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Abstract. Whereas encryption schemes withstanding passive chosen-
plaintext attacks (CPA) can be constructed based on a variety of com-
putational assumptions, only a few assumptions are known to imply the
existence of encryption schemes withstanding adaptive chosen-ciphertext
attacks (CCA2). Towards addressing this asymmetry, we consider a weak-
ening of the CCA2 model — bounded CCA2-security — wherein security
needs only hold against adversaries that make an a-priori bounded num-
ber of queries to the decryption oracle. Regarding this notion we show
(without any further assumptions):

– For any polynomial q, a simple black-box construction of q-bounded
IND-CCA2-secure encryption schemes, from any IND-CPA-secure
encryption scheme. When instantiated with the Decisional Diffie-
Hellman (DDH) assumption, this construction additionally yields
encryption schemes with very short ciphertexts.

– For any polynomial q, a (non-black box) construction of q-bounded
NM-CCA2-secure encryption schemes, from any IND-CPA-secure
encryption scheme. Bounded-CCA2 non-malleability is the strongest
notion of security yet known to be achievable assuming only the ex-
istence of IND-CPA secure encryption schemes.

Finally, we show that non-malleability and indistinguishability are not
equivalent under bounded-CCA2 attacks (in contrast to general CCA2
attacks).

1 Introduction

Encryption is often compared to a ‘secure envelope’. Though appealing as a
metaphor, understanding encryption requires a more formal definition of security
of the primitive. For this task, the notion of semantic security against adaptive
chosen-ciphertext attacks (in short, IND-CCA2 security) captures the essential
characteristics of secure envelopes.

Under adaptive chosen-ciphertext attacks (CCA2), whose study was pio-
neered by Naor and Yung [22], and Rackoff and Simon [26], security is required



to hold with respect to adversaries that have access to a decryption oracle. This
should be contrasted to the traditional type of chosen-plaintext attack (CPA),
where the adversary is required to act on its own without any additional help [14].

While there are a number of candidate (practical) public-key encryption
schemes known to be semantically secure against a CPA attack [13], designing
ones that withstand a CCA2 attack is a delicate and difficult task. In the stan-
dard model, there are essentially three approaches known. The first approach,
put forth by Naor and Yung [22] in the early 1990s, and subsequently extended
by Dolev, Dwork and Naor [10], and later Sahai [28] and Lindell [20], is based on
the use of non-interactive zero knowledge for NP. This leads to schemes based
on quite general cryptographic assumptions. The second is due to Cramer and
Shoup [6–8] and is based on hash-proof systems. This leads to quite practi-
cal schemes based on several concrete number-theoretic assumptions. The third
and most recent approach is due to Canetti, Halevi and Katz [3] and relies on
identity-based cryptography.

To sum up, all the above approaches make use of additional assumptions
to construct CCA2-secure schemes (apart from the existence of CPA-secure en-
cryption schemes). A fundamental open question is thus:

Can any CPA-secure encryption scheme be transformed into one that
is also CCA2 secure, without making additional complexity-theoretic as-
sumptions?

1.1 Our Results

Towards addressing this fundamental question, in this paper we introduce a
weakening of the CCA2 attack which we call a bounded-CCA2 attack. In such
an attack, the adversary is restricted to making an a-priori bounded number of
queries to the decryption oracle. This is indeed a reasonable model, since the use
of encryption in many protocols (such as secure multiparty computation) can be
upper-bounded to q decryptions. With this terminology, our main contributions
are summarized below. Henceforth, unless otherwise mentioned, whenever we
talk of CCA attacks, we mean adaptive chosen ciphertext attacks (CCA2), as
opposed to the weaker lunch-time attacks (CCA1).

Bounded CCA2 Semantic Security. Our first result is a simple and efficient
black-box construction of a public-key encryption (PKE) scheme that is semanti-
cally secure against a q-bounded CCA2 attack (technically termed IND-q-CCA-
secure), starting from any CPA-secure encryption scheme. Technically, this result
combines techniques from [3, 9]. However, it appears that the implications for
black-box constructions of chosen ciphertext secure encryption from semantically
secure encryption, as we deduce them here, have not been reported before.

Theorem 1 (Informal). For any polynomial q, there exists a black-box con-
struction of an IND-q-CCA-secure encryption scheme from any CPA-secure en-
cryption scheme.



The key size and the ciphertext size of this construction are quadratic in q and
thus quite large; nevertheless, it demonstrates the feasibility of black-box con-
structions of bounded-CCA2-secure encryption schemes from any CPA-secure
scheme. Interestingly, this result stands in sharp contrast to the recent results
of Gertner, Malkin and Myers [12] showing that “such” black-box constructions
are impossible when considering standard (unbounded) CCA2-secure encryption.
(The black-box separation result from [12] only holds for constructions where
the decryption function of the CCA2 secure scheme does not make calls to the
encryption function of the CPA secure scheme. Our black-box construction of
q-bounded CCA2 secure encryption falls into this category.)

