The Cook-Levin Theorem

Vassos Hadzilacos

Theorem 8.7 (Cook '71, Levin '73) The satisfiability problem for propositional formulas, SAT, is NP-complete.

Proof. It is clear that Sat is in NP (the certificate is a truth assignment, which is short, and the verifier checks that the truth assignment satisfies the formula, which can be done in polynomial time). The more interesting part is the proof that SAT in NP-hard. Take any decision problem $A \subseteq \Sigma^{*}$ in NP, and let $M_{A}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, h_{A}, h_{R}\right)$ be a nondeterministic Turing machine that decides A in polynomial time, say $p(n)$, where n is the length of the input x. Without loss of generality we can assume that $p(n) \geq n$; we can do this by requiring M_{A} to read its input before doing anything else. This adds at most n steps to the length of the computation of M_{A} on x, and therefore does not affect the fact that M_{A} runs in polynomial time.

Given any $x \in \Sigma^{*}$ we show how to construct a propositional formula F_{x} that is satisfiable if and only if $x \in A$; that is, if and only if M_{A} on input x has an accepting computation $C_{0} \vdash C_{1} \vdash \cdots \vdash C_{\ell}$, where $\ell \leq p(|x|)$. The length of F_{x} will be polynomial in $|x|$, and it will be obvious that it can be constructed from x in polynomial time in $|x|$. Fix any $x \in \Sigma^{*}$ and let $n=|x|$.

The propositional variables involved in F_{x} describe the state of affairs in the computation of M_{A} on input x at each "time" t (i.e., after t steps), $0 \leq t \leq p(n)$. (If $\ell<p(n)$ we will imagine that M_{A} keeps going until time $p(n)$ without changing its state, head position, or tape contents.) The variables are listed below, along with their intended meaning.

- S_{t}^{q}, for $0 \leq t \leq p(n)$ and $q \in Q$: At time t, M_{A} is in state q.
- H_{t}^{i}, for $0 \leq t \leq p(n)$ and $1 \leq i \leq p(n)+1$: At time t, the head of M_{A} is on cell i. Note that in $p(n)$ steps the rightmost cell that M_{A} can reach is $p(n)+1$.
- $T_{t}^{i a}$, for $0 \leq t \leq p(n), 1 \leq i \leq p(n)$, and $a \in \Gamma$: At time t, the cell i of M_{A} 's tape contains symbol a. (Note that all cells to the right of cell $p(n)$ can only contain blanks.)

Thus our formula will have $O(p(n))+O\left(p^{2}(n)\right)+O\left(p^{2}(n)\right)=O\left(p^{2}(n)\right)$ variables, i.e., a polynomial number of them. Note that the number of states $|Q|$ and the number of symbols $|\Gamma|$ are constants: these depend on M_{A}, not on the input x.

The formula F_{x} is the conjunction of four subformulas, each expressing a requirement for the computation of M_{A} on input x to be a valid, accepting computation:
(1) Intuitively the subformula F_{x}^{1} states that, at each time t, the variables describe a coherent state of affairs: M_{A} is in at most one state, its head is in at most one place, and each tape cell contains at most one symbol. (It will follow from this and other subformulas that M_{A} is actually in exactly one state, the head in exactly one place, and each cell has exactly one symbol.) This is expressed as follows:

$$
F_{x}^{1}=\bigwedge_{0 \leq t \leq p(n)}((\bigwedge_{p \neq q \in Q} \underbrace{\left(\neg S_{t}^{p} \vee \neg S_{t}^{q}\right)}_{\text {not in two states }}) \wedge(\bigwedge_{1 \leq i<j \leq p(n)} \underbrace{\left(\neg H_{t}^{i} \vee \neg H_{t}^{j}\right)}_{\text {not in two places }}) \wedge(\bigwedge_{1 \leq i \leq p(n)} \bigwedge_{a \neq b \in \Gamma} \underbrace{\left(\neg T_{t}^{i a} \vee \neg T_{t}^{i b}\right)}_{\text {no two symbols }})) .
$$

