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The class coNP and its relation to NP and P

The class P is closed under complementation: If a problem A can be decided by a deterministic Turing
machine M in polytime, then A can also be decided by a deterministic Turing machine in polytime, namely
the Turing machine M that is like M except that the accept and reject states are swapped.

The same trick does not work for polytime nondeterministic Turing machines. For example, consider
the following polytime nondeterministic Turing machine that decides Sat (described in pseudocode):

Sat-Solver(φ):
1 “guess” a truth assignment τ on the variables of φ
2 if φ is true under τ then accept
3 else reject

If we swap the “accept” and “reject” statements, the resulting nondeterministic TM is of course polytime,
but it does not decide Sat: It accepts a formula if and only if there is a truth assignment that falsifies it,
that is, if and only if the formula is not a tautology. For example, it accepts any formula that has both
satisfying and falsifying truth assignments, and such formulas are not unsatisfiable.

The root cause of the different effect of swapping the accept and reject states between deterministic
and nondeterministic Turing machines is that for the latter to accept an input it suffices for one of its
computation paths to accept, whereas for it to reject, all its computation paths must reject. If the
computation tree of M on input x contains both accepting and rejecting computations, M accepts x;
swapping the accept and reject states in that case results in a Turing machine that still accepts x, and
therefore does not accept the complement of M ’s language.

We encountered a similar phenomenon in the context of recognizers that are not deciders, i.e., Turing
machines that may loop on some inputs. If a Turing machine M fails to accept an input x because it loops,
the Turing machine M obtained by swapping M ’s accept and reject states will also fail to accept x, and
therefore it does not recognize the complement of the language recognized by M . This is fundamentally
the reason why the class of recognizable languages is not closed under complementation, in contrast to the
class of decidable languages, which is.

So the question arises whether NP, like P and the set of decidable languages, is closed under comple-
mentation; or, like the set of recognizable languages, it is not. This is another important open question
in theoretical computer science. It is generally conjectured that the answer is no, but there is no proof of
this as of yet. To explore this question we define another class of languages.

Definition coNP is the class of languages whose complements are in NP.

Examples of problems in coNP are:

• Sat = {φ: φ is not satisfiable}.

• Taut = {φ: φ is a tautology}.

• Clique = {〈G, k〉: G is an undirected graph that contains no clique of at least k nodes}
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Recall the certificate-verifier characterization of NP: A decision problem A is in NP if and only if
every yes-instance x of A has a “short” certificate y that efficiently verifies x’s membership in A; “short”
here means “at most polynomial in the size of x”; and “efficiently” means “in polytime”. More formally,

x ∈ A ⇔ ∃y
(
|y| ≤ |x|k ∧ P (x, y)

)
where k is some constant and P (x, y) is a polytime predicate — i.e., a predicate for which there is a
polytime deterministic Turing machine that, given 〈x, y〉 as input outputs 1 if P (x, y) holds and outputs 0
otherwise. For example,

φ ∈ Sat ⇔ ∃τ
(
τ is a truth assignment to the variables of φ︸ ︷︷ ︸

τ is polysize in |φ|

∧ τ satisfies φ︸ ︷︷ ︸
polytime

)
〈G, k〉 ∈ Clique ⇔ ∃C

(
C is a set of k nodes of G︸ ︷︷ ︸

|C| is polysize in |G|

∧ any two nodes in C are connected by an edge︸ ︷︷ ︸
polytime

)
Since languages in coNP are complements of those in NP, we have a similar characterization of coNP.

A language A ∈ coNP (in other words, A ∈ NP) if and only if

x ∈ A ⇔ ∀y
(
|y| ≤ |x|k → P (x, y)

)
where k is some constant and P (x, y) is a polytime predicate. For example,

φ ∈ Sat ⇔ ∀τ
(
τ is a truth assignment to the variables of φ︸ ︷︷ ︸

τ is polysize in |φ|

→ τ falsifies φ︸ ︷︷ ︸
polytime

)
〈G, k〉 ∈ Clique ⇔ ∀C

(
C is a set of k nodes of G︸ ︷︷ ︸

|C| is polysize in |G|

→ some two nodes in C are not connected by an edge︸ ︷︷ ︸
polytime

)
These characterizations of NP and coNP highlight the difference between these two classes, and

support the intuition that they are, in fact, distinct: Yes-instances of problems in NP have short, efficiently
checkable certificates: I can convince you that a formula is satisfiable by supplying a truth assignment
(which is certainly of polysize compared to the formula) and you can quickly (in polytime) verify that
this truth assignment indeed satisfies the formula. Finding a satisfying truth assignment, if one exists, is
apparently difficult — but verifying one is not. Similarly with all NP problems.

