A decidable language that is not in \mathbf{P}

Vassos Hadzilacos

Theorem 7.2 The language

 $EXP = \{ \langle M, x \rangle : M \text{ accepts } x \text{ in at most } 2^{|x|} \text{ steps} \}$

is decidable but it is not in P.

PROOF. To decide whether $\langle M, x \rangle \in EXP$, we run the universal Turing machine on input $\langle M, x \rangle$ for up to $2^{|x|}$ steps or until M on x halts, whichever happens first. If M accepts x within that number of steps, we accept; otherwise we reject.

To prove that $EXP \notin \mathbf{P}$ we use a form of diagonalization. Suppose, for contradiction, that $EXP \in \mathbf{P}$. Then the language

$$EXP' = \{ \langle M \rangle : M \text{ accepts } \langle M \rangle \text{ in at most } 2^{|\langle M \rangle|} \text{ steps} \}$$

is also in **P**. (This is because, from input $\langle M \rangle$ we can first construct $\langle M, \langle M \rangle \rangle$ in polytime, and then use this as input to a polytime Turing machine M_{EXP} that decides EXP; the answer of M_{EXP} on $\langle M, \langle M \rangle \rangle$ tells us whether $\langle M \rangle \in EXP'$.)

Now consider the complement of EXP', which we denote D (for "diagonal"):

$$D = \{ \langle M \rangle : \text{ M does } \underline{\text{not}} \text{ accept } \langle M \rangle \text{ in at most } 2^{|\langle M \rangle|} \text{ steps} \}.$$

Since EXP' is in **P**, so is its complement D. (All we have to do is negate the output of a polytime Turing machine that decides EXP'.) So, let M_D be a polytime Turing machine that decides D, and let n^k be a polynomial that is an upper bound on the running time of M_D . Then there is some natural number n_0 such that for all $n \ge n_0$, $n^k \le 2^n$. (This is because every polynomial n^k , no matter how large the degree k, is eventually dominated by every exponential b^n , no matter how small the base b > 1.) Without loss of generality, we can assume that $|\langle M_D \rangle| \ge n_0$. (This is because we can pad M_D with junk states or tape symbols — i.e., states that M_D never enters or tape symbols that it never writes — to make its description longer than n_0 .) So, $|\langle M_D \rangle|^k \le 2^{|\langle M_D \rangle|}$. Therefore

 M_D on input $\langle M_D \rangle$ halts (accepts or rejects) in at most $2^{|\langle M_D \rangle|}$ steps.

Now let's see what happens if we unleash M_D on its own code. There are two cases.

CASE 1. M_D accepts $\langle M_D \rangle$ (in at most $2^{|\langle M_D \rangle|}$ steps). Since M_D decides D, this means that $\langle M_D \rangle \in D$ and, by definition of D, this implies that M_D does not accept $\langle M_D \rangle$ in at most $2^{|\langle M_D \rangle|}$ steps, contrary to the hypothesis of Case 1.

CASE 2. M_D rejects $\langle M_D \rangle$ (in at most $2^{|\langle M_D \rangle|}$ steps). Then $\langle M_D \rangle \notin D$, and so M_D accepts $\langle M_D \rangle$ in at most $2^{|\langle M_D \rangle|}$ steps, contrary to the hypothesis of Case 2.

Since both cases lead to contradiction, our original assumption, that $EXP \in \mathbf{P}$, is false. Therefore $EXP \notin \mathbf{P}$, as wanted.