We additionally show that if the underlying CPA-secure PKE scheme has cer-
tain homomorphic properties, then we can construct a q-bounded CCA2-secure
PKE scheme with very short ciphertexts. In particular, in groups where the DDH
assumption holds, we can give a q-bounded CCA2 secure PKE scheme with only
one group element of ciphertext expansion. In contrast, the best known DDH-
based schemes such as the one by Kurosawa and Desmedt [18] which achieve full
CCA2 security have two group elements plus a MAC. The length of the public
keys in this construction are, however, still quadratic in q.

Bounded CCA2 Non-malleability. A q-bounded-CCA2 non-malleable (in
technical terms, NME-q-CCA-secure) encryption scheme is one that is “non-
malleable” with respect to an adversary making at most q decryption queries.
For this notion, we are able to show:

Theorem 2 (Informal). Assuming CPA-secure public-key encryption schemes
exist, for any polynomial q, there exists an NME-q-CCA-secure encryption scheme.

As far as we know, the notion of bounded-CCA2 non-malleability is the
strongest notion of security for encryption schemes known to be achievable under
only the assumption of CPA-secure encryption schemes. Furthermore, the length
of both the the public-key and the ciphertexts grows linearly with q (instead of
quadratically as in our previous construction). However, this second construction
makes a non-black-box use of the underlying CPA secure encryption scheme. In
particular, we use a proof that several ciphertexts are encryptions of the same
message, and this may require analyzing the encryption circuit to form a theorem
statement. (On the other hand, even though our construction uses ZK proofs
and thus costly NP reductions, in many cases, there exist efficient proofs — Σ
protocols [4], for example — for the type of theorems we encounter.)

Relation Between Semantic Security and Non-malleability Against
Bounded CCA2 Attacks. It is known that under a CCA2 attack, the other-
wise weaker notion of semantic security in fact implies also non-malleability [1].
In the case of bounded-CCA2 security, however, we show that this equivalence
does not hold. In particular, we show that q-bounded-CCA2 security for any
(fixed) q does not even imply non-malleability under the simple CPA attack.

Theorem 3 (Informal). Assume CPA-secure public-key encryption schemes
exist. Then, for every q, there exists an encryption scheme that is q-bounded
CCA2-secure, but is not non-malleable (even under a CPA attack).



This separation of notions highlights the importance of directly proving non-
malleability of our second scheme (which slightly complicates the analysis).

1.2 Importance of These Results

The notion of bounded CCA2 security which we present is a weakening of the
traditional notion of CCA2 security. Since it is possible to achieve CCA2 security,
one may then wonder why it is important to consider this notion. There are in
fact two simple reasons:

1. There are many hardness assumptions (such as computational-Diffie-Hellman
and many lattice-based hardness assumptions) for which we can only con-
struct CPA-secure encryption schemes. Our results show how to transform
those schemes into ones with much stronger security properties. Since no
one knows how to achieve full (unbounded) CCA2 security under these as-
sumptions, our result represents the state-of-the-art for encryption in that
area.

2. Being a weaker notion, bounded-CCA2 security may allow for more efficient
constructions. Indeed, under the DDH assumption, we present a bounded-
CCA2 scheme which is less than half the size of the smallest full-CCA2
secure scheme. For certain low-bandwidth applications in which the size of
the ciphertext is critical, this may be the best construction to use.

Organization. After fixing some notation in §2, we formally define the no-
tion of q-bounded CCA2 security. Section §3 contains a black-box construction
of a q-bounded IND-CCA-secure encryption scheme, and Section §4 contains an
optimized instantiation under the DDH assumption. Section §5 contains a non-
black-box construction of a q-bounded NME-CCA-secure encryption scheme. Fi-
nally, in Section §6, we present a separation between the definitions of semantic
security and non-malleability under q-bounded attacks.

Publication Info. This paper is a merge of three independent preprints [5, 15,
23].

2 Preliminaries and Definitions

If S is a set then s
$← S denotes the operation of picking an element s of S

uniformly at random. We write A(x, y, . . .) to indicate that A is an algorithm
with inputs x, y, . . . and by z

$← A(x, y, . . .) we denote the operation of running
A with inputs (x, y, . . .) and letting z be the output. We write AO1,O2,...(x, y, . . .)
to indicate that A is an algorithm with inputs x, y, . . . and black-box access to
oracles O1,O2, . . .. If A is a randomized algorithm, the notation A(x; r) means
running A with input x and randomness r.

Definition 1 (Encryption scheme). A triple pke = (Gen,Enc,Dec) is a
public key encryption scheme, if (1) Gen and Enc are p.p.t. algorithms and



Dec is a deterministic polynomial-time algorithm, (2) Gen on input 1k pro-
duces a pair (pk , sk), where pk is the public-key and sk is the secret-key, (3)
Enc : pk × {0, 1}∗ → {0, 1}∗ runs on input a public key pk and a message
m ∈ {0, 1}∗ and produces a ciphertext c, (4) Dec : sk × {0, 1}∗ → {0, 1}∗ ∪ {⊥}
runs on input (sk , c) and produces either a message m ∈ {0, 1}∗ or a special sym-
bol ⊥, (5)(Perfect Correctness) There exists a polynomial p(k) and a negligible
function µ(k) such that for every message m, and every random tape re,

Pr[(pk , sk)← Gen(1k; rg) : ∃re,m s.t Decsk (Encpk (m; re)) 6= m] ≤ µ(k).

where the probability is over the random choice of rg. That is, with high proba-
bility over the keys generated by Gen, all valid ciphertexts decrypt correctly.

