Definition of the "yields" relation \vdash

Vassos Hadzilacos

Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, h_{A}, h_{R}\right)$ be a Turing machine. Without loss of generality, we assume that $Q \cap \Gamma=\varnothing$, so that state symbols cannot be confused with tape symbols.

Notational conventions:

- Lower case characters near the beginning of the alphabet (a, b, c, \ldots) denote tape symbols (elements of Γ).
- Lower case characters near the end of the alphabet (w, x, y, z, \ldots) denote strings of tape symbols (elements of Γ^{*}).
- p, q (decorated with accents, subscripts, superscripts etc.) denote states (elements of Q).
- \sqcup is the blank symbol (element of Γ)

A configuration of M is a string of the form $x q y$, where $x, y \in \Gamma^{*}$ and $q \in Q$, where y does not end with the blank symbol \llcorner. This describes the complete state of the Turing machine at some point in its computation: The machine is in state q, its tape contains the string $x y$ starting in cell 1 (the leftmost cell) followed by an infinite number of blanks; and the tape head is positioned over cell $|x|+1$, i.e., the first symbol of y, if $y \neq \epsilon$, or the leftmost of the infinite sequence of trailing blanks, if $y=\epsilon$.

We define the relation \vdash_{M} between configurations (written simply \vdash, if M is clear from the context) to hold if M can move from one configuration to the other in a single step, based on its transition function.

More precisely, let $C=x q y$; then $C \vdash_{M} C^{\prime}$ if and only if:
CASE 1. $y=a y^{\prime}$, for some $a \in \Gamma$. (Thus, $y \neq \epsilon$, and if $a=\sqcup$ then $y^{\prime} \neq \epsilon$.)
Subcase 1(a). $\quad \delta(q, a)=(p, b, R): C^{\prime}=x b p y^{\prime}$.
Subcase 1(b). $\delta(q, a)=(p, b, L)$ and $x=x^{\prime} c$, for some $c \in \Gamma$:

$$
C^{\prime}= \begin{cases}x^{\prime} p c b y^{\prime}, & \text { if } b \neq \sqcup \text { or } y^{\prime} \neq \epsilon \\ x^{\prime} p c, & \text { if } b=\sqcup \text { and } y^{\prime}=\epsilon \text { and } c \neq \sqcup \\ x^{\prime} p, & \text { if } b=\sqcup \text { and } y^{\prime}=\epsilon \text { and } c=\sqcup\end{cases}
$$

Subcase 1(c). $\delta(q, a)=(p, b, L)$ and $x=\epsilon$ (thus the head is on cell 1):

$$
C^{\prime}= \begin{cases}p b y^{\prime}, & \text { if } b \neq \sqcup \text { or } y^{\prime} \neq \epsilon \\ p, & \text { if } b=\sqcup \text { and } y^{\prime}=\epsilon\end{cases}
$$

Case 2. $y=\epsilon$. (Thus, in C the tape head is on the leftmost of the infinitely many trailing blanks.)
Subcase 2(a). $\delta(q, \sqcup)=(p, b, R):=x b p$.
Subcase 2(b). $\delta(q, \sqcup)=(p, b, L)$ and $x=x^{\prime} c$, for some $c \in \Gamma$ (thus $x \neq \epsilon$ and the head is not on cell 1):

$$
C^{\prime}= \begin{cases}x^{\prime} p c b, & \text { if } b \neq \sqcup \\ x^{\prime} p c, & \text { if } b=\sqcup \text { and } c \neq \sqcup \\ x^{\prime} p, & \text { if } b=\sqcup \text { and } c=\sqcup\end{cases}
$$

Subcase 2(c). $\quad \delta(q, \sqcup)=(p, b, L)$ and $x=\epsilon$ (thus the head is on cell 1$)$:

$$
C^{\prime}= \begin{cases}p b, & \text { if } b \neq \sqcup \\ p, & \text { if } b=\sqcup\end{cases}
$$

Note that if $C=y h_{A} z$ of $C=y h_{R} z$, there is no C^{\prime} such that $C \vdash_{M} C^{\prime}$: No case applies then, since the transition function is not defined for the two halt states.

The transitive closure of the \vdash_{M} relation and is denoted \vdash_{M}^{*}. Intuitively, $C \vdash_{M}^{*} C^{\prime}$ if and only if the TM M transforms C to C^{\prime} in a finite number of steps (including zero). More precisely, $C \vdash^{*}{ }_{M} C^{\prime}$ if and only if:

- $C^{\prime}=C$, or
- for some integer $k>1$, there are configurations $C_{1}, C_{2}, \ldots, C_{k}$ such that $C_{1}=C, C_{k}=C^{\prime}$, and for all $i, 1 \leq i<k, C_{i} \vdash_{M} C_{i+1}$.

Based on the \vdash_{M}^{*} relation we can now define what it means for a TM M to accept a string, to recognize a language, and to decide a language:

- M accepts $x \in \Sigma^{*}$ if and only if, for some strings $y, z \in \Gamma^{*}, q_{0} x \vdash_{M}^{*} y h_{A} z$. That is, started in the initial state q_{0} with only the input x on the tape, and the head on the leftmost cell, after a finite number of steps M enters the accept state h_{A} with some string $y z$ on its tape - we don't care what $y z$ is.
- M rejects $x \in \Sigma^{*}$ if and only if, for some strings $y, z \in \Gamma^{*}, q_{0} x \vdash_{M}^{*} y h_{R} z$.
- M loops on $x \in \Sigma^{*}$ if and only if there is an infinite sequence of confituations $C_{0}, C_{1}, C_{2}, \ldots$ such that $C_{0}=q_{0} x$ and, for all $n \in \mathbb{N}, C_{i} \vdash_{M} C_{i+1}$.
- M recognizes a language L if and only if $L=\left\{x \in \Sigma^{*}: M\right.$ accepts $\left.x\right\}$. That is, for every $x \in L, M$ accepts x, and for every $x \notin L, M$ rejects x or loops on x. In this case, we say that M is a recognizer for L. A language is recognizable if there is a TM that recognizes it. Common alternative terms for recognizable language are recursively enumerable language or semi-decidable language.
- M decides a language L if and only if M is a recognizer for L and halts on every input. That is, for every $x \in L, M$ accepts x, and for every $x \notin L, M$ rejects x. In this case, we say that M is a decider for L. A language is decidable if there is a TM that recognizes it. A common alternative term for decidable language is recursive language.

Recalling that a language is a set (of strings) and that a decision problem can be thought of as a language (the set of strings that represent yes-instances of the problem), we sometimes speak of recognizable (or recursively enumerable or semi-decidable) sets or decision problems; as well as of decidable (or recursive) sets or decision problems.