With the complements of NP problems, i.e., with coNP problems, it is not at all clear that such short
and efficiently verifiable certificates exist for the yes-instances. For example, it is not at all clear what
short proof I can provide to convince you that a formula is unsatisfiable, apart from a listing of all truth
assignments for you to verify that none of them satisfies the formula — but that is not a short proof! So,
it feels intuitively that coNP is a different class of problems than NP. Unfortunately, we don’t know if
this intuition is sound, as we do not have a proof that NP 6= coNP. In fact, as we will see, a proof of this
would immediately imply that P 6= NP (see Theorem 11.3).

We now prove some simple facts about coNP and its relation to P and NP.

Theorem 11.1 P ⊆ NP ∩ coNP.

Proof. We already know that P ⊆ NP, so it remains to show that P ⊆ coNP. Let A be any problem
in P. Since P is closed under complementation, A ∈ P, so A ∈ NP; and by definition of coNP, A ∈ coNP.
So, P ⊆ coNP.

It is not known if the containment in Theorem 11.1 is proper, or if equality actually holds. Note that in
the analogous result in computability theory (with NP playing the role of recognizable sets and P playing
the role of decidable sets) equality holds: Decidable = Recognizable ∩ coRecognizable.

The next theorem states that the question NP
?
= coNP is exactly equivalent to asking whether NP

is closed under complementation.
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Theorem 11.2 NP = coNP if and only if NP is closed under complementation.

Proof. We have:

NP = coNP

⇔ for all A, A ∈ NP⇔ A ∈ coNP

⇔ for all A, A ∈ NP⇔ A ∈ NP

⇔ NP is closed under complementation.

Theorem 11.3 If NP 6= coNP then P 6= NP.

Proof. Suppose that NP 6= coNP. By Theorem 11.2, NP is not closed under complementation.
Thus, there is some A ∈ NP such that A /∈ NP. Since P is closed under complementation A /∈ P. So
A ∈ NP−P, and therefore P 6= NP.

It is not known whether the converse of Theorem 11.3 holds: Based on what we know, it is possible
that P 6= NP, yet NP = coNP. Thus, the conjecture that NP 6= coNP is at least as strong as, and
possibly stronger than, the conjecture that P 6= NP.

Definition A decision problem A is coNP-complete if

(a) A ∈ coNP, and

(b) for all B ∈ coNP, B ≤pm A.

That is, to within a polynomial amount of time, coNP-complete problems are the hardest in coNP.

For the proof of the following theorem, recall that if B ≤pm A then B ≤pm A. The very same mapping
that shows B ≤pm A also shows that B ≤pm A.

Theorem 11.4 A is NP-complete if and only if A is coNP-complete.

Proof. We prove the only-if direction; the converse is similar. Suppose A is NP-complete. Then,

• A ∈ NP, and therefore (a) A ∈ coNP.

• For every B ∈ NP, B ≤pm A; therefore, (b) for every B ∈ coNP, B ≤pm A.

(a) and (b) imply that A is coNP-complete.

From this theorem and our wealth of knowledge about NP-complete problems, we get an equally
extensive knowledge about coNP-complete problems.

For the proof of the next theorem, recall Corollary 8.3, one of the simple but important properties of
Karp reductions: If X ≤pm Y and Y ∈ P then X ∈ P. We proved this by noting that we can combine the
polytime reduction of X to Y with the polytime DTM that solves Y to obtain a DTM that solves X in
polytime. Using exactly the same idea, but now with NTMs instead of DTMs, we have:

If X ≤pm Y and Y ∈ NP then X ∈ NP. (*)
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Theorem 11.5 NP = coNP if and only if there is some NP-complete problem A whose complement is
also in NP.

Proof. Only if: Suppose NP = coNP. By Theorem 11.2, NP is closed under complementation.
Thus, the complement of every problem in NP, and therefore of every NP-complete problem, is in NP.
So, the desired conclusion holds not just for some NP-complete problem A, but for all of them.