Next, we define the notions of IND-q-CCA-security and NME-q-CCA-security.

Definition 2 (IND-q-CCA security). For a function q(k) : N → N, we define
the security notion of indistinguishability against q-bounded CCA adversaries
(IND-q-CCA). For an adversary A = (A1,A2) we define the advantage function

AdvIND-q-CCA
pke,A (k) =

∣∣ Pr[ExpIND-q-CCA-1
pke,A (k) = 1]− Pr[ExpIND-q-CCA-0

pke,A (k) = 1]
∣∣

where, for b ∈ {0, 1}, ExpIND-q-CCA-b
pke,A is defined by the following experiment.

Experiment ExpIND-q-CCA-b
pke,A (k)

(pk , sk) $← Gen(1k)
(M0,M1,St1)

$← ADec(sk ,·)
1 (pk) s.t. |M0| = |M1|

c∗ $← Enc(pk ,Mb)
b′

$← ADec(sk ,·)
2 (c∗,St1)

Return b′

The adversary (A1,A2) is restricted to ask at most q(k) queries to the decryption
oracle Dec in total in each run of the experiment, and none of the queries of A2

may contain c∗. The scheme pke is said to be indistinguishable against q-bounded
chosen-ciphertext attacks (IND-q-CCA-secure, in short) if the advantage function
AdvIND-q-CCA

pke,A (k) is negligible in k for all adversaries A = (A1,A2).

We have the following relation to the standard security definitions for PKE
schemes. Scheme pke is said to be (1) indistinguishable against chosen-plaintext
attacks [14] (CPA), denoted IND-CPA, if it is IND-0-CCA-secure, and (2) indis-
tinguishable against chosen-ciphertext attacks [26] (CCA2), denoted IND-CCA,
if it is IND-q-CCA-secure for any polynomial q(k).

As was done above with indistinguishability, we extend the definition of non-
malleability presented in [24] to consider q(k)-bounded adversaries.

Definition 3 (NME-q-CCA security). Let pke = (Gen,Enc,Dec) be an en-
cryption scheme and let the random variable NME-q-CCAb(Π,A, k, `) where b ∈



{0, 1}, A = (A1,A2) and k, ` ∈ N denote the result of the following probabilistic
experiment:

NME-q-CCAb(pke,A, k, `) :
(pk , sk)← Gen(1k)
(m0,m1, stateA)← ADec(sk ,·)

1 (pk) s.t. |m0| = |m1|
y ← Encpk (mb)
(c1, . . . , c`)← ADec(sk ,·)

2 (y, stateA)

Output (d1, . . . , d`) where di =
{

copy if ci = y
Decsk (ci) otherwise

pke = (Gen,Enc,Dec) is NME-q-CCA-secure for a function q(k) : N → N if,
∀ p.p.t. algorithms A = (A1,A2) which make q(k) total queries to the oracles
and for any polynomial p(k), the following two ensembles are computationally
indistinguishable:{

NME-q-CCA0(pke,A, k, p(k))
}

k∈N

c
≈

{
NME-q-CCA1(pke,A, k, p(k))

}
k∈N

If q(k) = 0, then the encryption scheme is said to be NME-CPA-secure.

3 Construction of Bounded IND-CCA Secure Encryption

In this section, we present a black-box construction of an IND-q-CCA-secure
encryption scheme. The general outline of our construction is as follows.

First, as demonstrated by Canetti, Halevi and Katz [3], every identity-based
encryption scheme can be transformed into a fully chosen-ciphertext secure en-
cryption scheme. Second, an IND-CPA secure encryption scheme implies a “q-
resilient” identity-based encryption scheme. (The notion of q-resilient security in
the context of identity-based encryption [16] means that the scheme guarantees
security as long as at most q private keys are established.) The latter result is
only implicitly contained in a paper about key-insulated public-key cryptosys-
tems by Dodis, Katz, Xu, and Yung [9]. A closer observation of the combination
of the two results already reveals the construction of our IND-q-CCA-secure en-
cryption scheme. Since both transformations are black-box, our main result can
be obtained. However, it appears that the implications for black-box construc-
tions of IND-q-CCA-secure encryption from IND-CPA-secure encryption as we
deduce them here have not been reported before.

Stateful versus Stateless Encryption. When one only considers stateful encryp-
tion, the problem of constructing black-box IND-q-CCA-secure encryption be-
comes trivial: the receiver’s public-key contains q independent public-keys pk i

of the IND-CPA-secure scheme. For 1 ≤ j ≤ q, to encrypt the jth message, a
sender uses the jth public-key pk j as a “one-time key” for the IND-CPA-secure
encryption scheme, the state being j that is incremented after each encryption.
However, this construction requires all participants to share and update the dy-
namic state information j. (This is in contrast to signature schemes where the
signer may maintain a private state.)