(2) Intuitively the subformula F_{x}^{2} states that the computation of M_{A} on x starts well: At time $0, M_{A}$ is in its initial state q_{0}, its head is on cell 1 , and the tape contains the input x in the first n cells and blanks in cells $n+1 . . p(n)$. This is expressed as follows: Let $x=a_{1} a_{2} \ldots a_{n}$, where each $a_{i} \in \Sigma$.

$$
F_{x}^{2}=S_{0}^{q_{0}} \wedge \underbrace{\left(\bigwedge_{1 \leq i \leq n} T_{0}^{i a_{i}}\right)}_{x \text { in first } n \text { cells }} \wedge \underbrace{\left(\bigwedge_{n+1 \leq i \leq p(n)} T_{0}^{i \sqcup}\right)}_{\text {blanks in rest }}
$$

(3) Intuitively the subformula F_{x}^{3} states that the computation of M_{A} on x ends well: At time $p(n), M_{A}$ is in its accept state h_{A}. This is expressed as follows:

$$
F_{x}^{3}=S_{p(n)}^{h_{A}}
$$

(4) Finally, the subformula F_{x}^{4} is the conjunction of three other formulas, $F_{x}^{4 a}, F_{x}^{4 b}$, and $F_{x}^{4 c}$, which intuitively state that the move from time t to time $t+1$ is consistent with the definition of M_{A} :

- $F_{x}^{4 a}$ states that only the symbol that is under the tape head at time t can change.
- $F_{x}^{4 b}$ states that as long as the current state of the TM is not a halting state (accept or reject), in the next step the state of affairs changes according to the (nondeterministic) transition function of M_{A}.
- $F_{x}^{4 c}$ states that after reaching a halting state, things don't change.

These are expressed as follows:

$$
\begin{gathered}
F_{x}^{4 a}=\bigwedge_{0 \leq t<p(n)} \bigwedge_{1 \leq i \leq p(n)} \bigwedge_{a \in \Gamma}\left(\neg T_{t}^{i a} \vee T_{t+1}^{i a} \vee H_{t}^{i}\right) . \\
F_{x}^{4 b}=\bigwedge_{0 \leq t<p(n)} \bigwedge_{q \in Q-\left\{h_{A}, h_{R}\right\}} \bigwedge_{1 \leq i \leq p(n)} \bigwedge_{a \in \Gamma}\left(\left(\neg S_{t}^{q} \vee \neg H_{t}^{i} \vee \neg T_{t}^{i a}\right) \vee\left(\bigvee_{(p, b, D) \in \delta(q, a)}\left(S_{t+1}^{p} \wedge H_{t+1}^{i+d} \wedge T_{t+1}^{i b}\right)\right)\right) .
\end{gathered}
$$

where

$$
\begin{gathered}
d= \begin{cases}1, & \text { if } D=R \\
-1, & \text { if } D=L \text { and } i \neq 1 \\
0, & \text { otherwise }\end{cases} \\
F_{x}^{4 c}=\bigwedge_{0 \leq t<p(n)} \bigwedge_{q \in\left\{h_{A}, h_{R}\right\}} \bigwedge_{1 \leq i \leq p(n)} \bigwedge_{a \in \Gamma}\left(\left(\neg S_{t}^{q} \vee \neg H_{t}^{i} \vee \neg T_{t}^{i a}\right) \vee\left(\left(S_{t+1}^{q} \wedge H_{t+1}^{i} \wedge T_{t+1}^{i a}\right)\right)\right) .
\end{gathered}
$$

So, the overall forula F_{x} is

$$
F_{x}=F_{x}^{1} \wedge F_{x}^{2} \wedge F_{x}^{3} \wedge\left(F_{x}^{4 a} \wedge F_{x}^{4 b} \wedge F_{x}^{4 c}\right)
$$

Given the semantics of each subformula, F_{x} asserts that M_{A} on input x has an accepting computation. In other words,

$$
\begin{equation*}
F_{x} \text { is satisfiable if and only if } x \in A \tag{*}
\end{equation*}
$$

