monocular road detection in
desert terrain. In RSS, 2006.

[10] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005.

[11] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. PAMI, 2007.

[12] A. Elfes. Sonar-based real-world mapping and navigation.
Journal of Robotics and Automation, 1987.

[13] Felzenszwalb and Veksler. Tiered scene labeling with dy-
namic programming. In CVPR, 2010.

[14] U. Franke and I. Kutzbach. Fast stereo based object detection
for stop and go traffic. In IV, 1996.

[15] D. Gallup, M. Pollefeys, and J. Frahm. 3D reconstruction
using an n-layer heightmap. In DAGM, 2010.

[16] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In
CVPR, 2012.

[17] R. Hadsell, P. Sermannet, J. Ben, A. Erkan, M. Scoffier,
K. Kavukcuoglu, U. Muller, and Y. LeCun. Learning long-
range vision for autonomous off-road driving. JFR, 2009.

[18] J. Hays and A. Efros. Im2gps: estimating geographic infor-
mation from a single image. In CVPR, 2008.

[19] H. Hirschmuller. Stereo processing by semiglobal matching
and mutual information. PAMI, 2008.

[20] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo
pop-up. ACM Trans. Graph., 2005.

[21] D. Kim, J. Sun, S. M. Oh, J. M. Rehg, and A. F. Bobick.
Traversability classification using unsupervised on-line vi-
sual learning. In ICRA, 2006.

[22] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In ISMAR, 2007.

[23] R. Labayrade, D. Aubert, and J. Tarel. Real time obstacle de-
tection on non flat road geometry through ‘v-disparity’ rep-
resentation. In IV, 2002.

[24] L. Ladicky, P. Sturgess, C. Russell, S. Sengupta, Y. Bastanlar,
W. Clocksin, and P. Torr. Joint optimisation for object class
segmentation and dense stereo reconstruction. In BMVC,
2010.

[25] J. Michels, A. Saxena, and A. Y.NG. High speed obstacle
avoidance using monocular vision and reinforcement learn-
ing. In ICML, 2005.

[26] A. M. Neto, A. C. Victorino, I. Fantoni, and J. V. Fer-
reira. Real-time estimation of drivable image area based on
monocular vision. In IV, 2013.

[27] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison.
DTAM: Dense tracking and mapping in real-time. In ICCV,
2011.

[28] D. Nister. An efficient solution to the five-point relative pose.
PAMI, 2004.

[29] D. Scaramuzza and R. Siegwart. Appearance-guided monoc-
ular omnidirectional visual odometry for outdoor ground ve-
hicles. IEEE Transactions on Robotics, 2008.

[30] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. IJCV,
2002.

[31] S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers,
S. Nuske, and S. Singh. River mapping from a flying robot:
state estimation, river detection, and obstacle mapping. Au-
ton Robot, 2012.

[32] R. Siegwart, I. Nourbakhsh, and D. Scaramuzza. Introduc-
tion to Autonomous Mobile Robots, Second Edition. The
MIT Press, 2011.

[33] D. Silver, J. A. Bagnell, and A. Stentz. Learning from
demonstration for autonomous navigation in complex un-
structured terrain. IJRR, 2010.

[34] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov
networks. In NIPS, 2003.

[35] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics:
Intelligent Robotics and Autonomous Agents. The MIT
Press, 2005.

[36] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent out-
put variables. JMLR, 2005.

