
Computer Science C63 Winter 2024
Scarborough Campus University of Toronto

Decision, search, and optimization problems;
self reducibility

Vassos Hadzilacos

Recall that, according to the certificate-verifier characterization, NP consists of decision problems of the
form “the xs such that ∃y P (x, y)” where |y| is polynomial in |x| and P (x, y) is a polynomial-time decidable
predicate. A y that confirms that x is a yes-instance of the problem is what we called a certificate; and
the predicate P (x, y) verifies this fact. Restricting our attention to decision problems has the advantage
of focusing on yes-or-no problems, and makes the theory simpler. In practice, however, we are not just
interested in that one-bit of information; rather, in the case of yes-instances, we are interested in the
certificate itself. We call the problem of finding a certificate (when it exists) a search problem.

Consider, for example, some of the NP-complete problems we have encountered:

• Satisfiability
Instance: 〈F 〉, where F is a propositional formula
Decision problem Sat: Does F have a satisfying truth assignment?
Search problem Search-Sat: Output a satisfying truth assignment of F , if one exists; otherwise,
output “none”.

• Exact Cover
Instance: 〈U, C〉, where U is a finite set and C is a collection of subsets of U
Decision problem XCov: Is there a subset of C consisting of disjoint sets whose union is U?
Search problem Search-XCov: Output a subset of C consisting of disjoint sets whose union is U ,
if one exists; otherwise, output “none”.

• Independent Set
Instance: 〈G, k〉, where G is an undirected graph and k ∈ Z+.
Decision problem IndSet: Does G have an independent set of at least k nodes?
Search problem Search-IndSet: Output an independent set of at least k nodes, if one exists;
otherwise, output “none”.

• Traveling Salesman
Instance: 〈n,C, b〉, where n ∈ Z+, C is an n×n “cost” matrix of non-negative integers, and b ∈ Z+.
Decision problem TSP: Is there a tour of cities 1, . . . , n whose total cost is at most b, where C[i, j]
is the cost of traveling from city i to city j?
Search problem Search-TSP: Output a tour whose total cost is at most b, if one exists; otherwise,
output “none”.

Some NP problems are optimization problems disguised as decision problems. For example, the In-
dependent Set problem is really a maximization problem: We are not interested in an independent set
of some particular size k, but in the largest possible independent set. Similarly, the Traveling Salesman
problem is really a minimization problem: We want to find the cheapest possible tour. For problems like
these, in addition to the decision and search versions of the problem, there is also an optimization version.

1

• Independent Set
Instance: 〈G〉, where G is an undirected graph. (Comparing to the instance of the decision and
search versions, note that there is no k parameter.)
Optimization problem Opt-IndSet: Output an independent set of maximum size.

• Traveling Salesman
Instance: 〈n,C〉, where n ∈ Z+ and C is an n × n “cost” matrix of non-negative integers. (Note
that there is no b parameter.)
Optimization problem Opt-TSP: Output a tour of minimum cost.

Other NP problems, such as Satisfiability and Exact Set Cover, are decision versions of pure feasibility
problems. In these cases the problem asks to find something (a satisfying truth assignment or an exact
cover), not a “best” something: there is no obvious way in which one satisfying truth assignment or exact
cover is “better” than another.

It is clear that the search and, when it exists, the optimization version of a problem is at least as hard as
the decision version, in the sense that if we can solve efficiently the search (or optimization) version, we can
also solve efficiently the decision problem. For example, if we have an algorithm Search-XCov-Solver
that solves the search version of Exact Cover, we can use it to solve the decision version as follows: Given an
instance 〈U, C〉, we run Search-XCov-Solver on 〈U, C〉, and we output 1 (yes-instance) if the algorithm
returns an exact cover and we output 0 (no-instance) if the algorithm returns “none”. Similarly, if we
are given an algorithm Opt-TSP that solves the optimization version of TSP, we can use it to solve the
decision version of TSP: Given an instance 〈n,C, b〉, we use Opt-TSP on input 〈n,C〉; we then compute
the cost of the tour output by this algorithm; if that cost is at most b we output 1; otherwise we output 0.

The above arguments show that

XCov ≤p
T Search-XCov and TSP ≤p

T Opt-TSP.

Note that these are Cook reductions (i.e., polytime Turing reductions), not Karp reductions (i.e., polytime
mapping reductions). This is because Karp reductions can relate only decision problems (with output only 1
or 0), while Cook reductions can relate problems with arbitrary output, which is what we need here.

Reasoning in the same way one can argue that for any NP problem A, A ≤p
T Search-A and

A ≤p
T Opt-A (if A has an optimization counterpart). This simple fact is useful; it justifies our focus

on the simpler, decision versions, of these problems: If, as we believe, NP-complete problems are not solv-
able in polynomial time then their search and optimization counterparts are also not solvable in polynomial
time.

But what about the converse: Are the search and optimization counterparts of NP-complete prob-
lems polytime-reducible to the (seemingly simpler) decision versions? For example, is it the case that
Search-Sat ≤p

T Sat and that Opt-TSP ≤p
T TSP? This would also be interesting to know: If, contrary

to our expectation, it turns out that P = NP, and so all NP-complete problems are solvable in polytime,
such reductions would show that their search and optimization counterparts, which are more relevant in
practice, are also solvable in polytime!

When a search or optimization version of a problem A Cook-reduces to the decision version (i.e.,
Search-A ≤p

T A or Opt-A ≤p
T A) we say that A is self-reducible. It turns out that

Fact Every NP-complete problem is self-reducible.

The proof of this fact is beyond the scope of this course, but we will demonstrate some specific examples
of self-reducibility. The ideas underlying these examples can be applied to many other cases.

Theorem 10.5 Sat is self-reducible; i.e., Search-Sat ≤p
T Sat.

