
Computer Science C63 Winter 2025
Scarborough Campus University of Toronto

Proving NP-completeness: where to start?
Vassos Hadzilacos

Often the hardest part about proving NP-completeness of a problem B is figuring out where to start:
which of the many problems A we already know to be NP-complete should we try to polytime-reduce
to B? Technically, any NP-complete problem is polytime-reducible to any other, so one might think that
it does not matter. In practice, it matters a lot: some reductions are much easier and more natural than
others, because some pairs of problems are intuitively more similar than others. Unfortunately there are no
hard-and-fast rules here; the task is somewhat of an art, which is what makes it interesting and fun. But
there are some things to keep in mind to make the search for the “right” source problem A more effective.

First, you need to understand clearly the problem B you are asked to prove is NP-complete: What are
some small examples of yes-instances and of no-instances? Are there different kinds or interesting instances?
“Edge” cases? It is impossible to do a reduction from or to a problem that you haven’t really understood.
So, playing around with small representative examples is an important starting point.

After you have established a reasonable familiarity with the problem you are trying to prove is NP-
complete you can go over the list of problems you already know are NP-complete and start looking for
familiar patterns or analogies. The paragraphs below describe some of these patterns to help narrow down
the search for the “right” source problem A.

Is the problem effectively asking to minimize something or to maximize something? This is some-
times not explicit in the statement of the problem since, by definition, NP consists of decision, not
optimization, problems. In many cases, however, an optimization problem is clearly lurking behind the de-
cision problem. For example, in the Vertex Cover problem we ask whether there are k nodes that “touch”
all the edges; the bigger the k the easier it is to satisfy this requirement: If there are k nodes that do
the job then clearly any superset of these nodes also works. So, Vertex Cover is the decision version of a
minimization problem: find a vertex cover with the fewest possible number of nodes. In contrast, consider
the Clique problem. Here the question is whether a graph G contains k pairwise connected nodes. Since
the existence of a k-clique immediately implies the existence of a clique with fewer nodes, the optimization
problem hiding behind the Clique decision problem is a maximization problem: find a clique with the
maximum possible number of nodes. By determining if the problem B we want to prove NP-complete is
the decision version of a minimization or maximization problem we can often focus our search for the right
source NP-complete problem A to one that is also a minimization or maximization problem. Minimization?
Maybe try a reduction from Vertex Cover or Traveling Salesman. Maximization? Maybe try a reduction
from Independent Set or Clique.

Some NP-complete problems are not disguised optimization problems, but pure search problems: we
are looking for something, not necessarily an optimal thing. Examples are Satisfiability, the Hamiltonian
Circuit Problem, and 3-Dimensional Matching. Some search problems ask for an ordering of objects;
in such cases a reduction from the Hamiltonian Circuit or Path or from the Traveling Salesman Problem
might be natural choices to consider. Other search problems ask for a partitioning of objects into non-
overlapping groups; in such cases a reduction from 3-Dimensional Matching, Exact Set Cover, or Partition
might be natural choices to consider. Other NP-complete problems involve numbers, and in that case
Subset Sum and Integer Linear Programming are natural choices to consider.

Some NP-complete problems fit under multiple of the categories described above. For example, the
Traveling Salesman Problem is both a minimization problem and an ordering problem, so it could be the
choice for the source problem A of a reduction to a problem B in either category. This seems to multiply

1



the choices but sometimes it can narrow them down: For example, Colouring is a partitioning problem
(different groups of objects classified by a colour) but also a minimization problem: classify the objects in
the smallest possible number of groups. So if our problem B has both features, reducing Colouring to B
might be a natural choice to consider.

Some problems are just versions of others looked at differently. For example, Independent Set vs. Clique
vs. Vertex Cover; or Colouring vs. Covering by Cliques. Some problems are just generalizations of known
NP-complete problems. For example: Given a propositional formula F and a number k, is there a truth
assignment that satisfies at least k clauses of F? If we can do this, we can obviously solve Satisfiability
by choosing k to be the number of clauses in F . Or, as we have seen, Exact Cover is (obviously) a
generalization of Exact Cover by 3-Sets. Other problems can become generalizations by adding some stuff
to a known NP-complete problem. For example: Does a graph have two cliques of k nodes each? We can
easily reduce the clique problem to this by adding to the graph k new nodes connected into a clique. In
some cases we can prove that B is NP-complete by adding some information to the known NP-complete
problem A. For example, we reduced the Subset Sum problem to the Partition problem by adding just
one number to the sequence of the given Subset Sum instance.

If nothing looks familiar, 3SAT or other NP-complete versions of Satisfiability are good choices to try.
This is particularly relevant if the target problem B has the flavour of asking for a selection of objects from
various sets; the clauses of a CNF formula could be the sets, the literals in each clause the objects in each
set, and the selection of an object from each set could be the job of a truth assignment that satisfies the
formula — and therefore satisfies some literal in each clause. Satisfiability is a very adaptable problem; it
is not an accident that it was the first to be shown NP-complete! But sometimes there are other familiar
NP-complete problems that are much closer to our target, and then going through Satisfiability may be
more circuitous than is needed.

These are some of the tricks of the trade. Much can be gained from experience, and I encourage you to
do as many reductions as you can. Your textbook has a large number of exercises as do all good textbooks
on algorithms that treat NP-completeness. (This subject is sometimes part of a course on algorithms,
rather than a course on computability and complexity like ours.)

Much wasted effort can be avoided by being careful about very basic things: Are we doing the reduction
in the right direction? Are we keeping in mind that the reduction need not be onto? That is, we don’t
need to have a reduction that produces all instances of the problem B we want to prove is NP-complete;
producing only a special case suffices. Sometimes restricting our attention to a special case of B makes
the problem closer to a familiar NP-complete problem, thus making the reduction much easier to see. For
example consider the so-called “bin-packing problem”: We are given the weights w1, w2, . . . , wn of n items,
and we want to know if we can fit all of them into k bins each of which can carry items whose total weight
is at most w. This is an NP-complete problem. It is much easier to think of a reduction from a familiar
NP-complete problem if you consider only the special case of k = 2. (The fact that bin packing is also
a problem about numbers helps to further narrow the search for the “right” source problem A which to
reduce to bin-packing. Think about this!) So, sometimes a useful way to approach the question “where
to begin” is to see if restricting some of the parameters of the target problem makes it closer to a familiar
NP-complete problem.

The above advice can often lead to more than one candidate. So part of the skill that you need to
develop, which also comes with experience, is to be patient in your efforts and learn when to abandon one
approach and try another: if you feel you are making progress, stick to it; if not, after a while of honest
effort, it is time to see if a different approach works.

2