IF: If $x \in A$, there is an accepting computation $C_{0} \vdash C_{1} \vdash \ldots \vdash C_{\ell}$ of M_{A} on x. From this sequence of configurations we can define truth values for all the variables based on their intended meaning: S_{t}^{q} is true if C_{t} contains the state q and false otherwise, H_{t}^{i} is true if in C_{t} the head is on cell i of the tape and false
otherwise, and $T_{t}^{i a}$ is true of in C_{t} cell i of the tape contains symbol a and false otherwise). If $\ell<p(n)$ we also define the truth values of the variables corresponding to times $t, \ell<t \leq p(n)$, to be equal to their values at time ℓ. Because $C_{0} \vdash C_{1} \vdash \cdots \vdash C_{\ell}$ is an accepting computation of M on x, this truth assignment satisfies all subformulas $F_{x}^{1}, F_{x}^{2}, F_{x}^{3}, F_{x}^{4 a}, F_{x}^{4 b}$, and $F_{x}^{4 c}$, and therefore it satisfies their conjunction F_{x}; therefore, F_{x} is indeed satisfiable.
Only If: Suppose F_{x} is satisfiable, and let τ be a truth assignment to the variables that satisfies F_{x}. From this truth assignment we can define a sequence $C_{0}, C_{1}, \ldots, C_{p(n)}$ so that

- C_{0} is the initial configuration of M_{A} on x (this is because τ satisfies F_{x}^{2});
- for each $t, 0 \leq t<p(n), C_{t}$ is a legal configuration of M_{A}; and either the state of M_{A} in C_{t} is not the accept or reject state and $C_{t} \vdash C_{t+1}$, or the state in C_{t} is the accept or reject state and $C_{t}=C_{t+1}$ (this is because τ satisfies $F_{x}^{1}, F_{x}^{4 a}, F_{x}^{4 b}$, and $F_{x}^{4 c}$); and
- $C_{p}(n)$ is a configuration in the accept state (this is because τ satisfies F_{x}^{3}.

Therefore for some $\ell, 0 \leq \ell \leq p(n), C_{0} \vdash C_{1} \vdash \ldots \vdash C_{\ell}$ is an accepting computation of M_{A} on x, which means that $x \in A$. This completes the proof of (*).

Now let us calculate the length of F_{x}, measured as the number of variable occurrences. Recalling that $|Q|$ and $|\Gamma|$ are constants we see that the lengths of $F_{x}^{1}, F_{x}^{2}, F_{x}^{3}, F_{x}^{4 a}, F_{x}^{4 b}$, and $F_{x}^{4 c}$ are, respectively, $O\left(p^{3}(n)\right), O(p(n)), O(1), O\left(p^{2}(n)\right), O\left(p^{2}(n)\right)$, and $O\left(p^{2}(n)\right)$. (For $F_{x}^{4 b}$ note that the maximum number of choices due to the nondeterminism of M_{A} is $(|Q|-2) \cdot|\Gamma|$, which is constant.) Therefore the size of F_{x} is polynomial in n (the length of the input x), and obviously can be constructed from x in polynomial time.

So there is a polynomial time mapping reduction from any decision problem in NP to Sat.
The formula F_{x} in the proof of the Cook-Levin theorem is almost in conjunctive normal form (CNF). Only the subformulas $F_{x}^{4 b}$ and $F_{x}^{4 c}$ are not. We will now show that we can put these subformulas in CNF without sacrificing the polynomial size of the resulting formula, by using the distributive law (of disjunctions over conjunctions). For example, consider $F_{x}^{4 b}$. To simplify the notation, note that this formula is a conjunction of formulas of the form

$$
\phi=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right) \vee \underbrace{\left(\bigvee_{i=1}^{k}\left(\ell_{i 1} \wedge \ell_{i 2} \wedge \ell_{i 3}\right)\right)}_{\phi^{\prime}}
$$

where $\ell_{1}, \ell_{2}, \ell_{3}$ and the $\ell_{i j}$ s are literals (i.e., variables or negated variables), and k is the number of choices of M_{A} 's nondeterministic transition function, a constant. We can put ϕ^{\prime} in CNF by applying the distributive law, resulting in the following equivalent formula:

$$
\phi^{\prime \prime}=\bigwedge_{\pi \in\{1,2,3\}\{1,2, \ldots, k\}}\left(\ell_{1 \pi(1)} \vee \ell_{2 \pi(2)} \vee \ldots \vee \ell_{k \pi(k)}\right) .
$$