2

Proof. Let Sat-Oracle be an oracle for the Sat decision problem. We will describe a reduction
algorithm Search-Sat-Solver that uses this oracle to solve Search-Sat in polynomial time. As is the
convention in Cook reductions, we charge one time unit for each use of the oracle. (Thus, if there is a
polytime algorithm for the decision problem Sat, we obtain a polytime algorithm for Search-Sat via this
reduction.)

The idea behind the reduction is as follows; to find a satisfying assignment for a given propositional
formula F with variables x1, x2, . . . , xn.

• We use Sat-Oracle to find out if F is satisfiable; if not, we return “none”.

• If F is satisfiable, we substitute x1 by the Boolean constant 0 in F , obtaining a new formula, denoted
F [x1= 0] with n− 1 variables x2, . . . , xn, and use Sat-Oracle to find out if F [x1= 0] is satisfiable;
if so, we know we can satisfy F by setting x1 = 0 and it remains to find a satisfying assignment
for F [x1= 0]; if not, we know we can satisfy F by setting x1 = 1 and it remains to find a satisfying
assignment for F [x1= 1]. Let F1 be the formula F [x1= 0] or F [x1=, 1], whichever of the two was
found to be satisfiable.

• We now proceed recursively with F1: We substitute x2 by the Boolean constant 0 in F1 and obtain
a new formula with n− 2 variables x3, . . . , xn; by using Sat-Oracle again we find a truth value for
x2 that satisfies F1 and therefore F .

• We continue in the same way until we have found truth values for all n variables that satisfy the
original formula F .

This reduction algorithm is shown in pseudocode below. If F is a propositional formula whose variables
include x1, . . . , xk then φ[x1= b1, x2= b2, . . . , xk= bk], where bi ∈ {0, 1} for each i ∈ [1..k], denotes the
propositional formula obtained from φ by replacing every instance of variable xi by the Boolean constant bi.

Search-Sat-Solver(F)
1 let x1, . . . , xn be the variables of F
2 if Sat-Oracle(F) = 1 then return “none”
3 else
4 F0 := F
5 for i := 1 to n do
6 if Sat-Oracle(Fi−1[xi= 0]) = 1 then vi := 0; Fi := Fi−1[xi= 0]
7 else vi := 1; Fi := Fi−1[xi= 1]
8 return (v1, . . . , vn)

Each iteration of the for loop takes time O(|F |), the time needed to substitute vi for xi in Fi−1, so
the running time of the reduction algorithm is O(n|F |) = O(|F |2), which is polynomial in the size of the
input F . (Recall that the cost of call to the oracle is one unit of time per call.)

The correctness of the reduction algorithm follows from the fact that the for-loop satisfies the fol-
lowing invariant: “Fi is a satisfiable formula and Fi = F [x1= v1, x2= v2, . . . , xi= vi]”. (The fact that
this is an invariant can be proved by a straightforward induction.) Thus, when the loop terminates,
F [x1= v1, x2= v2, . . . , xi= vi] is a satisfiable formula, which means that τ(xi) = vi, for each i ∈ [1..n], is a
satisfying truth assignment for F .

In the self-reduction of Sat shown in the proof of Theorem 10.4, the satisfying truth assignment,
i.e., the certificate that the Search-Sat-Solver is seeking, is constructed piece-by-piece — in this case,
literally bit-by-bit! The same general idea applies to many other cases, including in self-reductions of
optimization problems. Consider, for example, the reduction Opt-IndSet ≤p

T IndSet. Given an oracle
for the Independent Set decision problem, we want to find a maximum independent set of a graph. In
outline, the overall strategy is as follows:

3

(1) Using the oracle multiple times, search for the size of the maximum independent set: Is there an
independent set of size at least 1? If so, of size at least 2? If so, of size at least 3? And so on, up to
at most the number of nodes in the graph. Let k be the size of the maximum independent set.

(2) Use the oracle multiple times to determine if each node u is needed to obtain a maximum independent
set of size k. That is, construct the maximum independent set one node at a time, using the oracle to
guide the decision whether to keep a node.

We leave the details of this reduction algorithm as an exercise.
An important point related to Step (1) of the previous reduction is now in order. To find the size of the

optimal independent set, we performed a sequential search, from 1 up to (at most) the number of nodes
in the graph. This was fine in the case of the Independent Set problem because the number of nodes in
the graph is polynomial in the size of the graph. In some cases, however, a sequential search does not lead
to a polytime reduction. Consider, for example, the optimization version of TSP. Here we want to find the
minimum cost of a tour. The above strategy would be to start from cost 0 and search sequentially until
we find the minimum b such that there is a tour of cost at most b. Note, however, that b is exponentially
larger than the number of bits required to store the cost matrix, so this is not a polytime reduction in the
size of the input. The solution is to use binary search, instead of sequential search, to find the minimum
cost of a tour. As an exercise you should try to fill out the details of the self reduction Opt-TSP ≤p

T TSP,
including an explanation of why your reduction is, in fact, a polytime reduction.

Earlier we mentioned that it can be shown that all NP-complete problems are self-reducible. Is this
true about all NP problems? It is not known whether this is the case. An interesting example is the
problem of factoring integers:

• Factoring
Instance: 〈n〉, where n ∈ Z+
Decision problem Factor: Are there integers p, q 6= 1 such that n = p · q?
Search problem Search-Factor: Output integers p, q 6= 1 such that n = p · q, if such integers
exist; otherwise, output “none”.

The decision version Factor is known to be in P, via the Agrawal-Kayal-Saxena primality testing
algorithm. On the other hand, we do not know whether Search-Factor is in P. In fact, we hope that it
is not, since so much of cryptography and secure communication is based on the assumption that finding
the factors of very large numbers is computationally intractable.

4

