The arithmetic hierarchy

Vassos Hadzilacos ${ }^{11}$

1 Definition and basic properties

The arithmetic hierarchy is a classification of some languages based on their "degree of uncomputability": At the bottom of the hierarchy lie the decidable languages, contained by the larger sets of recognizable and co-recognizable languages. These, in turn, are contained by a larger set of undecidable languages and their complements; and these sets are contained by a larger set of languages that contain "even more undecidable" languages and their complements; and so on ad infinitum. Each such pair of sets defines a "level" of this infinite hierarchy of more and more undecidable languages. Remarkably, there are two quite different, but equivalent, ways of arriving at the definition of these sets of languages: One is based on oracle Turing machines (OTMs) and the other is based on the structure of first-order logic formulas that can be used to describe them.

Note that OTMs can be encoded by strings in a way that is similar to how ordinary Turing machines are. Furthermore, there is a Universal OTM M_{U} which, given the code $\langle M, x\rangle$ of an OTM M and input x, uses oracle A to simulate the computation of M^{A} on x. The Universal OTM works just like the Universal Turing machine, and uses its oracle for the query steps. (For more information on OTMs see the document entitled "Reductions", specifically the discussion of Turing reductions; and for more information on the Universal Turing machine see the document entitled "Church's thesis and the Universal Turing machine.)

Definition 1 For every $i \in \mathbb{N}$, we define the sets Δ_{i}, Σ_{i}, and Π_{i} inductively as follows:

- $\Delta_{0}=\Sigma_{0}=\Pi_{0}=$ the set of decidable languages.
- For each $i>0$,
$-\Delta_{i}$ is the set of languages that are decided by OTMs that use oracles in Σ_{i-1}.
- Σ_{i} is the set of languages that are recognized by OTMs that use oracles in Σ_{i-1}; and Π_{i} is the set of complements of languages in Σ_{i}.

The sets Δ_{i}, Σ_{i}, and Π_{i} comprise the i-th level of the arithmetic hierarchy.
A decidable language is of no help as an oracle, since membership in it can be decided by a Turing machine, without needing to resort to an oracle. Therefore, the following important fact about level 1 of the arithmetic hierarchy is an immediate corollary of Definition 1 .

Corollary $2 \Delta_{1}$ is the set of decidable languages, Σ_{1} is the set of recognizable languages, and Π_{1} is the set of co-recognizable languages.

We have seen that the set of decidable languages, Δ_{1}, is closed under complementation. This is also true for every Δ_{i} for essentially the same reason: By swapping the accept and reject states of an OTM that decides L using L^{\prime}, we obtain an OTM that decides \bar{L} using L^{\prime}.

[^0]Corollary 3 For each $i \in \mathbb{N}, \Delta_{i}$ is closed under complementation.
The next result states that each level of the arithmetic hierarchy is contained in the next.
Theorem 4 For each integer $i \geq 1$, (a) $\Delta_{i} \subseteq \Sigma_{i} \subseteq \Delta_{i+1}$, and (b) $\Delta_{i} \subseteq \Pi_{i} \subseteq \Delta_{i+1}$.
Proof. Let $i \geq 1$.
For part (a), the fact that $\Delta_{i} \subseteq \Sigma_{i}$ follows immediately from the fact that a decider that uses L is, a fortiori, a recognizer that uses L. To show that $\Sigma_{i} \subseteq \Delta_{i+1}$, consider any language $L \in \Sigma_{i}$. We define an OTM M such that M^{L} decides $L: M$ simply copies its input x to the query tape, enters the query state, and accepts if the response to the query is 1 and rejects if the response is 0 . Clearly M^{L} decides L, and since $L \in \Sigma_{i}$, by definition $L \in \Delta_{i+1}$. Thus, $\Sigma_{i} \subseteq \Delta_{i+1}$.

For part (b), let $L \in \Delta_{i}$. By Corollary $3 \bar{L} \in \Delta_{i}$ and by part (a) $\bar{L} \in \Sigma_{i}$ and so $L \in \Pi_{i}$, proving $\Delta_{i} \subseteq \Pi_{i}$. Now let $L \in \Pi_{i}$ and so $\bar{L} \in \Sigma_{i}$; by part (a) $\bar{L} \in \Delta_{i+1}$, and by Corollary $3 L \in \Delta_{i+1}$, proving that $\Pi_{i} \subseteq \Delta_{i+1}$. Thus $\Delta_{i} \subseteq \Pi_{i} \subseteq \Delta_{i+1}$.