(If X and Y are sets, Y^{X} denotes the set of all functions from X to Y. Thus a function $\pi \in\{1,2,3\}^{\{1,2, \ldots, k\}}$ maps each $i=1,2, \ldots, k$ to 1,2 , or 3 . Intuitively, π selects one of the three literals of each clause in ϕ^{\prime}.) By replacing ϕ^{\prime} by $\phi^{\prime \prime}$ in ϕ and applying the distributive law once more (now of disjuctions over conjunctions) we get that ϕ is equivalent to the following formula

$$
\psi=\bigwedge_{\pi \in\{1,2,3\}\{1,2, \ldots, k\}}\left(\ell_{1} \vee \ell_{2} \vee \ell_{3} \vee \ell_{1 \pi(1)} \vee \ell_{2 \pi(2)} \vee \ldots \vee \ell_{k \pi(k)}\right) .
$$

which is in CNF. The length of ϕ, measured as the number of variable occurrences, is $3 k+3$, whereas that of ψ is $3^{k}(k+3)$. But recall that k is a constant and therefore the size of F_{x}, with $F_{x}^{4 b}$ replaced by an equivalent CNF formula as above, remains polynomial in the size of the input $x . F_{x}^{4 c}$ is similar but simpler, since in this case $k=1$. Therefore we have:
Corollary 8.8 The satisfiability problem for CNF formulas, CNF-SAt, is NP-complete.
It turns out that the satisfiability problem remains NP-complete even if we restrict it to CNF formulas where each clause has at most three literals. Such formulas are called 3-CNF and the corresponding satisfiability problem is called 3SAt.
Theorem 9.1 3 Sat is NP-complete.
Proof. 3SAT is in NP because it is a special case of SAT, which is in NP. To prove that CNF-Sat \leq_{m}^{p} 3 Sat, we will show how to replace each clause C of a CNF formula F by a 3 -CNF formula C^{\prime} that is satisfiable if and only if C is.

If C has at most three literals, we just take $C^{\prime}=C$. Otherwise, let

$$
C=\ell_{1} \vee \ell_{2} \vee \ell_{3} \vee \ldots \vee \ell_{k}
$$

for some $k>3$, where $\ell_{1}, \ldots, \ell_{k}$ are literals. Let z_{1} be a new variable that does not appear anywhere else in F and consider the formula

$$
C_{1}=\left(\ell_{1} \vee \ell_{2} \vee z_{1}\right) \wedge\left(\neg z_{1} \vee \ell_{3} \vee \ldots \vee \ell_{k}\right) .
$$

Intuitively C_{1} says that (at least) one of $\ell_{1}, \ell_{2}, z_{1}$ is true, and that, furthermore, if z_{1} is true then (at least) one of $\ell_{3}, \ldots, \ell_{k}$ is true. Thus, C is satisfiable if and only if C_{1} is satisfiable. Note that whereas C has k literals, C_{1} has two clauses, one with three literals and one with $k-1$ literals. If $k-1>3$ we apply the same idea recursively to the second clause, obtaining another formula C_{2} that has two clauses with three literals and one with $k-2$ literals and is satisfiable if and only if C is. We repeat this until we obtain a conjunction of clauses each of which has at most three variables, i.e., a 3-CNF formula. This is the formula C^{\prime} by which we replace C :

$$
C^{\prime}=\left(\ell_{1} \vee \ell_{2} \vee z_{1}\right) \wedge\left(\neg z_{1} \vee \ell_{3} \vee z_{2}\right) \wedge\left(\neg z_{2} \vee \ell_{4} \vee z_{3}\right) \wedge \ldots \wedge\left(\neg z_{k-3} \vee \ell_{k-1} \vee \ell_{k}\right) .
$$

Note that C^{\prime} has at most 3 times as many literals as C, so F^{\prime} is linear in the size of F. So in polynomial time we can construct a 3 -CNF formula F^{\prime} that is satisfiable if and only if the CNF formula F is.

What if we further restrict CNF formulas so that each clause has at most two literals? The satisfiability problem for such formulas, called 2SAT, turns out to be solvable in polynomial time!