We circumvent this unrealistic state update assumption by “load-balancing”
the use of instances of the IND-CPA-secure base scheme. The general outline of
our construction is as follows. We use the q-resilient identity-based encryption
construction implicitly given in [9] based on any IND-CPA-secure PKE scheme.
Using a transformation from [3], this q-resilient identity-based encryption scheme
can be transformed into a PKE scheme. As we will see, the resulting PKE scheme
is secure against q-bounded chosen-ciphertext adversaries.

Theorem 4. For any fixed polynomial q, there exists a black-box construction
that, given any IND-CPA-secure scheme (kg, enc, dec), builds an IND-q-CCA-
secure public-key encryption scheme (Genkg,Enckg,enc,Deckg,dec).

Here we give a direct proof of this theorem that bypasses the notion of identity-
based encryption altogether. We furthermore note that there are some techni-
cal problems with the security proof of the implicitly contained q-resilient IBE
scheme from [9] that we fix in this note.8

3.1 Building Blocks

Cover-free families. If S, T are sets, we say that S does not cover T if
S 6⊇ T . Let d, q, s be positive integers, and let F = (Fi)1≤i≤s be a family
of subsets of {1, . . . , d}. We say that family F is q-cover-free over {1, . . . , d},
if for each subset Fi ∈ F and each S that is the union of at most q sets in
(F1, . . . , Fi−1, Fi+1, . . . , Fs), it is the case that S does not cover Fi. Furthermore,
we say that F is l-uniform if all subsets in the family have size l. We use the
following fact [11, 17]: there is a deterministic polynomial time algorithm that on
input integers s, q returns l, d, F where F = (Fi)1≤i≤s is a l-uniform q-cover-free
family over {1, . . . , d}, for l = d/4q and d ≤ 16q2 log(s). In the following we let
SUB denote the resulting deterministic polynomial-time algorithm that on input
s, q, i returns Fi. We call Fi = SUB(s(k), q(k), i) the subset associated to index
i ∈ {1, . . . , s(k)}.

For our construction we will need a cover-free family with the parameters

s(k) = 2k, d(k) = 16kq2(k), l(k) = 4kq(k) . (1)

One-time signatures. In our construction, we need a strong one-time signa-
ture scheme ots = (Sigkg,Sign,Verify) (see [19]). We assume that the verification
keys which are part of the output by Sigkg are bit strings of size k which we
interpret as natural numbers in {1, . . . , 2k}. Strong one-time signature schemes
can be constructed from (the key-generation algorithm of) any IND-CPA-secure
8 The problem in the proof of Theorem 2 in [9] (only contained in the full version) is

that their simulator (simulating the view of an adversary attacking the IBE scheme)
sometimes is forced to abort. However, this forced abort is not independent of the
adversary’s view in this simulation. This dependence could be exploited by an ad-
versary that has a higher chance in breaking the IBE scheme only if the simulator
aborts. We give a different simulation to overcome this problem.



encryption scheme via a black-box reduction (since a one-way function can be
constructed from the key-generation algorithm, and one-way functions imply
strong signature schemes [19, 27]).

3.2 The Construction

Let q(k) : N→ N be a function. Our construction of the IND-q-CCA encryption
scheme (Gen,Enc,Dec) with black-box access to the IND-CPA-secure encryption
scheme (kg, enc, dec) is depicted in Fig. 1. In general we can also use any com-
putationally secure all-or-nothing transform (e.g., the black-box construction
from [2] based on one-way functions) to decrease ciphertext size.

Public and secret keys have size polynomial (quadratic) in the maximal num-
ber of decryption queries q(k). Also note that the upper bound q(k) must be
known in advance as a parameter of the construction.

Genkg(1k) : Define s(k) = 2k, d(k) = 16kq2(k), l(k) = 4kq(k) as in Equation (1).

For i = 1, . . . , d(k) run (pk i, sk i)
$← kg(1k). Output PK = (pk1, . . . , pkd(k))

and SK = (sk1, . . . , skd(k)).

Enckg,enc(PK ,M): Create a random pair of one-time signing keys (vk , sigsk)
$←

Sigkgkg(1k). Let Fvk = {s1, . . . , sl(k)} be the subset associated to verification
key vk . Pick random M1, . . . ,Ml(k) subject to M = M1 ⊕ . . .⊕Ml(k) and run

cj
$← enc(pksj

,Mj), for j = 1, . . . , l(k). Sign the ciphertexts c = (c1, . . . , cl(k))

with sigsk by running σ ← Signkg(sigsk , c) and output C = (c, vk , σ).
Deckg,dec(SK , (c = (c1, . . . , cl(k)), vk , σ)): If Verifykg(vk , c, σ) rejects, return reject.

Let Fvk = {s1, . . . , sl(k)} be the subset associated to vk . For j = 1, . . . , l(k)
run Mj ← dec(sksj , cj) and output M = M1⊕ . . .⊕Ml(k).

Fig. 1. Black-box construction of an IND-q-CCA secure encryption scheme
(Gen,Enc,Dec) from any IND-CPA-secure scheme (kg, enc, dec)

The following proves our main result, Theorem 4.

