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A set A is countable or enumerable if it is finite or there is a bijection f : N → A (i.e., A can
be placed in a one-to-one correspondence with the natural numbers). A set is uncountable if it is not
countable.

From the definition of countable set it follows immediately that A is countable if and only if there is a
finite or infinite sequence S = a0, a1, a2, . . . such that every element of A appears once and only once in S.
We call such a sequence an enumeration of the set A.

In lecture we saw examples of countable and uncountable sets. In particular, we saw two proof tech-
niques, both due to Cantor: Dovetailing (merging countably many infinite sequences into a single infinite
sequence), which can be used to prove that a set is countable; and diagonalization, which can be used
to prove that a set is not countable.

Following is a list of the results of this nature that we have proved using these techniques.

Theorem 1.1: Z is countable.

Theorem 1.2: N× N is countable.

Theorem 1.3: For every positive integer k, Nk = N× N× · · · × N︸ ︷︷ ︸
k times

is countable.

Theorem 1.4: N∗ =
⋃

k∈NNk (the set of finite sequences of natural numbers) is countable.

Theorem 1.5: The set of infinite sequences over {0, 1} is uncountable.

Theorem 1.6: The set of functions from N to N is uncountable.

Theorem 1.7: The set of (finite) strings over a (finite) alphabet is countable.

We can leverage the fact that we know that certain sets are countable (or uncountable) to show that
other sets have this property.

For example, consider the set of “step functions” from N to N. A function f : N → N is called a step
function if there is some nf ∈ N and a, b ∈ N such that for all n, 0 ≤ n ≤ nf , f(n) = a and for all n > nf ,
f(n) = b. Is the set of step functions from N to N countable or uncountable?

Notice that a step function f : N → N can be uniquely and fully described by a triple of natural
numbers (nf , a, b). Sometimes we say that this triple encodes the function f : Given a step function there
is a unique triple that corresponds to it; and conversely, given a triple, there is a unique step function
defined by it. Since triples of natural numbers can be encoded by (correspond one-to-one to) natural
numbers (see Theorem 1.3), we conclude that

Theorem 1.8: The set of step functions from N to N is countable.

The preceding argument exemplifies a useful way to prove that a set is countable: Show that every
element of the set can be encoded by (i.e., placed into a one-to-one correspondence with) the elements of
a set we have already proved is countable. Now, we can use Theorem 1.8 to show:

Theorem 1.9: The set of non-step functions from N to N is uncountable.

Proof. Suppose, for contradiction, that the set of non-step N → N functions is countable, and let
f0, f1, f2, . . . be an enumeration of this set. By Theorem 1.8, the set of N→ N step functions is countable,
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so let g0, g1, g2, . . . be an enumeration of this set. Then we can enumerate the set of all N → N functions
by dovetailing as f0, g0, f1, g1, f2, g2, . . ., contradicting Theorem 1.6.

As an exercise, try to prove Theorem 1.9 using diagonalization.

Following are some useful facts about countable sets:

Theorem 1.10:

(a) If f : N→ A is an onto (surjective) function, then A is countable.

(b) If A ⊆ B and B is countable, then A is countable.

(c) If A and B are countable, then A ∪B is countable.

(d) If for each i ∈ N the set Ai is countable then the set
⋃

i∈NAi is countable. (That is, the union of
countably many countable sets is countable!).

Proof. Part (a) is left as an exercise. (See Question 1(a) in Assignment 1!) It implies that if a0, a1, a2, . . .
is a sequence of elements of A such that every element of A appears at least once (i.e., this sequence is
a listing of all elements of A but possibly with duplicates) then A is countable. This is useful because it
is sometimes simpler to describe a listing of a set that may contain duplicates. (Note that the sequence
a0, a1, a2, . . . is not an enumeration of A, which is a sequence in which every element of A must appear
exactly once.)

Part (b) follows from (a): Intuitively, given an enumeration of B we can write an enumeration of A with
possible duplicates by replacing elements in the enumeration of B that are not in A by some element of A.
(If A is empty, then it is by definition countable since the empty set is finite.)

For part (c), let a0, a1, a2, . . . be an enumeration of A and b0, b1, b2, . . . be an enumeration of B. By
dovetailing these two sequences

a0, b0, a1, b1, a2, b2, . . .

we get an enumeration (with possible repetition) of A ∪B. By part (a), A ∪B is countable.

For part (d) we can assume, without loss of generality, that every Ai is non-empty. (If A is countable
then A ∪ ∅ = A is also countable.) Let ai0, ai1, ai2 , . . . be an enumeration of Ai; if Ai is finite, we pad
the enumeration by repeating some element of Ai an infinite number of times (we can do this because we
assume that Ai is non-empty). So, every element of ∪i∈NAi appears (at least once) in the following table:

a00 a01 a02 a03 · · ·
a10 a11 a12 a13 · · ·
a20 a21 a22 a23 · · ·
a30 a31 a32 a33 · · ·
...

...
...

...
. . .

By dovetailing we can enumerate (possibly with repetition) all elements of all Ai’s. Thus, by part (a),⋃
i∈NAi is countable. �
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