Are the containments in Theorem 4 proper? That is, is it the case that for all $i \geq 1, \Delta_{i} \subsetneq \Sigma_{i} \subsetneq \Delta_{i+1}$, and $\Delta_{i} \subsetneq \Pi_{i} \subsetneq \Delta_{i+1}$? It is conceivable that once we give an OTM a powerful enough oracle in Σ_{1}, say an oracle that solves the Halting problem for Turing machines, the OTM becomes all-powerful, in the sense that it can solve all problems solvable by OTMs and the hierarchy "collapses" - there is only our familiar level 1 and then all other problems in a second level. As we will prove next, this is not the case: Although an OTM with an oracle for the Halting problem for TMs can trivially solve the Halting problem for TMs (and therefore can decide any recognizable language) it cannot solve the Halting problem for OTMs with an oracle for the Halting problem for TMs! This "jump" in difficulty occurs at every level and so the containments of Theorem 4 are indeed proper: The arithmetic hierarchy has an infinite number of distinct levels, each properly contained in the next. Figure 1 illustrates the structure of the arithmetic hierarchy as a Venn diagram of the sets involved. The languages $H^{i}, \overline{H^{i}}$, and D^{i} that "separate" each level i from the previous one will be defined shortly, as we develop the technical machinery needed to prove that the containments of Theorem 4 are indeed proper.

Definition 5 The Halting problem with oracle L is the problem of determining whether a given OTM N using oracle L halts on a given input x; that is, it is the language

$$
H^{L}=\left\{\langle N, x\rangle: N \text { is an OTM such that } N^{L} \text { halts on input } x\right\} .
$$

Theorem 6 For every language L, the language

$$
D^{L}=\left\{\langle N\rangle: N \text { is an OTM such that } N^{L} \text { does not halt on input }\langle N\rangle\right\}
$$

is not recognizable by any OTM using L.
Proof. Let L be any language and suppose, for contradiction, that there is an OTM M such that M^{L} recognizes D^{L}. Without loss of generality, assume that M never rejects - it loops instead. Thus, for any input $\langle N\rangle$,

$$
M^{L} \text { halts on }\langle N\rangle \quad \Leftrightarrow \quad M^{L} \text { accepts }\langle N\rangle \quad \Leftrightarrow \quad N^{L} \text { does not halt on }\langle N\rangle \text {. }
$$

In particular, taking $N=M$, i.e., running M with oracle L on its own code, we get

$$
M^{L} \text { halts on }\langle M\rangle \quad \Leftrightarrow \quad M^{L} \text { does not halt on }\langle M\rangle,
$$

which is a contradiction.

Figure 1: Structure of the arithmetic hierarchy
Theorem 7 For every language L, H^{L} is (a) recognizable by some OTM that uses L, but (b) not decidable by any OTM that uses L.

Proof. The following is a recognizer for H^{L} : on input $\langle M, x\rangle$, run M using L on input x. If this computation halts, then accept. This proves part (a).

For part (b) suppose, for contradiction, that there is some language L and some OTM M such that M^{L} decides H^{L}. Then the language D^{L} is also decidable by the following OTM using L : On input $\langle N\rangle$, run M using L on input $\langle N, N\rangle$ and do the opposite of what M does on that input: accept if M rejects and reject if M accepts. This contradicts Theorem 6.

Notice that the set H is a language (the halting problem for Turing machines with no oracle), so H^{H} is also a language (the halting problem for OTMs with oracle H), and so $H^{\left(H^{H}\right)}$ is also a language (the halting problem for OTMs with oracle H^{H}), and so on ad infinitum. We use the notation H^{i} to denote the language resulting from iterating this construction i times. More precisely,

Definition 8 For any $i \in \mathbb{N}$, define H^{i} inductively as follows:

- $H^{0}=\{\epsilon\} \square^{2}$
- for $i>0, H^{i}=H^{H^{i-1}}$ (the halting problem for OTMs using H^{i-1} as the oracle).

