
Computer Science C63 Winter 2024
Scarborough Campus University of Toronto

The Cook-Levin Theorem

Vassos Hadzilacos

Theorem 8.7 (Cook ’71, Levin ’73) The satisfiability problem for propositional formulas, Sat, is
NP-complete.

Proof. It is clear that Sat is in NP (the certificate is a truth assignment, which is short, and the verifier
checks that the truth assignment satisfies the formula, which can be done in polynomial time). The more
interesting part is the proof that Sat in NP-hard. Take any decision problem A ⊆ Σ∗ in NP, and let
MA = (Q,Σ,Γ, δ, q0, hA, hR) be a nondeterministic Turing machine that decides A in polynomial time, say
p(n), where n is the length of the input x. Without loss of generality we can assume that p(n) ≥ n; we
can do this by requiring MA to read its input before doing anything else. This adds at most n steps to the
length of the computation of MA on x, and therefore does not affect the fact that MA runs in polynomial
time.

Given any x ∈ Σ∗ we show how to construct a propositional formula Fx that is satisfiable if and only
if x ∈ A; that is, if and only if MA on input x has an accepting computation C0 ` C1 ` · · · ` C`, where
` ≤ p(|x|). The length of Fx will be polynomial in |x|, and it will be obvious that it can be constructed
from x in polynomial time in |x|. Fix any x ∈ Σ∗ and let n = |x|.

The propositional variables involved in Fx describe the state of affairs in the computation of MA on
input x at each “time” t (i.e., after t steps), 0 ≤ t ≤ p(n). (If ` < p(n) we will imagine that MA keeps
going until time p(n) without changing its state, head position, or tape contents.) The variables are listed
below, along with their intended meaning.

• Sqt , for 0 ≤ t ≤ p(n) and q ∈ Q: At time t, MA is in state q.

• H i
t , for 0 ≤ t ≤ p(n) and 1 ≤ i ≤ p(n) + 1: At time t, the head of MA is on cell i. Note that in p(n)

steps the rightmost cell that MA can reach is p(n) + 1.

• T iat , for 0 ≤ t ≤ p(n), 1 ≤ i ≤ p(n), and a ∈ Γ: At time t, the cell i of MA’s tape contains symbol a.
(Note that all cells to the right of cell p(n) can only contain blanks.)

Thus our formula will have O
(
p(n)

)
+O

(
p2(n)

)
+O

(
p2(n)

)
= O

(
p2(n)

)
variables, i.e., a polynomial number

of them. Note that the number of states |Q| and the number of symbols |Γ| are constants: these depend
on MA, not on the input x.

The formula Fx is the conjunction of four subformulas, each expressing a requirement for the compu-
tation of MA on input x to be a valid, accepting computation:

(1) Intuitively the subformula F 1
x states that, at each time t, the variables describe a coherent state of

affairs: MA is in at most one state, its head is in at most one place, and each tape cell contains at most
one symbol. (It will follow from this and other subformulas that MA is actually in exactly one state,
the head in exactly one place, and each cell has exactly one symbol.) This is expressed as follows:

F 1
x =

∧
0≤t≤p(n)

((∧
p6=q∈Q

(¬Spt ∨ ¬S
q
t)︸ ︷︷ ︸

not in two states

)
∧
(∧

1≤i<j≤p(n)

(¬H i
t ∨ ¬H

j
t)︸ ︷︷ ︸

not in two places

)
∧
(∧

1≤i≤p(n)

∧
a6=b∈Γ

(¬T iat ∨ ¬T ibt)︸ ︷︷ ︸
no two symbols

))
.

1

(2) Intuitively the subformula F 2
x states that the computation of MA on x starts well: At time 0, MA is

in its initial state q0, its head is on cell 1, and the tape contains the input x in the first n cells and
blanks in cells n+ 1..p(n). This is expressed as follows: Let x = a1a2 . . . an, where each ai ∈ Σ.

F 2
x = Sq00 ∧

(∧
1≤i≤n

T iai0

)
︸ ︷︷ ︸
x in first n cells

∧
(∧
n+1≤i≤p(n)

T it0

)
︸ ︷︷ ︸

blanks in rest

.

(3) Intuitively the subformula F 3
x states that the computation of MA on x ends well: At time p(n), MA is

in its accept state hA. This is expressed as follows:

F 3
x = ShAp(n).