If: Suppose A is an NP-complete problem whose complement is also in NP, i.e., A ∈ coNP. We want to
show that NP = coNP; by Theorem 11.2, it suffices to show that NP is closed under complementation.
To that end, let B be any problem in NP; we will show that B ∈ NP as well. Since A is NP-complete
B ≤pm A, and therefore B ≤pm A. But, by assumption, A ∈ NP so, by (∗), B ∈ NP, as wanted.

Theorem 11.5 suggests a possible line of attack for the NP
?
= coNP question: To settle it in the (less

expected) equality direction, identify an NP-complete problem whose complement is also in NP. To settle
it in the (more expected) inequality direction, prove that no such problem can exist.

The figure below illustrates the three possibilities for the relationship between P, NP, and coNP,
based on our present knowledge about these classes.

NP-complete

?

(a) (b) (c)

coNP NP

NP = coNP NP = coNP = P

P P

NP-complete

co
NP-

com
ple

te

Possibility (a) is what most complexity theorists believe to be the case: P 6= NP, and NP 6= coNP. Even
in this case we do not know whether P is exactly the intersection of NP and coNP or only a proper subset
of it. Possibility (b) represents the situation where P 6= NP but NP = coNP. Possibility (c) represents
the situation where P = NP = coNP. In cases (a) and (b), i.e., if P 6= NP, it is known that the line
between P and the NP-complete problems is not a sharp dividing line: there are intermediate problems
that are not solvable in polytime but are not NP-complete. (This result is known as Ladner’s theorem
and its proof is beyond the scope of this course.) Following are two candidates for such problems:

• Graph Isomorphism: Given two graphs, can we match-up their nodes one-to-one so that their
edges also match-up one-to-one? More precisely:

Instance: 〈G,G′〉, where G = (V,E) and G′ = (V ′, E′) are undirected graphs. (A similar problem
can be defined for directed graphs.)

Question: Is there a bijection f : V → V ′ such that (u, v) ∈ E if and only if
(
f(u), f(v)

)
∈ E′?
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• Factoring: Given positive integers n and k, is there a non-trivial factor of n that is no greater
than k? More precisely:

Instance: 〈n, k〉, where n, k > 1 are integers.

Question: Is there some integer q such that 1 < q ≤ k and n mod q = 0?

Both of these problems have been studied extensively. We do not know of any polynomial time algorithm
to solve either of them, but we also don’t know if either of them is NP-complete.

The polynomial-time hierarchy

There is a classification of certain decision problems into degrees of (apparently) increasing time complexity
that mirrors the arithmetic hierarchy, which as you will recall classifies decision problems into degrees of
increasing undecidability. This is called the polynomial-time hierarchy, which I will abbreviate as
polytime hierarchy. Just as we had two equivalent ways of characterizing the arithmetic hierarchy —
one based on the types of formulas that define the languages and one based on the kind of oracles needed
to recognize the languages — there are also two equivalent ways of characterizing the polytime hierarchy.

The logic-based view

We say that a predicate P (x, y1, . . . , yi) is polynomially limited (polylimited for short) if it can be true
only for y1, . . . , yi whose length is at most polynomial in the length of x: i.e., there is some constant k
such that if P (x, y1, . . . , yi) is true then |yj | ≤ |x|k, for every j ∈ [1..i]. We say that P (x, y1, . . . , yi) is a
polynomial-time (polytime for short) predicate, if there is a polynomial-time deterministic Turing machine
that, on input 〈x, y1, . . . , yi〉 outputs 1 if P (x, y1, . . . , yi) is true and outputs 0 otherwise.

Definition For all positive integers i,

Σp
i = {A: x ∈ A⇔ ∃y1∀y2 . . .Qiyi P (x, y1, y2, . . . , yi)︸ ︷︷ ︸

polylimited, polytime predicate

}

Πp
i = coΣp

i = {A: x ∈ A⇔ ∀y1∃y2 . . .Qiyi P (x, y1, y2, . . . , yi)︸ ︷︷ ︸
polylimited, polytime predicate

}

where Qi is ∃ if i is odd and is ∀ if i is even, and Qi is the dual quantifier of Qi.