Note that H^{1} is the usual halting problem for Turing machines (with no oracle).

[^1]Next we define the important concept of a language being complete for a set of languages \mathcal{L}. A variant of this concept plays a key role in the second part of the course, when we discuss complexity theory.

Definition 9 Let \mathcal{L} be a set of languages, and L be a language. We say that L is complete for \mathcal{L} (or \mathcal{L}-complete) if
(a) $L \in \mathcal{L}$, and
(b) for every L^{\prime} in $\mathcal{L}, L^{\prime} \leq_{m} L$.

Thus, a language is \mathcal{L}-complete if it is one of the "hardest" languages in \mathcal{L} : If we can decide it, the we can decide all languages in $\mathcal{L} \square^{3}$

Lemma 10 Let L be a language that is recognized (respectively, decided) by an OTM M_{L} using oracle A, and let A^{\prime} be such that $A \leq_{m} A^{\prime}$. Then L is also recognized (respectively, decided) by an OTM N_{L} using oracle A^{\prime}.

Proof. Intuitively this is clear because $A \leq_{m} A^{\prime}$ means that A^{\prime} is at least as strong as A, so if something can be done using A it can also be done using A^{\prime}. More precisely we argue as follows.

Let f be a mapping reduction of A to A^{\prime}. Let M_{L} be an OTM that uses A to recognize (respectively, decide) L. We define an OTM N_{L} that works like M except that, when M_{L} is about to ask its oracle the query " $x \in A$?", OTM N_{L} first computes $f(x)$ (which it can do because f, being a mapping reduction, is computable) and then asks its oracle the query " $f(x) \in A^{\prime}$?". The two queries have identical answers (because $x \in A$ if and only if $f(x) \in A^{\prime}$), so M_{L}^{A} on any input performs exactly the same computation as $N_{L}^{A^{\prime}}$ on the same input. Therefore $N_{L}^{A^{\prime}}$ recognizes (respectively, decides) L, just as M_{L}^{A} does.

Theorem 11 (Post) For every $i \in \mathbb{N}, H^{i}$ is complete for Σ_{i}.

Proof. We use induction to prove that, for every $i \in \mathbb{N}$,
(a) $H^{i} \in \Sigma_{i}$, and
(b) for every $L \in \Sigma_{i}, L \leq_{m} H^{i}$.

For the basis $i=0$, recall that $H^{0}=\{\epsilon\}$ and Σ_{0} is the set of decidable languages, so (a) is obvious. For (b), let L be any language in Σ_{0}. Then consider the function f that maps every $x \in L$ to ϵ, and every $x \notin L$ to some string other than $\epsilon \square^{4}$ The function f is computable because L is decidable, and so there is a TM to decide whether $x \in L$.

For the induction step, let $i>0$ and suppose the result holds for $i-1$. By definition, $H^{i}=H^{H^{i-1}}$ and so, by Theorem $7(\mathrm{a}), H^{i}$ is recognizable using H^{i-1}. Since, by the induction hypothesis, $H^{i-1} \in \Sigma_{i-1}$, it follows that $H^{i} \in \Sigma_{i}$, proving part (a) of the induction step. For part (b), let L be any language in Σ_{i}. We will prove that $L \leq_{m} H^{i}$.

Since $L \in \Sigma_{i}$, for $i>0$, there is an OTM M_{L} and a language $A \in \Sigma_{i-1}$ such that M_{L}^{A} recognizes L. By the induction hypothesis, $A \leq_{m} H^{i-1}$. Thus, by Lemma 10 , there is also an OTM N_{L} such that $N_{L}^{H^{i-1}}$ recognizes L. We now describe a mapping reduction of L to H^{i}. Given x, we construct the code of the following OTM M :

[^2]$M:=$ on input y :

Using oracle H^{i-1}, this OTM halts on x if and only if $x \in L$:

- If $x \in L$ then line 1 terminates with $N_{L}^{H_{i-1}}$ having accepted x, and so M on any input (and in particular on input x) halts in line 2. Thus, in this case, $\langle M, x\rangle \in H^{i}$.
- If $x \notin L$ then $N_{L}^{H_{i-1}}$ either loops on x and so line 1 does not terminate, or it rejects x and so line 3 is executed. Either way $N_{L}^{H_{i-1}}$ loops on every input (and in particular on input x). Thus, in this case, $\langle M, x\rangle \notin H^{i}$.

