A decidable language that is not in \mathbf{P}

Vassos Hadzilacos

Theorem 7.2 The language

$$
E X P=\left\{\langle M, x\rangle: M \text { accepts } x \text { in at most } 2^{|x|} \text { steps }\right\}
$$

is decidable but it is not in \boldsymbol{P}.
Proof. To decide whether $\langle M, x\rangle \in E X P$, we run the universal Turing machine on input $\langle M, x\rangle$ for up to $2^{|x|}$ steps or until M on x halts, whichever happens first. If M accepts x within that number of steps, we accept; otherwise we reject.

To prove that $E X P \notin \mathbf{P}$ we use a form of diagonalization. Suppose, for contradiction, that $E X P \in \mathbf{P}$. Then the language

$$
E X P^{\prime}=\left\{\langle M\rangle: M \text { accepts }\langle M\rangle \text { in at most } 2^{|\langle M\rangle|} \text { steps }\right\}
$$

is also in \mathbf{P}. (This is because, from input $\langle M\rangle$ we can first construct $\langle M,\langle M\rangle\rangle$ in polytime, and then use this as input to a polytime Turing machine $M_{E X P}$ that decides EXP; the answer of $M_{E X P}$ on $\langle M,\langle M\rangle\rangle$ tells us whether $\langle M\rangle \in E X P^{\prime}$.)

Now consider the complement of $E X P^{\prime}$, which we denote D (for "diagonal"):

$$
D=\left\{\langle M\rangle: \mathrm{M} \text { does not accept }\langle M\rangle \text { in at most } 2^{|\langle M\rangle|} \text { steps }\right\} .
$$

Since $E X P^{\prime}$ is in \mathbf{P}, so is its complement D. (All we have to do is negate the output of a polytime Turing machine that decides $E X P^{\prime}$.) So, let M_{D} be a polytime Turing machine that decides D, and let n^{k} be a polynomial that is an upper bound on the running time of M_{D}. Then there is some natural number n_{0} such that for all $n \geq n_{0}, n^{k} \leq 2^{n}$. (This is because every polynomial n^{k}, no matter how large the degree k, is eventually dominated by every exponential b^{n}, no matter how small the base $b>1$.) Without loss of generality, we can assume that $\left|\left\langle M_{D}\right\rangle\right| \geq n_{0}$. (This is because we can pad M_{D} with junk states or tape symbols - i.e., states that M_{D} never enters or tape symbols that it never writes - to make its description longer than n_{0}.) So, $\left|\left\langle M_{D}\right\rangle\right|^{k} \leq 2^{\left|\left\langle M_{D}\right\rangle\right|}$. Therefore

$$
M_{D} \text { on input }\left\langle M_{D}\right\rangle \text { halts (accepts or rejects) in at most } 2^{\left|\left\langle M_{D}\right\rangle\right|} \text { steps. }
$$

Now let's see what happens if we unleash M_{D} on its own code. There are two cases.
CASE 1. M_{D} accepts $\left\langle M_{D}\right\rangle$ (in at most $2^{\left|\left\langle M_{D}\right\rangle\right|}$ steps). Since M_{D} decides D, this means that $\left\langle M_{D}\right\rangle \in D$ and, by definition of D, this implies that M_{D} does not accept $\left\langle M_{D}\right\rangle$ in at most $2^{\left|\left\langle M_{D}\right\rangle\right|}$ steps, contrary to the hypothesis of Case 1.

Case 2. M_{D} rejects $\left\langle M_{D}\right\rangle$ (in at most $2^{\left|\left\langle M_{D}\right\rangle\right|}$ steps). Then $\left\langle M_{D}\right\rangle \notin D$, and so M_{D} accepts $\left\langle M_{D}\right\rangle$ in at most $2^{\left|\left\langle M_{D}\right\rangle\right|}$ steps, contrary to the hypothesis of Case 2.

Since both cases lead to contradiction, our original assumption, that $E X P \in \mathbf{P}$, is false. Therefore $E X P \notin \mathbf{P}$, as wanted.