From the characterization of NP as the set of languages (i.e., decision problems) that have short,
efficiently verifiable certificates, we can see that Σp

1 = NP and thus Πp
1 = coNP. Following are some

examples of natural and interesting problems at level 2 of the polytime hierarchy.

• Unique Sat

Instance: 〈φ〉, where φ is a propositional formula.

Question: Is there exactly one truth assignment to the variables of φ that satisfies φ?

We can show that UniqueSat is in Σp
2 by representing with a formula as follows:

Unique Sat =
{
〈φ〉: ∃〈τ〉 ∀〈τ ′〉

(
τ satisfies φ ∧ (τ ′ 6= τ → τ ′ does not satisfy φ)

)}
The quantified variables are polysize (the size of a truth assignment to the variables of φ is polynomial
in the size of 〈φ〉) and the quantifier-free predicate is polytime.

We can generate “unique” versions of any problem in NP — Unique Clique, Unique TSP,
Unique Set Cover, etc — in a similar way, placing all of them in Σp

2.
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• Minimum Formula

Instance: 〈φ〉, where φ is a propositional formula.

Question: Is there is no formula shorter than φ that is logically equivalent to φ?

We can show that Minimum Formula is in Πp
2 by representing it with a formula as follows:

Minimum Formula =
{
〈φ〉: ∀〈φ′〉 ∃〈τ〉

(
|〈φ′〉| < |〈φ〉| → τ satisfies one of φ and φ′ and

falsifies the other
)}

Again note that the quantified variables are polysize and the quantifier-free predicate is polytime.

• Maximum Clique

Instance: 〈G, k〉, where G = (V,E) is an undirected graph and k is a positive integer.

Question: Does the maximum clique of G have size k?

We can show that Maximum Clique is in Σp
2∩Πp

2 by representing it with the formulas, one of which
places it in Σp

2 and the other places it in Πp
2:

Maximum Clique =
{
〈G, k〉: ∃C ∀C ′

(
(|C| = k ∧ C is a clique of G) ∧
(|C ′| > k → C ′ is not a clique of G)

)}
And also:

Maximum Clique =
{
〈G, k〉: ∀C ′ ∃C

(
(|C| = k ∧ C is a clique of G) ∧
(|C ′| > k → C ′ is not a clique of G)

)}
The quantified variables are polysize and the quantifier-free predicate is polytime.

The oracle-based view

Before giving the alternative definition of the polytime hierarchy in terms of oracles, it is useful to examine
some analogies between phenomena we saw in computability theory and their counterparts in complexity
theory.

• Recognizable languages are those whose yes-instances have decidable certificates; their no-instances
might not. In general, the certificate of a yes-instance x of a recognizable language A is an accepting
computation of a Turing machine M that recognizes A on input x. No-instances of A might not have
a certificate (i.e., a rejecting computation) because M might loop on them.

• The complexity analogue to recognizable languages is the class NP: these are the languages whose
yes-instances have short and efficiently decidable certificates; their no-instances have certificates but
these might not be short or efficiently decidable. In general, the certificate of a yes-instance x of an
NP language A is an accepting computation of a polytime nondeterministic Turing machine M that
decides A on input x; this is short precisely because the Turing machine is polytime. A no-instance
of A might not have a short certificate: Although all computation paths of M on any input are
required to halt, a rejecting computation of M on x is not sufficient to conclude that x /∈ A: as we
noted earlier, for a nondeterministic Turing machine M to accept x it suffices for it to have some
computation path on input x that leads to the accept state. To verify that a nondeterministic M
does not accept x, we might have to supply the entire computation tree of M on x as certificate, and
this is definitely not polynomial in the size of x.
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• Decidable languages are the “nice” subset of recognizable laguages, whose yes- and no-instance both
have decidable certificates. Since a decider is required to halt on every input x, accepting if x is in
the language and rejecting if x is not in the language, we can verify both yes- and no-instances of
the language using halting computations as certificates.

• The complexity analogue to decidable languages is the class P: This is the “nice” subset of NP
consisting of the languages whose yes- and no-instances both have short and efficiently decidable
certificates. Because a Turing machine M decider for a problem in P by definition runs in polytime
and is deterministic, the halting computation that certifies a yes- and no-instance x is short; such a
certificate is also efficiently decidable because we can use a Universal Turing machine to easily verify
that the supplied computation is, in fact, a computation of M on x.