Clearly the mapping $x \mapsto\langle M, x\rangle$ can be computed by a Turing machine, so this is a mapping reduction of L to H^{i}, as wanted.

An immediate consequence of this and Lemma 10 is the following:
Corollary 12 If $L \in \Sigma_{i}$ (respectively, $L \in \Delta_{i}$) then there is an OTM that recognizes (respectively, decides) L using H^{i-1}.

Another immediate consequence of Theorem 11 is the following:
Corollary $13 \overline{H^{i}}$ is Π_{i}-complete.
Definition 14 For all integers $i \geq 1$, define

$$
D^{i}=\left\{\langle M, x, 0\rangle:\langle M, x\rangle \in H^{i-1}\right\} \cup\left\{\langle M, x, 1\rangle:\langle M, x\rangle \in \overline{H^{i-1}}\right\}
$$

Intuitively, a string $\langle M, x, b\rangle$ in D^{i} tells us whether $\langle M, x\rangle \in H^{i-1}(b=0)$ or not $(b=1)$.
We can now prove a number of useful facts about the arithmetic hierarchy, some of which generalize things we have proved about its first level, i.e., the set of decidable, recognizable, and co-recognizable languages.

Theorem 15 For every integer $i \geq 1$,
(a) $\Delta_{i}=\Sigma_{i} \cap \Pi_{i}$,
(b) $H^{i}, \overline{H^{i}} \in \Delta_{i+1}-\Delta_{i}$,
(c) $H^{i} \in \Sigma_{i}-\Pi_{i}$, and
(d) $\overline{H^{i}} \in \Pi_{i}-\Sigma_{i}$,
(e) $D^{i} \in \Delta_{i}$, and
(f) $D^{i+1} \notin \Sigma_{i} \cup \Pi_{i}$.

Proof.
(a) From Theorem 4 we have that $\Delta_{i} \subseteq \Sigma_{i} \cap \Pi_{i}$. For the reverse inclusion, consider any language $L \in \Sigma_{i} \cap \Pi_{i}$. Then there are OTMs M and \bar{M} that recognize L and \bar{L}, respectively, using some oracles A and A^{\prime} in Σ_{i-1}. By Corollary 12 , there are OTMs N and \bar{N} that recognize L and \bar{L} using H^{i-1}. Then the following OTM using H^{i-1} decides L :

```
on input }x\mathrm{ :
    for }t:=1,2,3,\ldots\mathrm{ do
        run N on }x\mathrm{ for t steps or until it halts, whichever happens first
        if N accepts }x\mathrm{ within t steps then accept }
        run \overline{N}\mathrm{ on }x\mathrm{ for t steps or until it halts, whichever happens first}
        if }\overline{N}\mathrm{ accepts }x\mathrm{ within t steps then reject }
```

Since every x belongs to either L or to \bar{L}, either $N^{H^{i-1}}$ accepts x within some number of steps, in which case $x \in L$, and the above OTM using H^{i-1} accepts x; or $\bar{N}^{H^{i-1}}$ accepts x within some number of steps, in which case $x \notin L$, and the above OTM using H^{i-1} rejects x. Therefore the above OTM using H^{i-1} decides L. By Theorem $11 H^{i-1} \in \Sigma_{i-1}$. So, L is decidable by an OTM using an oracle in Σ_{i-1}; by definition of $\Delta_{i}, L \in \Delta_{i}$.
(b) H^{i} and $\overline{H^{i}}$ are clearly both in Δ_{i+1} since they can be trivially decided using oracle H^{i}, which is in Σ_{i} by Theorem 11. To show that $H^{i} \notin \Delta_{i}$ suppose, for contradiction, that $H^{i} \in \Delta_{i}$. Then, by Corollary 12 , there is an OTM M that decides H^{i} using oracle H^{i-1}. But recall that, for $i>0, H^{i}=H^{H^{i-1}}$, so there is an OTM that decides $H^{H^{i-1}}$ using oracle H^{i-1}, which contradicts Theorem 7 , thereby proving that $H^{i} \notin \Delta_{i}$. Since Δ_{i} is closed under complementation (Corollary 3), $\overline{H^{i}}$ is also not in Δ_{i}.
(c) The fact that $H^{i} \in \Sigma_{i}$ follows from Theorem 11 . To show that $H^{i} \notin \Pi_{i}$, suppose for contradiction that $H^{i} \in \Pi_{i}$. So, by part (a), $H_{i} \in \Delta_{i}$, contradicting part (b).
(d) Follows directly from part (c), since each of Σ_{i} and Π_{i} contains the complements of the languages in the other.
(e) D^{i} is clearly decidable using oracle H^{i-1}, which is in Σ_{i-1} by part (c); therefore $D^{i} \in \Delta_{i}$.
(f) We have:

