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Colourability is the following decision problem, abbreviated Col:

Instance: 〈G, k〉, where G = (V,E) is an undirected graph and k ∈ Z+.

Question: Does there exist a function f : V → [0..k − 1] such that for every {u, v} ∈ E, f(u) 6= f(v).
Such a function is called a colouring of G, and if it exists we say that G is k-colourable and that it has a
k-colouring.

As the name suggests, we think of the numbers assigned to the nodes by the function f as “colours”,
and the colouring requirement is that adjacent nodes be assigned distinct colours.

Theorem 10.1 Col is NP-complete.

Proof. It is straightforward to show that Col ∈ NP: A nondeterministic Turing machine can, in
polynomial time, “guess” a sequence of pairs (u, i), where u ∈ V and i ∈ [0..k − 1] and then check that
(a) there is such a pair for each node u of G and (b) adjacent nodes of G have different “colours”.

We prove that Col is NP-hard by showing that 3Sat ≤p
m 3DM. Given a 3-CNF formula F we show

how to construct, in polynomial time, a graph G and a positive integer k such that

F is satisfiable if and only if G has a k-colouring. (*)

Let F = C1 ∧C2 ∧ · · · ∧Cm be a 3-CNF formula with variables x1, x2, . . . , xn. Each clause Cj of F is a
disjunction of three literals xi or xi for some i ∈ [1..n]. Without loss of generality we assume that n ≥ 4.1

The instance of Col that we construct from F consists of the following graph G = (V,E) and k = n+1.
(Recall that n is the number of variables and m is the number if clauses in F .) We group the nodes and
edges according to their purpose, which is to simulate certain aspects of the formula.

V = {v1, . . . , vn}︸ ︷︷ ︸
“palette” nodes

∪{x1, . . . , xn} ∪ {x1, . . . , xn}︸ ︷︷ ︸
“literal” nodes

∪{C1, . . . , Cm}︸ ︷︷ ︸
“clause” nodes

E =
{
{vi, vi′} : i, i′ ∈ [1..n] and i 6= i′

}
←− type I edges

∪
{
{xi, xi} : i ∈ [1..n]

}
←− type II edges

∪
{
{xi, vi′} : i, i′ ∈ [1..n] and i 6= i′

}
∪
{
{xi, vi′} : i, i′ ∈ [1..n] and i 6= i′

}
←− type III edges

∪
{
{Cj , xi} : xi is not a literal in Cj

}
∪
{
{Cj , xi} : xi is not a literal in Cj

}
←− type IV edges

Let us first examine the time needed to construct G and k from F . We have

|V | = 3n + m

|E| = Θ(n2) + Θ(n) + Θ(n2) + Θ(mn) = Θ(n2 + mn)

1We can justify this assumption in various ways: We can add new clauses with new variables, say (x ∨ x ∨ x), until we
have enough variables; the resulting formula is obviously satisfiable if and only if F is (the new clauses are trivially satisfiable
without affecting the original ones). Alternatively we can observe that if n ≤ 3 there are at most eight truth assignments, so
we can determine in polynomial time if F is satisfiable and accordingly map it to a graph that is or is not k-colourable.
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and so the size of G and k are polynomial in the size of F , and they can be constructed from it in polynomial
time.

It remains to prove (∗). First we show that n + 1 colours are necessary and sufficient for a colouring
of the palette and literal nodes, even ignoring (for now) the clause nodes Cj and their associated edges
(type IV).

• The type I edges form a clique among the n palette nodes. Thus we need n distinct colours for these
nodes. Without loss of generality, let i be the colour of vi.

• Type III edges imply that for each i ∈ [1..n], literal nodes xi and xi cannot be coloured with any of
the colours [1..n] except i. Furthermore, type II edges require that these nodes have different colours.
So we need a new colour, which we will call 0. Therefore, for every i ∈ [1..n],

one of xi and xi is coloured i and the other is coloured 0. (†)

The name of the new colour is suggestive of he intuition that, in a truth assignment that satisfies F ,
the literal that corresponds to a node coloured 0 is false.

Thus, the n + 1 colours [0..n] are necessary and sufficient for the palette and literal nodes. Given the
colouring of the palette and literal nodes with these colours that was described above, we now turn to the
colouring of the clause edges Cj , j ∈ [1..m].

• Since the clause Cj has three literals, by the assumption that n ≥ 4, there is some variable xi so the
Cj is adjacent to both xi and xi through type IV edges. Therefore, by (†),

Cj cannot be coloured 0. (‡)

• Because of type IV edges, Cj is adjacent to every literal node except the three that correspond to
the literals of clause Cj . So,

Cj can be assigned a colour other than 0 if and only if at least one of the literal nodes

that correspond to the three literals of clause Cj is assigned a colour other than 0.
(§)

By (‡) and (§), G is (n + 1)-colourable if and only if, for each j ∈ [1..m], clause Cj has a literal whose
associated node has a colour other than 0. Viewing colouring node xi with i as setting the corresponding
variable to true, and colouring it with 0 as setting the variable to false, this means that G is (n+1)-colourable
if and only if some truth assignment satisfies every clause — i.e., if and only if F is satisfiable.

It turns out that even the 3-colourability problem (fixing the parameter k to 3) is NP-complete. On the
other hand, 2-colourability can be decided in polynomial (in fact linear) time using breadth- or depth-first
search: A graph is 2-colourable if and only if it is bipartite.

2


