Turing 1936

Seeking mathematical definition for "algorithm" or "mechanical computation" to solve a problem.

Finite list of <u>unambiguous instructions</u> that <u>can be executed mechanically</u> so that applying them to *any* input (a string) results in an appropriate output (also a string) in a <u>finite number of steps</u>.

This is what Turing machines are.

Also what electronic computers are!

Why?

<u>Axioms of predicate logic</u>: Formulas (strings over some alphabet) of specific forms expressing true facts.

E.g.,

$$\forall x \ (F \to G) \to (\forall x \ F \to \forall x \ G)$$
$$\neg \exists x \ F \longleftrightarrow \forall x \ \neg F$$

Inference rules of predicate logic: Given that certain formulas $F_1, F_2, ..., F_k$ hold, conclude that some other formula G also holds.

E.g.,
$$F$$
 $\underline{F(c)}$ $\exists x F(x)$ G

Why?

Hilbert-Ackerman's "Entscheidungsproblem":

Is there an <u>algorithm</u> that takes as input a formula in predicate logic and determines whether that formula can be proved using the axioms and inference rules of predicate logic?

(Can we turn mathematics into a mindless endeavour?)

To settle this question mathematically we must have a clear definition of what counts as an algorithm.

This is why Turing developed his machines.

Palindrome = string that reads the same forward and backward

We want a TM that:

- accepts all strings in $\{0,1\}^*$ that are even length palindromes
- does not accept any other strings.
- E.g., it should accept: ε and 011110, but it should not accept: 010100 or 10101

- If the symbol under the head is □, accept; else "remember" that symbol, replace it by □ and move R
- 2. While scanning a symbol ≠ ⊔ move R
- 3. Move L from the first \sqcup found
- 4. If the symbol under the head is different from the one "remembered", reject else replace it by ⊔ and move L
- 5. While scanning a symbol ≠ ⊔ move L
- 6. Move R and go to step 1

TM instructions ("finite control"):

direction of move		Cur	rrent symbol	
new symbol	Current symbol			
new state				

	0	1	П
q_0 : initial state	(q_1^0,\sqcup,R)	(q_1^1,\sqcup,R)	Accept
q_1^0 : scan right, 1st symbol 0	$(q_1^0, 0, R)$	$(q_1^0, 1, R)$	(q_2^0,\sqcup,L)
q_1^1 : scan right, 1st symbol 1	$(q_1^1, 0, R)$	$(q_1^1, 1, R)$	(q_2^1,\sqcup,L)
q_2^0 : at right end, 1st symbol 0	(q_3,\sqcup,L)	Reject	X
q_2^1 : at right end, 1st symbol 1	Reject	(q_3,\sqcup,L)	X
q_3 : scan left ("rewind")	$(q_3, 0, L)$	$(q_3, 1, L)$	(q_0,\sqcup,R)

Current state

$$M = (Q, \Sigma, \Gamma, \delta, q_0, h_A, h_R)$$

$$Q = \{q_0, q_1^0, q_1^1, q_2^0, q_2^1, q_3, h_A, h_R\}$$

- q_0 initial state
- q_1^0 scanning right, first symbol was 0
- q_1^1 scanning right, first symbol was 1
- q_2^0 reached right end, first symbol was 0
- q_2^1 reached right end, first symbol was 1
- q_3 scanning left ("rewinding")
- h_A accept state
- h_R reject state

The transition function:

•
$$\delta(q_0, a) = \begin{cases} (h_A, \sqcup, R), & \text{if } a = \sqcup \\ (q_1^a, \sqcup, R), & \text{if } a \neq \sqcup \end{cases} \quad \forall a \in \{0, 1, \sqcup\}$$

•
$$\delta(q_1^b, a) = \begin{cases} (q_1^b, a, R), & \text{if } a \neq \bot \\ (q_2^b, \bot, L), & \text{if } a = \bot \end{cases} \quad \forall a \in \{0, 1, \bot\}, b \in \{0, 1\}$$

•
$$\delta(q_2^b, a) = \begin{cases} (h_R, \sqcup, L), & \text{if } a \neq b \\ (q_3, \sqcup, L), & \text{if } a = b \end{cases} \quad \forall a \in \{0, 1, \sqcup\}, b \in \{0, 1\}$$

•
$$\delta(q_3, a) = \begin{cases} (q_3, a, L), & \text{if } a \neq \sqcup \\ (q_0, \sqcup, R), & \text{if } a = \sqcup \end{cases} \quad \forall a \in \{0, 1, \sqcup\}$$

The transition function in tabular form:

Current symbol

	0	1	
q_0	(q_1^0,\sqcup,R)	(q_1^1,\sqcup,R)	(h_A,\sqcup,L)
q_1^0	$(q_1^0, 0, R)$	$(q_1^0, 1, R)$	(q_2^0,\sqcup,L)
q_1^1	$(q_1^1, 0, R)$	$(q_1^1, 1, R)$	(q_2^1,\sqcup,L)
q_2^0	(q_3,\sqcup,L)	(h_R,\sqcup,L)	X
q_2^1	(h_R,\sqcup,L)	(q_3,\sqcup,L)	X
q_3	$(q_3, 0, L)$	$(q_3, 1, L)$	(q_0,\sqcup,R)

Current state

The transition function in graphical form:

•
$$\delta(q, a) = (p, b, D)$$
, for $b \neq a$

•
$$\delta(q, a) = (p, b, D)$$
, for $b = a$

• Missing transitions: implicitly going to h_R (reject)

Diagram for transition function of this TM:

Computation on input 0110:

Exercise: Trace the computation on inputs 0111 and 010.