$$
\begin{align*}
& H^{i} \leq_{m} D^{i+1}(\text { via the mapping }\langle M, x\rangle \mapsto\langle M, x, 0\rangle) \quad \text { and } \\
& \overline{H^{i}} \leq_{m} D^{i+1}(\text { via the mapping }\langle M, x\rangle \mapsto\langle M, x, 1\rangle) \tag{1}
\end{align*}
$$

Suppose, for contradiction, that $D^{i+1} \in \Sigma_{i} \cup \Pi_{i}$. Since H^{i} is Σ_{i}-complete and $\overline{H^{i}}$ is Π_{i}-complete (Theorem 11 and Corollary 13 , either $D^{i+1} \leq_{m} \underline{H_{i}}$ or $D^{i+1} \leq_{m} \overline{H_{i}}$. Thus, by (1) and transitivity of mapping reductions, either $\overline{H^{i}} \leq_{m} H^{i}$ or $H^{i} \leq_{m} \overline{H^{i}}$, which imply, respectively, that either $\overline{H^{i}} \in \Sigma_{i}$ or $H^{i} \in \Pi_{i}$. These contradict parts (c) and (d).

Theorem 16 The inclusions in Theorem 4 are proper. That is, for each integer $i \geq 1$, (a) $\Delta_{i} \subsetneq \Sigma_{i} \subsetneq \Delta_{i+1}$, and $(b) \Delta_{i} \subsetneq \Pi_{i} \subsetneq \Delta_{i+1}$.

Proof. This follows from Theorem 4 and the following facts:

- $H^{i} \in \Sigma_{i}-\Delta_{i}$ (Theorem 15 (c) and (b)),
- $\overline{H^{i}} \in \Pi_{i}-\Delta_{i}$ (Theorem $15(\mathrm{~d})$ and (b)),
- $D^{i+1} \in \Delta_{i+1}-\left(\Sigma_{i} \cup \Pi_{i}\right)$ (Theorem 15 (e) and (f)).

2 Alternative characterization of the arithmetic hierarchy

2.1 Predicates as languages

Let $R\left(x_{1}, \ldots, x_{k}\right)$ be a k-place predicate whose arguments x_{1}, \ldots, x_{k} take on values from sets of finite mathematical objects, i.e., ones that can be encoded by strings over some alphabet. For example consider the predicate $T(M, x, c)$ defined as follows:
$T(M, x, c)$ is true if and only if c is an accepting computation of Turing machine M on input x.
This is known as Kleene's T-predicate. We have seen that Turing machines and their inputs can be encoded by strings. An accepting computation c of a Turing machine M on input x can also be encoded by a string as follows: c is a finite sequence of configurations $C_{0}, C_{1}, \ldots, C_{\ell}$, where C_{0} is the initial configuration $q_{0} x$ of M on x, C_{ℓ} is an accepting configuration $y_{1} h_{A} y_{2}$ of M, and for each $i \in[0 . . \ell-1], C_{i} \vdash_{M} C_{i+1}$ i.e., each configuration is obtained from the previous one by a legal move of M. Each configuration is a finite string, and a finite sequence of strings can be encoded by a string (e.g., the concatenation of the configurations separated by a special symbol not occurring in the configurations).

