Colourability

Vassos Hadzilacos

Colourability is the following decision problem, abbreviated COL:

Instance: (G, k), where G = (V, E) is an undirected graph and $k \in \mathbb{Z}^+$.

Question: Is there a function $f: V \to [0..k-1]$ such that if $\{u, v\} \in E$, $f(u) \neq f(v)$. Such a function is called a *colouring* of *G*, and if it exists we say that *G* is *k*-colourable and that it has a *k*-colouring.

As the name suggests, we think of the numbers assigned to the nodes by the function f as "colours", and the colouring requirement is that adjacent nodes be assigned different colours.

Theorem 10.1 COL is NP-complete.

PROOF. It is straightforward to show that $\text{COL} \in \mathbf{NP}$: A nondeterministic Turing machine can, in polynomial time, "guess" a sequence of pairs (u, i), where $u \in V$ and $i \in [0..k - 1]$ and then check that (a) there is such a pair for each node u of G and (b) adjacent nodes of G have different "colours".

We prove that COL is **NP**-hard by showing that $3SAT \leq_m^p COL$. Given a 3-CNF formula F we show how to construct, in polynomial time, a graph G and a positive integer k such that

F is satisfiable if and only if G has a k-colouring. (*)

Let $F = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ be a 3-CNF formula with variables x_1, x_2, \ldots, x_n . For each $j \in [1..m]$, $C_j = \ell_j^1 \vee \ell_j^2 \vee \ell_j^3$, where each ℓ_j^t is either x_i or \overline{x}_i for some $i \in [1..n]$. Without loss of generality we assume that $n \geq 4$.¹

The instance of COL that we construct from F consists of the following graph G = (V, E) and k = n+1. (Recall that n is the number of variables and m is the number if clauses in F.) We group the nodes and edges according to their purpose, which is to simulate certain aspects of the formula.

There is a useful abuse of notation here, as we use C_j to denote both a clause of F and a node of G, and x_i and \overline{x}_i to denote both literals of F and nodes of G.

Let us first examine the time needed to construct G and k from F. |V| = 3n + m and $|E| = \Theta(n^2) + \Theta(n) + \Theta(n^2) + \Theta(mn) = \Theta(n^2 + mn)$. So the sizes of G and k are polynomial in the size of F, and they can be constructed from it in polynomial time. It remains to prove (*).

[ONLY IF] Suppose F is satisfiable, and let τ be a truth assignment that satisfies it. Then for each $j \in [1..m]$ there is some $t_j \in [1..3]$ such that $\tau(\ell_j^{t_j}) = 1$. Define the function $f: V \to [0..n]$ as follows:

¹We can justify this assumption in various ways: We can add new clauses with new variables, say $(x \lor x \lor x)$, until we have enough variables; the resulting formula is obviously satisfiable if and only if F is (the new clauses are trivially satisfiable without affecting the original ones). Alternatively we can observe that if $n \le 3$ there are at most eight truth assignments, so we can determine in polynomial time if F is satisfiable and accordingly map it to a graph that is or is not k-colourable.

- (1) $f(v_i) = i.$
- (2) If there is some $j \in [1..m]$ and $i \in [1..n]$ such that $\ell_j^{t_j} = x_i$ then $f(x_i) = i$, $f(\overline{x}_i) = 0$, and $f(C_j) = i$.
- (3) If there is some $j \in [1..m]$ and $i \in [1..n]$ such that $\ell_j^{t_j} = \overline{x}_i$ then $f(x_i) = 0$, $f(\overline{x}_i) = i$, and $f(C_j) = i$.
- (4) If, for every $j \in [1..m]$ and $i \in [1..n]$, $\ell_j^{t_j} \notin \{x_i, \overline{x}_i\}$ then arbitrarily set one of $f(x_i)$ and $f(\overline{x}_i)$ to i and the other to 0.

First note that f is well-defined: Rules (2) and (3) do not result in contradictory definitions for $f(x_i)$ and $f(\overline{x}_i)$, because for this to happen there would have to be $j \neq j' \in [1..m]$ such that for some $i \in [1..n]$, $\ell_j^{t_j} = x_i$ and $\ell_{j'}^{t_{j'}} = \overline{x}_i$; this is impossible because then τ cannot satisfy both x_i and \overline{x}_i .

We can now verify that f is a valid (n+1)-colouring of G: By (1), all palette nodes get different colours, so f respects edges of type I. By (2), (3), and (4), each pair of literal nodes, x_i and \overline{x}_i , get different colours, so f respects edges of type II. Since the literal nodes x_i and \overline{x}_i , one of which is coloured i and the other 0, are only connected to palette nodes $v_{i'}$, for $i' \neq i$, and each $v_{i'}$ is coloured i', f respects edges of type III. By (2) and (3), clause node C_j has different colour than every literal node except $\ell_j^{t_j}$, where $\ell_j^{t_j}$ is a literal that satisfies clause C_j under τ . By the definition of type IV edges, there is no edge between C_j and $\ell_j^{t_j}$, so f respects type IV edges.

[IF] Suppose G is (n+1)-colourable, and let f be an (n+1)-colouring of G. The type I edges form a clique among the n palette nodes. Thus we need n distinct colours for these nodes. Without loss of generality, let i be the colour of v_i .

Type III edges imply that for each $i \in [1..n]$, literal nodes x_i and \overline{x}_i cannot be coloured with any of the colours [1..n] except *i*. Furthermore, type II edges require that these nodes have different colours, since one of them is coloured *i* the other must be coloured 0. Therefore, for every $i \in [1..n]$,

one of x_i and \overline{x}_i is coloured *i* and the other is coloured 0. (†)

We now define a truth assignment τ that satisfies F:

$$\tau(x_i) = \begin{cases} 1, & \text{if } f(x_i) = i \\ 0, & \text{otherwise} - \text{i.e., by } (\dagger), f(x_i) = 0. \end{cases}$$
(\$\$

Consider any clause C_j , $j \in [1..m]$. We claim that τ satisfies at least one of the three literals of C_j . The clause node C_j is connected by type IV edges to every literal node except the three that correspond to the literals in clause C_j . Since $n \geq 4$, there is at least one variable $x_{i'}$, $i' \in [1..n]$, that is not involved in the three literals of C_j , so, by (\dagger), node C_j is not coloured 0 and it is not coloured i' for any variable $x_{i'}$ that does not appear in its literals. So it must be coloured by one of the colours assigned to the three literal node and i be the colour assigned to it and to C_j , so ℓ_j^t is either x_i or \overline{x}_i . We consider these two cases:

CASE 1.
$$\ell_j^t = x_i$$
. Then $f(x_i) = f(C_j) = i$ and so, by $(\ddagger), \tau(x_i) = 1$. Thus, τ satisfies clause C_j .

CASE 2. $\ell_j^t = \overline{x}_i$. Then $f(\overline{x}_i) = f(C_j) = i$. By (†), $f(x_i) = 0$; by (‡), $\tau(x_i) = 0$ and so $\tau(\overline{x}_i) = 1$. Thus, τ satisfies clause C_j .

Therefore τ satisfies C_j , for every $j \in [1..m]$, and so it satisfies F.

It turns out that even the 3-colourability problem (fixing the parameter k to 3) is **NP**-complete. On the other hand, 2-colourability can be decided in polynomial (in fact linear) time using breadth- or depth-first search: A graph is 2-colourable if and only if it is bipartite.