(4) Finally, the subformula F 4
x is the conjunction of three other formulas, F 4a

x , F 4b
x , and F 4c

x , which
intuitively state that the move from time t to time t+ 1 is consistent with the definition of MA:

• F 4a
x states that only the symbol that is under the tape head at time t can change.

• F 4b
x states that as long as the current state of the TM is not a halting state (accept or reject), in

the next step the state of affairs changes according to the (nondeterministic) transition function
of MA.

• F 4c
x states that after reaching a halting state, things don’t change.

These are expressed as follows:

F 4a
x =

∧
0≤t<p(n)

∧
1≤i≤p(n)

∧
a∈Γ

(
¬T iat ∨ T iat+1 ∨H i

t

)
.

F 4b
x =

∧
0≤t<p(n)

∧
q∈Q−{hA,hR}

∧
1≤i≤p(n)

∧
a∈Γ

((
¬Sqt ∨ ¬H i

t ∨ ¬T iat
)
∨
(∨

(p,b,D)∈δ(q,a)

(
Spt+1 ∧H

i+d
t+1 ∧ T

ib
t+1

)))
.

where

d =

1, if D = R

−1, if D = L and i 6= 1

0, otherwise

F 4c
x =

∧
0≤t<p(n)

∧
q∈{hA,hR}

∧
1≤i≤p(n)

∧
a∈Γ

((
¬Sqt ∨ ¬H i

t ∨ ¬T iat
)
∨
((
Sqt+1 ∧H

i
t+1 ∧ T iat+1

)))
.

So, the overall forula Fx is

Fx = F 1
x ∧ F 2

x ∧ F 3
x ∧ (F 4a

x ∧ F 4b
x ∧ F 4c

x).

Given the semantics of each subformula, Fx asserts that MA on input x has an accepting computation. In
other words,

Fx is satisfiable if and only if x ∈ A. (*)

If: If x ∈ A, there is an accepting computation C0 ` C1 ` . . . ` C` of MA on x. From this sequence of
configurations we can define truth values for all the variables based on their intended meaning: Sqt is true
if Ct contains the state q and false otherwise, H i

t is true if in Ct the head is on cell i of the tape and false

2

otherwise, and T iat is true of in Ct cell i of the tape contains symbol a and false otherwise). If ` < p(n)
we also define the truth values of the variables corresponding to times t, ` < t ≤ p(n), to be equal to their
values at time `. Because C0 ` C1 ` · · · ` C` is an accepting computation of M on x, this truth assignment
satisfies all subformulas F 1

x , F 2
x , F 3

x , F 4a
x , F 4b

x , and F 4c
x , and therefore it satisfies their conjunction Fx;

therefore, Fx is indeed satisfiable.

Only if: Suppose Fx is satisfiable, and let τ be a truth assignment to the variables that satisfies Fx. From
this truth assignment we can define a sequence C0, C1, . . . , Cp(n) so that

• C0 is the initial configuration of MA on x (this is because τ satisfies F 2
x);

• for each t, 0 ≤ t < p(n), Ct is a legal configuration of MA; and either the state of MA in Ct is not the
accept or reject state and Ct ` Ct+1, or the state in Ct is the accept or reject state and Ct = Ct+1

(this is because τ satisfies F 1
x , F 4a

x , F 4b
x , and F 4c

x); and

• Cp(n) is a configuration in the accept state (this is because τ satisfies F 3
x .

Therefore for some `, 0 ≤ ` ≤ p(n), C0 ` C1 ` . . . ` C` is an accepting computation of MA on x, which
means that x ∈ A. This completes the proof of (∗).

Now let us calculate the length of Fx, measured as the number of variable occurrences. Recalling that
|Q| and |Γ| are constants we see that the lengths of F 1

x , F 2
x , F 3

x , F 4a
x , F 4b

x , and F 4c
x are, respectively,

O(p3(n)), O(p(n)), O(1), O(p2(n)), O(p2(n)), and O(p2(n)). (For F 4b
x note that the maximum number of

choices due to the nondeterminism of MA is (|Q| − 2) · |Γ|, which is constant.) Therefore the size of Fx is
polynomial in n (the length of the input x), and obviously can be constructed from x in polynomial time.

So there is a polynomial time mapping reduction from any decision problem in NP to Sat.