Since the values of each argument of R can be encoded as strings over some alphabet, the values of R 's k free variables can be encoded by a k-tuple of strings, and that k-tuple can be encoded by a single string over some alphabet. In this manner, R represents a language L_{R}, consisting of the set of encodings of k-tuples of values that satisfy the predicate: $L_{R}=\left\{\left\langle x_{1}, \ldots, x_{k}\right\rangle: R\left(x_{1}, \ldots x_{k}\right)\right\}$.

It is sometimes convenient to abuse terminology and say that the predicate R has a property to mean that the language L_{R} that it represents has that property; in this way, we can say that the predicate R is decidable or recognizable or in Π_{4}, instead of saying that L_{R} is decidable or recognizable or in Π_{4}.

Observation 17 Kleene's T-predicate is decidable.
This is because a Turing machine, given input $\langle M, x, c\rangle$, can decide whether $T(M, x, c)$ holds: it uses the universal Turing machine to simulate M on input x for as many steps as c encodes, checks that c is an accepting computation of M on x, and accepts if this is the case and rejects if not.

We note the following technicality. Let Σ be the alphabet used to encode elements of a set, say Turing machines or k-tuples of strings. The encoding rules are typically such that some strings in Σ^{*} are syntactically invalid encodings. It is useful to insist that all strings of Σ^{*}, even syntactically invalid ones, actually represent some element of the set. We do this by thinking of all syntactically invalid strings as representing some default element of the set, typically a "simple" one. For example, in our encodings of Turing machines we thought of syntactically invalid strings as representing the Turing machine that rejects all inputs in zero steps (i.e., its initial state is the same as the reject state). In this way, if L_{R} is the language that represents predicate $R, \overline{L_{R}}$ is the language that represents the predicate $\neg R$. Note that in this manner, although every object has an encoding, the default object chosen to be represented by all invalid strings has multiple encodings.

2.2 Characterization of level 1

Consider the following languages:

- Univ $=\{\langle M, x\rangle: M$ accepts $x\}$.
- $\overline{\mathrm{Empty}}=\{\langle M\rangle: \mathcal{L}(M) \neq \varnothing\}$.
- Common $=\left\{\left\langle M_{1}, M_{2}\right\rangle: \mathcal{L}\left(M_{1}\right) \cap \mathcal{L}\left(M_{2}\right) \neq \varnothing\right\}$.

We have proved that the first two are recognizable (but undecidable), and it is easy to show that so is the third. Now consider the following ways of representing these languages with predicates expressed as formulas in first-order logic:

- Univ is represented by $\exists c T(M, x, c)$, since M accepts x if and only if there is a an accepting computation c of M on x.
- $\overline{\text { Empty }}$ is represented by $\exists x \exists c T(M, x, c)$, since the language recognized by M is nonempty if there is some string x and an accepting computation c of M on x.
- Common is represented by $\exists x \exists c_{1} \exists c_{2}\left(T\left(M_{1}, x, c_{1}\right) \wedge T\left(M_{2}, x, c_{2}\right)\right)$, since the languages of M_{1} and M_{2} have a nonempty intersection if and only if there is some string x and accepting computations c_{1} and c_{2} of M_{1} and M_{2} on x, respectively.

Notice the following about these three examples:

- Each language is represented by a formula that consists of one or more existential quantifiers applied to a predicate.
- The predicate that follows the existential quantifiers is decidable. This is immediate in the first two examples since T is decidable, as we have already pointed out. In the third example the quantifier-free part of the formula is the conjunction of two decidable predicates, which is therefore also decidable (recall that the intersection of decidable languages is decidable).
- The objects that belong (or not) to each language are encodings of the free variables of the corresponding formula. For instance, in the third example, the free variables of the formula are M_{1} and M_{2} (because the formula defines a predicate that depends on M_{1} and M_{2}); and the elements of the language Common that the predicate represents are encodings of the pair of M_{1} and M_{2}.

This is not an accident about the above three languages. As the following theorem states, it is true of all recognizable languages and only of recognizable languages!

Theorem 18 A language L is recognizable (i.e., $L \in \Sigma_{1}$) if and only if $L=\{x: \exists y P(x, y)\}$ for some decidable predicate $P(x, y)$.

The existentially quantified variable y in the above formula is sometimes called a certificate. This is because, through the predicate P, which is called a verifier, it confirms x 's membership in the language L : if a certificate y exists so that $P(x, y)$ is satisfied, then x is in L; and, conversely, if no such y exists, then x is not in L.