Lemma 1. If (kg, enc, dec) is IND-CPA secure then (Genkg,Enckg,enc,Deckg,dec)
as described in Fig. 1 is IND-q-CCA secure.

Proof. For any PPT adversary A against the IND-q-CCA security of (Genkg,
Enckg,enc,Deckg,dec), we show, via a game-based proof, that A’s advantage in the
IND-q-CCA game is negligible.

Let Game 0 be the IND-q-CCA game with adversary A and uniformly chosen
experiment bit b. Let X0 denote the event that A’s final guess is correct (i.e.,
X0 denotes that b′ = b). For later games, let Xi (i > 0) be defined analogously.

1
2
AdvIND-q-CCA

pke,A (k) = |Pr [X0 ]− 1
2
| .



Game 1 is identical to Game 0, except that the verification key vk∗ for the
challenge ciphertext is initially chosen, and all decryption queries with vk = vk∗

are rejected.
By reduction on the security of the signature scheme ots, one can show that

|Pr [X1 ]− Pr [X0 ]| ≤ Advots-ex-for
ots,F (k) ,

for a suitable adversary F , where Advots-ex-for
ots,F (k) is the probability that F

breaks the existential unforgeability of the one-time signature scheme.
Game 2 proceeds like Game 1, but we introduce some notation useful for

later. Denote by C(i) = (c(i), vk (i), σ(i)) the i-th decryption request of A. Define

Q :=
⋃

vk(i) 6=vk∗

Fvk(i)

for the sets Fvk(i) of pke keypairs associated with the respective i-th query. We
know that Fvk∗ 6⊆ Q, so we can define j := min (Fvk∗ \Q). Additionally, we
choose (this can be done at the beginning of the game, right after vk∗ is fixed)
uniformly and independently i ∈ Fvk∗ . Call FAIL the event that i 6= j. Note
that

Pr [FAIL | X2 ] =
l − 1

l
= Pr [FAIL ],

so the events X2 and FAIL are independent, and in particular, Pr [X2 ] =
Pr [X2 | ¬FAIL ]. Since we did not actually change anything, Pr [X2 ] = Pr [X1 ].

In Game 3, we substitute A’s output b′ with a random bit whenever FAIL
occurs. Obviously,

Pr [X3 | ¬FAIL ] = Pr [X2 | ¬FAIL ] and Pr [ X3 | FAIL ] =
1
2
.

Since Pr [FAIL ] = (l − 1)/l in Game 3 as well, we can establish that

Pr [X3 ]− 1
2

=
Pr [X2 ]− 1

2

l
.

In Game 4, we immediately stop the experiment and set FAIL to true
(hence immediately taking a random bit for A’s output) as soon as A asks for
a decryption of a ciphertext with a verification key vk 6= vk∗ such that i ∈ Fvk .
Note that already in Game 3, such a query would have implied j 6= i and hence
FAIL. Consequently,

Pr [X4 ] = Pr [X3 ].

Note that Game 4 can be run without knowledge of the secret key sk i.
In Game 5, the challenge ciphertext is prepared as follows. For encrypting

the challenge message Mb with pke, we first choose uniformly pke plaintexts
M∗

1 , . . . ,M∗
i−1,M

∗
i+1, . . . ,M

∗
l and then the suitable

M∗
i := Mb ⊕

⊕
r 6=i

M∗
r .



Note that then, only the plaintext M∗
i depends on the experiment bit b. This

does not change the distribution of the whole vector M∗
1 , . . . ,M∗

l , and we have

Pr [X5 ] = Pr [X4 ].

On the other hand, Game 5 can be directly mapped to an adversary B on the
IND-CPA security of pke. More concretely, B simulates Game 5, but substitutes
pk i with its own challenge public key, and submits as challenge plaintexts

M̂0 := M0 ⊕
⊕
r 6=i

M∗
r and M̂1 := M1 ⊕

⊕
r 6=i

M∗
r .

Then, Pr [X5 ] is precisely the success probability of B in the IND-CPA experi-
ment

|Pr [X5 ]− 1
2
| = 1

2
AdvIND-CPA

pke,B (k) .

Collecting probabilities shows that

AdvIND-q-CCA
pke,A (k) ≤ l(k) ·AdvIND-CPA

pke,B (k) + 2 ·Advots-ex-for
ots,F (k) .

Since AdvIND-CPA
pke,B and Advots-ex-for

ots,F are negligible, this shows the claim. ut

Remark 1. We stress that it is important for our construction that the number
of subsets s(k) is super-polynomial in k. One could try to trivially build q(k)-
bounded CCA secure encryption pke from CPA secure pke using a public/secret
key vector of size q(k) and defining the subsets Fi as {i}, for 1 ≤ i ≤ s(k) := q(k).
For encryption, a message gets encrypted using pkvk , where vk ∈ {1, . . . , q(k)}
is one of the q(k) distinct public keys of pke, and vk is a random verification
key of the signature scheme. However, since there are only q(k) many possible
choices of verification keys, one can break the scheme with probability 1

q(k) by
(trivially) breaking the signature scheme with probability 1

q(k) .