Recall the oracle-based definition of the arithmetic hierarchy:

Definition For each i ≥ 0, define ∆i, Σi, Πi inductively as follows:

• If i = 0 then ∆0 = Σ0 = Π0 = the set of decidable languages.

• If i > 0 then

– ∆i is the set of languages decided by oracle Turing machines using oracles in Σi−1.

– Σi is the set of languages recognized by oracle Turing machines using oracles in Σi−1.

– Πi = coΣi.

The analogous oracle-based definition of the polytime hierarchy is as follows:

Definition For each i ≥ 0, define ∆p
i , Σp

i , Πp
i inductively as follows:

• If i = 0 then ∆p
0 = Σp

0 = Πp
0 = P.

• If i > 0 then

– ∆p
i is the set of languages decided by deterministic polytime oracle Turing machines using oracles

in Σp
i−1.

– Σp
i is the set of languages decided by nondeterministic polytime oracle Turing machines using

oracles in Σp
i−1.

– Πp
i = coΣp

i .

Note that, as with the logic-based definition, by this definition we also have ∆p
1 = P and Σp

1 = NP.
This is because an oracle in P is useless to a polytime oracle Turing machine: whatever information the
oracle can provide in one step, the Turing machine can compute by itself with polytime overhead. The
proof that the two definitions of the polytime hierarchy are, in fact, equivalent is very similar to the
corresponding proof about the arithmetic hierarchy.

Although the analogies between the arithmetic and polytime hierarchies are striking — and clearly the
former inspired the latter — the differences in our knowledge about each are just as striking.

• In the case of the arithmetic hierarchy we know that each level of the hierarchy is properly contained
in the one above; for the polytime hierarchy we know that each level is contained in the one above but
we do not know if the containment is proper. We know (and will prove shortly — see Theorem 11.6
below) that if proper containment breaks down at any level i, then the entire hierarchy above level i
collapses to level i. So, if it turns out that P = NP, the entire polytime hierarchy is just P; every
language in any level would then be solvable in polytime by deterministic Turing machines!
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• Another difference is that, in the case of the arithmetic hierarchy, we know that for every i > 0,
∆i = Σi ∩ Πi: the languages in ∆i are precisely those that are in both Σi and Πi. We do not know
if this is true in the polytime hierarchy: It is clear that ∆p

i ⊆ Σp
i ∩Πp

i ; but the converse is not at all

clear, and is likely not true. For i = 1 this is precisely the open question P
?
= NP ∩ coNP (see the

discussion after Theorem 11.1).

Theorem 11.6 For all i ≥ 0, if Σp
i = Σp

i+1, then for all j ≥ i+ 1, Σp
j = Πp

j = Σp
i = Πp

i .

Proof. Suppose that Σp
i = Σp

i+1 for some i ≥ 0.
First we show that Σp

j = Σp
i , for all j ≥ i + 1; we do so by induction of j. The basis j = i + 1 is

true by the hypothesis that Σp
i = Σp

i+1. For the induction step, let k ≥ i + 1 and suppose that Σp
k = Σp

i ;
we will prove that Σp

k+1 = Σp
i . Let A be any language in Σp

k+1; therefore A is decidable by a polytime
nondeterministic oracle Turing machine using an oracle in Σp

k. But Σp
k = Σp

i (by the induction hypothesis)
and so A ∈ Σp

i+1 = Σp
i . Thus we have shown that Σp

k+1 ⊆ Σp
i ; since i ≤ k+ 1, it is obvious that Σp

i ⊆ Σp
k+1,

and so Σp
k+1 = Σp

i . This completes the induction step, and proves that Σp
j = Σp

i for every j ≥ i+ 1.
Since Σp

j = Σp
i , we also immediately get that Πp

j = Πp
i . Since i ≤ j, Σp

i ⊆ Πp
j and Πp

i ⊆ Σp
j . So, we

have Σp
j = Σp

i ⊆ Πp
j = Πp

i ⊆ Σp
j ; therefore these four sets are all equal: Σp

j = Πp
j = Σp

i = Πp
i .

Let PH = ∪∞i=0Σ
p
i = ∪∞i=0Π

p
i ; that is, PH is the complexity class consisting of all the languages at all

levels of the polytime hierarchy. By Theorem 11.6, if P = NP (i.e., the polytime hierarchy collapses at
level 0) then P = PH.
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