Proof.

IF: Suppose L is a language such that $L=\{x: \exists y P(x, y)\}$, for a decidable predicate P. Let M_{P} be a Turing machine that decides P. Then the following TM is a recognizer for L :

```
L-RECOGNIZER:= on input x:
for each y in shortlex order do
2 run M M on \langlex,y\rangle
3 if MP accepts then accept
```

If $x \in L$ then, by definition of L, there is some y such that $P(x, y)$ holds. Therefore the decider M_{P} on input $\langle x, y\rangle$ accepts, and so L-RECOGNIzER accepts x. If $x \notin L$ then there is no y such that $P(x, y)$ holds and so L-Recognizer on input x will loop and it does not accept x. Therefore L-Recognizer is indeed a recognizer for L.

Only if: Suppose L is a recognizable language. Thus, there is a Turing machine, say M_{L}, that recognizes L. We want to find a decidable predicate $P(x, y)$ such that $x \in L$ if and only if $\exists y P(x, y)$. What would constitute a certificate y that confirms x 's membership in L ? But, of course, an accepting computation of M_{L} on x would! So, we have that $x \in L$ if and only if $\exists c T\left(M_{L}, x, c\right)$, and by Observation 17 we have a formula of exactly the desired form. (Note that $T\left(M_{L}, x, c\right)$ is actually a predicate with only two variables, x and c, since the first argument is instantiated with the specific Turing machine M_{L}.)

You may be wondering about the discrepancy between the statement of this theorem, which asserts that there is a formula with a single existential quantifier that represents a recognizable language, and the formulas for $\overline{\text { EmPTY }}$, which has two existentially quantified variables, and Common, which has three. There is in fact no discrepancy, since we can encode three variables x, y, z as a triple $\langle x, y, z\rangle$, and refer to x, y, and z by decoding $\langle x, y, z\rangle$. So, we could write the formula for Common as

$$
\begin{equation*}
\exists\left\langle x, c_{1}, c_{2}\right\rangle\left(T\left(M_{1}, x, c_{1}\right) \wedge T\left(M_{2}, x, c_{2}\right)\right) . \tag{2}
\end{equation*}
$$

More accurately, we could write it as

$$
\exists y T^{\prime}\left(M_{1}, M_{2}, y\right)
$$

where $T^{\prime}\left(M_{1}, M_{2}, y\right)$ is the predicate that is true if and only if y decodes into the three elements x, c_{1}, c_{2}, where c_{1} is an accepting computation of M_{1} on x and c_{2} is an accepting computation of M_{2} on x. The predicate $T^{\prime}\left(M_{1}, M_{2}, y\right)$ is decidable because a Turing machine can decode the string y into the unique three strings x, c_{1}, and c_{2}, that y encodes and then use the universal Turing machine to check that c_{1} and c_{2} are indeed accepting computations of M_{1} and M_{2}, respectively, on x. Henceforth we will write formulas such as (2) to indicate the combination of multiple variables quantified by the same quantifier - all \exists or all \forall - into a single variable under that quantifier.

Theorem 18 is very useful as it allows us to quickly classify certain languages as recognizable: All we have to do is find a (correct!) description of the language by a formula that has the proper form: an existentially quantified formula of a decidable predicate. For example, consider the language

$$
B=\{\langle M\rangle: M \text { accepts a string whose length is exactly equal to the number of states of } M\} .
$$

This language is recognizable because

$$
B=\{\langle M\rangle: \exists x \exists c(\underbrace{T(M, x, c)}_{(1)} \wedge \underbrace{|x|=\text { number of states of } M}_{(2)})\}
$$

Note that the predicates (1) and (2) are both decidable ((1) by Observation 17, and a Turing machine can certainly decide (2) given $\langle M, x, c\rangle$) and therefore so is their conjunction. Thus B can be expressed as an existentially quantified formula of a decidable predicate (the two existentially quantified variables can be combined into one, as we have seen) and so by Theorem 18, B is recognizable. Note that B is undecidable, but Theorem 18 does not allow us to conclude this. All that theorem says is that B is recognizable; some recognizable languages are decidable and some, like B, are not. (You can prove that B is undecidable using the Recursion Theorem.)