Remark 2. It might be interesting to explore what (additional) security proper-
ties pke satisfies once invoked with a scheme pke that itself is not only IND-
CPA-secure, but, say, NME-CPA-secure. Unfortunately, we cannot hope that pke
is NME-CPA-secure, independently of pke’s security: say that adversary A re-
ceives a challenge ciphertext C∗ = (c∗, vk∗, σ∗) with c∗ = (c1, . . . , cl) and Fvk∗ =
{s∗1, . . . , s∗l }. ThenAmay be able to construct l(k) ciphertexts C(1), . . . , C(l) such
that C(i) is associated with a subset F (i) with s∗i ∈ F (i) 6= Fverk, and the vector
c(i) consists only of 0-encryptions except for c∗i . The XOR of the decryptions of
C(i) is precisely the challenge plaintext, hence this is a successful malleability
attack.

We note that if we assume the IND-CCA1 security of pke, this proof also
shows that the resulting scheme pke is secure against IND-CCA attackers who
have full access to a decryption oracle before receiving the challenge ciphertext,
but only limited access (q queries) to it in the second attack phase.



4 Bounded IND-CCA-secure Encryption from DDH

In this section we propose a construction of IND-q-CCA-secure encryption based
on the Decisional Diffie Hellman (DDH) assumption. The construction follows
the approach from the previous section; we make use of cover-free sets and (with
the same parameters as in Section 3) set up d(k) independent instances of the
(semantically secure) El-Gamal encryption scheme. We encrypt a message using
a subset of the d(k) keys, where the subset is determined by cover-free sets. Cer-
tain homomorphic properties of El-Gamal encryption are exploited to shrink the
ciphertext size down to one group element. (This stands in contrast to Cramer-
Shoup encryption which requires 4 group elements, and the Kurosawa-Desmedt
one which requires 2 group elements and a MAC.) The main contribution of
this section is to demonstrate the existence of such limited q(k)-bounded CCA
secure schemes with such an optimal ciphertext size.
To instantiate our scheme we need the following building blocks:

– A cyclic group G of prime-order p where the DDH assumption is believed to
hold, i.e, the two distributions (g, gx, gy, gxy) and (g, gx, gy, gz) are compu-
tationally indistinguishable, for random g ∈ G, and random x, y, z ∈ Zp.

– A redundancy-free symmetric-key encryption scheme (E,D) which is secure
against chosen-ciphertext attacks [8]. Such schemes can be constructed based
on strong pseudorandom permutations [25]. For simplicity, we assume that
the key space of (E,D) is G. (In practice, we can convert K ∈ G into a
random binary string by using key derivation functions [8].)

– A hash function TCR : G → {0, 1}k that is assumed to be target collision-
resistant [21].

Let G be a prime order group and g a random generator of G. The construction
is given in Fig. 2. Correctness is easy to verify. Public and secret keys have
quadratic size in the maximal number of decryption queries q(k). The ciphertext
overhead of the scheme (i.e., the difference between ciphertext and plaintext
size) is only one group element c ∈ G. The ciphertext length of our scheme
is considered optimal since it is the same as that of the CPA secure (original)
El-Gamal encryption.

Theorem 5. Assume TCR is a target collision-resistant hash function, G is a
group where the DDH assumption holds, and (E,D) is a symmetric encryption
scheme that is secure against chosen-ciphertext attacks. Then pke as described
in Fig. 2 satisfies IND-q-CCA security.

The proof of this theorem is very similar to the one of Lemma 1 and is omitted
here. The idea is to prove that the underlying key encapsulation mechanism
(KEM) is IND-q-CCA-secure under the DDH assumption. Using the KEM/DEM
composition theorem [8], this implies the result. Intuitively, we can explain q(k)-
bounded CCA security of the KEM part as follows: Given (g, gx, gy, h) ∈ G4,
an algorithm B against the DDH problem randomly picks α from Ft∗ where
t∗ = TCR(gy), and sets Xα ← gx. For all i ∈ {1, . . . , d(k)}\{α}, B computes



Gen(1k) : Define s(k) = 2k, d(k) = 16kq2(k), l(k) = 4kq(k). For i = 1, . . . , d(k)
compute Xi = gxi for random xi ∈ Zp. Output PK = (X1, . . . , Xd(k)) and
SK = (x1, . . . , xd(k)).

Enc(PK ,M): Compute c = gr for random r ∈ Zp. Let Ft be the subset associated
to t = TCR(c). Use symmetric key K = (

Q
i∈Ft

Xi)
r to encrypt message M to

ψ ← EK(M). Output C = (c, ψ).
Dec(SK , C = (c, ψ)): Let Ft be the subset associated to t = TCR(c). Reconstruct

the symmetric key as K = c
P

i∈Ft
xi and decrypt ψ to M ← DK(ψ).