The formula Fx in the proof of the Cook-Levin theorem is almost in conjunctive normal form (CNF).
Only the subformulas F 4b

x and F 4c
x are not. We will now show that we can put these subformulas in

CNF without sacrificing the polynomial size of the resulting formula, by using the distributive law (of
disjunctions over conjunctions). For example, consider F 4b

x . To simplify the notation, note that this
formula is a conjunction of formulas of the form

φ = (`1 ∨ `2 ∨ `3) ∨
(k∨
i=1

(`i1 ∧ `i2 ∧ `i3)
)

︸ ︷︷ ︸
φ′

where `1, `2, `3 and the `ijs are literals (i.e., variables or negated variables), and k is the number of choices of
MA’s nondeterministic transition function, a constant. We can put φ′ in CNF by applying the distributive
law, resulting in the following equivalent formula:

φ′′ =
∧

π∈{1,2,3}{1,2,...,k}

(
`1π(1) ∨ `2π(2) ∨ . . . ∨ `kπ(k)

)
.

(If X and Y are sets, Y X denotes the set of all functions from X to Y . Thus a function π ∈ {1, 2, 3}{1,2,...,k}
maps each i = 1, 2, . . . , k to 1, 2, or 3. Intuitively, π selects one of the three literals of each clause in φ′.) By
replacing φ′ by φ′′ in φ and applying the distributive law once more (now of disjuctions over conjunctions)
we get that φ is equivalent to the following formula

ψ =
∧

π∈{1,2,3}{1,2,...,k}

(
`1 ∨ `2 ∨ `3 ∨ `1π(1) ∨ `2π(2) ∨ . . . ∨ `kπ(k)

)
.

3

which is in CNF. The length of φ, measured as the number of variable occurrences, is 3k + 3, whereas
that of ψ is 3k(k + 3). But recall that k is a constant and therefore the size of Fx, with F 4b

x replaced by
an equivalent CNF formula as above, remains polynomial in the size of the input x. F 4c

x is similar but
simpler, since in this case k = 1. Therefore we have:

Corollary 8.8 The satisfiability problem for CNF formulas, CNF-Sat, is NP-complete.

It turns out that the satisfiability problem remains NP-complete even if we restrict it to CNF formulas
where each clause has at most three literals. Such formulas are called 3-CNF and the corresponding
satisfiability problem is called 3Sat.

Theorem 9.1 3Sat is NP-complete.

Proof. 3Sat is in NP because it is a special case of Sat, which is in NP. To prove that CNF-Sat ≤pm
3Sat, we will show how to replace each clause C of a CNF formula F by a 3-CNF formula C ′ that is
satisfiable if and only if C is.

If C has at most three literals, we just take C ′ = C. Otherwise, let

C = `1 ∨ `2 ∨ `3 ∨ . . . ∨ `k

for some k > 3, where `1, . . . , `k are literals. Let z1 be a new variable that does not appear anywhere else
in F and consider the formula

C1 = (`1 ∨ `2 ∨ z1) ∧ (¬z1 ∨ `3 ∨ . . . ∨ `k).

Intuitively C1 says that (at least) one of `1, `2, z1 is true, and that, furthermore, if z1 is true then (at least)
one of `3, . . . , `k is true. Thus, C is satisfiable if and only if C1 is satisfiable. Note that whereas C has k
literals, C1 has two clauses, one with three literals and one with k − 1 literals. If k − 1 > 3 we apply the
same idea recursively to the second clause, obtaining another formula C2 that has two clauses with three
literals and one with k − 2 literals and is satisfiable if and only if C is. We repeat this until we obtain a
conjunction of clauses each of which has at most three variables, i.e., a 3-CNF formula. This is the formula
C ′ by which we replace C:

C ′ = (`1 ∨ `2 ∨ z1) ∧ (¬z1 ∨ `3 ∨ z2) ∧ (¬z2 ∨ `4 ∨ z3) ∧ . . . ∧ (¬zk−3 ∨ `k−1 ∨ `k).

Note that C ′ has at most 3 times as many literals as C, so F ′ is linear in the size of F . So in polynomial
time we can construct a 3-CNF formula F ′ that is satisfiable if and only if the CNF formula F is.

What if we further restrict CNF formulas so that each clause has at most two literals? The satisfiability
problem for such formulas, called 2Sat, turns out to be solvable in polynomial time!

4

