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Motivation

® Assumption: sensory systems are adapted to
the statistical properties of their inputs

® Our ability to extract statistical regularities

of natural images help us perform complex
visual tasks

® Building a better statistical model of natural

images will help us improve algorithms for
Image processing



Sparse Coding Model

® Generative model [Olshausen, Field 96]:
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® The model allows A to be overcomplete



Independent
Component Analysis

® Find a linear transform such that the outputs
are independent and have sparse
distributions [Bell & Sejnowski 97]
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| earned transform
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The learned filters resemble wavelets



Caveats of these models

® The independence assumption is violated for
natural images

® The coefficients associated with quadrature
pair or colinear Gabor filters are not
independent

® The visual system probably makes use of
these dependencies (e.g. for contour
extraction)



Modeling the remaining
dependencies

® Existing work
® Gaussian Scale Mixtures [Wainwright & Simoncelli O]
® Density Components Models [Karklin & Lewicki 03]

® Markov Random Fields [Hinton et al. 05]

® QOur Model:

® extends K&L to overcomplete setting

® draws a connection with Sparse Bayesian Learning
[Tipping O1]



Hierarchical Sparse
Bayesian Learning
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Choice of the nonlinearity
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Intuition for B

® Our goal is to model the joint dependencies
of the basis functions

d Blz’
Bv = Zvi .
=1 Bmz

® The relative signs within a density component
model the excitation and inhibition

— density component



Inference of v

® As in SBL, we use the EM algorithm
v = arg max p(v|z) = arg max p(x|v)p(v)

® Expectation Step q(slz,v™) ~ N (1, %)
Y= (0 ?ATA+ T T =diag(@([BoV]1), ..., ¢([BvY],))
n=o’YA'x

® Maximization Step
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Learning of B

® MAP estimate

® Approximation of the objective function
palB) = [ pla.s,o|B)dsdo

_ /p(x\s)p(s\v,B)p(v)dsdv
~ p(x|5)p(s|v, B)p(v)
arg max p(v|z)

E|s|z, v]

U
S



Learning of B

® MAP estimate B = argming >, —log p(z”|B) — log p(B)
® Approximation of the objective function
palB) = [ pla.s,o|B)dsdo
— [ plals)plslv. Blp(o)dsae
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Learning rule

® New objective function:

B = arg ming Zfil —logp(8W]9Y) B) = arg ming J(B)
® | earning rule:

Brew — Bold L HVJ(B
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Results

® Settings: 1
® n=m=d= 144

® about 1000 iterations |

00

® The matrix A was
learned using ICA



Learned density components
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They are hard to visualize!



Needle plot
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Visualization w.r.t. spatial
position of the basis functions




Visualization w.r.t. position
in the Fourier domain




Sparsity of the coefficients
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Sparsity index distribution

sparsity index distribution
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Conclusion

® We were able to reproduce similar results
as K&L in the overcomplete setting

® Future work
® results preliminary, still issues
® denoising results

® texture classification

®¢ MRF model



MRF model
m Binary MRF

Sz|uz:1NN(O,0'22)

v
éé .. @ r = As + ¢, where A € R

Apply similar algorithm as in [Hinton et al. 05]



Variance and mean for HSBL
with learned B

Variance and mean of the density components