Fig. 2. An IND-q-CCA-secure PKE scheme based on DDH.

xi
$← Z∗p and Xi ← gxi , and gives PK = (X1, . . . , Xd(k)) to another adversary

A against the IND-q-CCA security of the KEM part. B also sets (c∗,K∗) as a
challenge which will be given toA, where c∗ = gy, and K∗ = h·

∏
i∈Ft∗\{α}(g

y)xi .
B outputs “h = gxy” if A outputs “real key”, or “h 6= gxy” otherwise. It is
clear that for any query c, B can respond K = c

P
i∈Ft

xi unless α ∈ Ft where
t = TCR(c). Then, by a similar argument to that in Lemma 1, we can show that
B breaks the DDH assumption.

5 Construction of Bounded NME-CCA-Secure Encryption

In this section, we construct an NME-q-CCA-secure encryption scheme using
any semantically secure (IND-CPA-secure) encryption scheme. The construction
is the same as the DDN construction [10] and the construction of Pass, Shelat
and Vaikuntanathan [24], except that the NIZK proof used is a “designated-
verifier” NIZK proof (DV-NIZK) with “q-bounded strong soundness”. Infor-
mally, a designated-verifier NIZK proof is one where the verifier has some secret
information that enables him to check the validity of a proof. A DV-NIZK proof
is q-bounded sound, if soundness holds even against an adversary who can query
the verifier on at most q proofs and learn if the proofs are valid or not. We refer
the reader to the full version for definitions and constructions of such designated
verifier NIZK (relying on the construction from [24]).9

Because the security proof for this construction is so similar to the one
from [24], we merely summarize the differences necessary to take care of the
additional decryption oracle available to a q-CCA adversary. For a full proof,
refer to the full version of this paper.

Theorem 6. Assume there exists an IND-CPA-secure scheme. Then, for every
polynomial q, there exists an encryption scheme that is NME-q-CCA-secure.

9 For technical reasons we also require to slightly strengthen the zero-knowledge prop-
erty of designated verifier NIZK of [24].



Proof idea: Recall that an encryption of a message m from the construction
in [24] is of the form (c, π, vk , σ), where vk := v1 . . . vk is a k-bit verification-key
for a strong one-time signature scheme, c = (c1, . . . , ck) is a vector of encryptions
of m where ci is an encryption of m under the IND-CPA public-key pkvi

, π is
a DV-NIZK proof that all the encryptions in c are encryptions of the same
message, and σ is a signature of (c, π) under a signing key corresponding to vk .

The proof in [24] proceeds by defining hybrid experiments NME
(1)
b and NME

(2)
b

and proceeding to show that the experiments are indistinguishable, and that if
an adversary succeeds in breaking NME

(2)
b , it breaks the semantic security of the

underlying encryption scheme.

We will proceed in a completely analogous way, by defining experiments
NME-q-CCA

(1)
b and NME-q-CCA

(2)
b for b ∈ {0, 1}. The experiment NME-q-CCA

(1)
b

proceeds like NME-q-CCAb except that the DVNIZK proof in the challenge ci-
phertext is generated by the zero-knowledge simulator for the DVNIZK proof
system. To answer the decryption queries, notice that each experiment itself
knows all the secret keys, including the DV-NIZK key sp that is required to
check the validity of a proof.

If the two experiments are distinguishable, we can construct an adversary
that breaks the adaptive zero-knowledge of the DVNIZK. Slightly more precisely,
a theorem-chooser/distinguisher pair (Azk,Dzk) on the DV-NIZK is constructed
such that Azk internally simulates the first stage (up to the generation of the
challenge ciphertext) of the NMEb experiment, and Dzk internally simulates the
second stage. Azk generates all encryption and signature keypairs on its own, but
takes the DV-NIZK public key pp from the adaptive zero-knowledge experiment.
Since we assume a DV-NIZK with a strong adaptive zero-knowledge property, in
the corresponding reduction already Azk knows sp and can thus answer decryp-
tion queries before the challenge ciphertext is known. This is the only difference
from the proof of Claim 1 in [24].

In Claim 2 of [24], the probability for the event BadNIZK(Expt) that the
adversary breaks the soundness of the DV-NIZK (in Expt ∈ {NMEb,NME

(1)
b ,

NME
(2)
b }) must be shown negligible. For Expt = NMEb, this is done by con-

structing an adversary As on the soundness property of the DV-NIZK. Here,
As internally simulates the complete NMEb experiment (except for the final de-
cryption of the forged ciphertext vector) and generates all keypairs except the
DV-NIZK key on its own. The DV-NIZK public key pp is taken from the sound-
ness experiment; since in the [24] CPA setting, no decryptions are necessary,
this is sufficient. However, in our q-CCA setting, As might need to answer up
to q decryption queries in the NME-q-CCA experiment, and thus needs to check
the validity of up to q DV-NIZK proofs. Fortunately, this is exactly what an
adversary against the assumed q-adaptive soundness property can do by using
the “verifier-oracle” that checks the validity of proofs at most q times.

Then, Pr
[
NME-q-CCA

(1)
b

]
≈ Pr [NME-q-CCAb ], follows similarly (only now

by a reduction on the strong adaptive zero-knowledge property as before).



The experiment NME-q-CCA
(2)
b is defined similarly to [24]. However, we

cannot show Pr
[
NME-q-CCA

(1)
b

]
= Pr

[
NME-q-CCA

(2)
b

]
, but can only show

Pr
[
NME-q-CCA

(1)
b

]
≈ Pr

[
NME-q-CCA

(2)
b

]
, which sufficient for the further ar-

gument. The reason that we cannot show equality is that the view of an adversary
in the Pr

[
NME-q-CCA

(i)
b

]
experiments is identical for i = 1, 2 only under the

condition that the answers to CCA decryption queries do not differ (for i = 1, 2;
note that in experiment NME-q-CCA

(2)
b , decryption is performed differently than

in NME-q-CCA
(1)
b ). However, such decryption queries are answered differently

only if event BadNIZK happens or if the adversary successfully forged a sig-
nature. The probability that one of these events occurs in NME-q-CCA

(1)
b is

negligible, and thus Pr
[
NME-q-CCA

(1)
b

]
≈ Pr

[
NME-q-CCA

(2)
b

]
follows.

If the adversary succeeds in NME-q-CCA
(2)
b , we can construct another adver-

sary that breaks the semantic security of the underlying cryptosystem. The rest
of the proof is completely analogous to that in [24].

6 Separating NME-CPA from IND-q-CCA

In this section, we show that under bounded chosen ciphertext attacks, non-
malleability of the encryption scheme is not immediately implied by indistin-
guishability. In particular, for any polynomial q, we exhibit an encryption scheme
that is IND-q-CCA-secure but is not non-malleable under even a chosen plain-
text attack (i.e., a malleability attack where the adversary makes no decryption
queries). In contrast, it has been shown that unbounded IND-CCA security im-
plies non-malleability (even against unbounded CCA attacks) [10, 1].

Gen′(1k) : Run Gen(1k) and get a pair of keys (pk , sk). Suppose sk is an `-bit
string. Choose a random degree-q polynomial p(x) = pqx

q + · · · + p1x + sk
with coefficients in GF (2`) and whose constant term is sk . Output pk ′ = pk
and sk ′ = (sk , p).

Enc′(pk ,m) : Get c← Enc(pk ,m) and output (0, c).
Dec′(sk , c) : Parse c as (c1, c2). If c1 = 0, output Dec(sk , c2). Else, if c2 > 0, output

p(c2) and otherwise return 0.

Fig. 3. An IND-q-CCA-secure PKE scheme pke′ which is malleable.

Theorem 7. If there exists an IND-q-CCA secure cryptosystem pke, then there
exists another IND-q-CCA secure cryptosystem pke′ that is not NME-CPA-secure.



Remark. Theorem 4 shows that the existence of a semantically-secure cryp-
tosystem implies the existence of an IND-q-CCA cryptosystem. Therefore, the
“if” clause of the above theorem can be simplified. However, we choose to present
it as above to highlight the point that IND-CCA does not imply NME-CPA.

Proof. Assume that there exists an encryption scheme pke = (Gen,Enc,Dec)
that iss IND-q-CCA-secure. Then, we construct an encryption scheme pke′ =
(Gen′,Enc′,Dec′) (given in Figure 6) that is also IND-q-CCA-secure, but is not
NME-CPA-secure. The proof follows from the two claims shown below.

Claim. (Gen′,Enc′,Dec′) is IND-q-CCA-secure.

Proof. Suppose that the claim does not hold. We use the adversaryA that breaks
the security of pke′ = (Gen′,Enc′,Dec′) to construct a q-bounded IND-q-CCA
attack against pke = (Gen,Enc,Dec). The new adversary A′, on input pk , simply
runs A(pk). When asked to decrypt a ciphertext (0, c), it forwards the query to
its own decryption oracle. When asked to decrypt a ciphertext of the form (1, c2),
it returns either 0 if c2 = 0 or a random value. Since A makes at most q queries,
then A′ will be able to answer all queries. The simulation is perfect because
the degree-q polynomial p(·) is q-wise independent. This adversary A′ succeeds
with the same probability as A, which contradicts the assumption that pke is
q-bounded secure. ut

Claim. (Gen′,Enc′,Dec′) is not NME-CPA-secure.

Proof. Without loss of generality, assume that the message space of pke include
the bits 0 and 1. On input a public key pk , the adversary submits as a message
pair, 0 and 1.

Upon receiving a ciphertext c, the attacker first computes α = Enc(pk , c). It
then returns the vector (α, β1, . . . , βq+1) where βi = (1, i).

Notice that the output of the experiment is the vector (c, p(1), . . . , p(q + 1)).
The distinguisher D now works as follows. It first uses p(1), . . . , p(q + 1) to
interpolate the secret key sk , and then runs Dec(sk , c) and prints the result as
its output.

The distinguisher’s output in the NME0 experiment will therefore be 0 and
its output in the NME1 will be 1, which shows that pke′ is not even NME-CPA-
secure.

As one final point, it may be that the message space of pke does not include
the ciphertext — for example, the size of the ciphertext may be too big. This is
easily handled. The adversary can simply encode c in a bit-by-bit fashion over
many ciphertexts, and the distinguisher can simply reconstruct c to perform its
test. ut
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