Co-recognizable languages

By definition, language L is co-recognizable if and only if \bar{L} is recognizable. By Theorem $18 L$ is corecognizable if and only if there is a decidable predicate P such that $x \in L \Leftrightarrow \neg \exists y P(x, y)$. But, $\neg \exists y P(x, y)$ is logically equivalent to $\forall y \neg P(x, y)$. Furthermore, $P(x, y)$ is decidable if and only if $\neg P(x, y)$ is decidable (simply by swapping the accept and reject states of any Turing machine that decides $P(x, y)$). Therefore we have the following characterization for co-recognizable languages:

Corollary 19 A language L is co-recognizable (i.e., $L \in \Pi_{1}$) if and only if there is a decidable predicate $P(x, y)$ such that $L=\{x: \forall y P(x, y)\}$.

Consider, for example, the language Empty of codes of Turing machines that accept no input: Empty = $\{\langle M\rangle: \mathcal{L}(M)=\varnothing\}$. We have proved that this is a co-recognizable language (by giving a deterministic Turing machine that recognizes its complement $\overline{\text { EMPTY }}$ using dovetailing or by giving a nondeterministic Turing machine that recognizes $\overline{\text { EmPTY }}$ by "guessing" a string and verifying that it is accepted by M) but here is another proof of this fact, based on Corollary 19 , simply by noting that EMPTY $=\{\langle M\rangle: \forall x \forall c \neg T(M, x, c)\}$. Since $T(M, x, c)$ is decidable so is $\neg T(M, x, c)$ and we can combine the two universally quantified variables into one, as usual. So, by Corollary 19, Empty is a co-recognizable language.

2.3 Characterization of higher levels of the hierarchy

It is nice and useful to have this logical characterizable of the languages in the first level of the hierarchy. As we will see next, each level of the hierarchy is characterized exactly by logical formulas adhering to a specific format of increasing complexity as the level increases!

Lemma 20 The language $\mathrm{FIN}=\{\langle M\rangle: \mathcal{L}(M)$ is finite $\}$ is in Σ_{2}.

Proof. Consider the language

$$
A=\{\langle M, x\rangle: M \text { accepts some input } y \text { that is after } x \text { in shortlex order }\}
$$

It is easy to see that A is recognizable. (We can prove this by giving a Turing machine that recognizes it or by noting that A is represented by the following formula

$$
\exists\langle y, c\rangle \underbrace{(y \text { is after } x \text { in shortlex order } \wedge T(M, y, c))}_{\text {decidable predicate of } M, x, y, c}
$$

so, since the quantifier-free part of the formula is a decidable predicate (of M, y, z, and c), Theorem 18 immediately implies that $A \in \Sigma_{1}$.)

Consider now the following OTM that uses A as an oracle.
on input $\langle M\rangle$:
for each x in shortlex order do
write $\langle M, x\rangle$ on the query tape
enter the query state
if the response of the oracle is "no" then accept

- If M accepts a finite set of strings, then there is some string x such that M accepts no string that is after x in shortlex order. When the loop is executed for the first $\operatorname{such} x$, the oracle will respond "no" and the OTM accepts $\langle M\rangle$.
- If M accepts an infinite set of strings, then for every x there is some string y that is after x is shortlex order and M accepts y. So in that case the oracle answers "yes" in every iteration, the while loop never ends, and the OTM does not accept $\langle M\rangle$.

Therefore, the above OTM with oracle A recognizes Fin. Since $A \in \Sigma_{1}$, by Definition 1, Fin $\in \Sigma_{2}$.
To say that the language of a Turing machine M is finite is to say that there is some string x so that M accepts no string y that comes after y in shortlex order. Thus Fin can be represented by the formula

$$
\exists x \forall\langle y, c\rangle \underbrace{(y \text { is after } x \text { in shortlex order } \rightarrow \neg T(M, y, c))}_{\text {decidable predicate of } M, x, y, c}
$$

Note that the predicate in the quantifier-free part of the formula, under the brace, is decidable: Given $\langle M\rangle, x, y$, and c, a Turing machine can check whether y is after x in shortlex order and then, using the universal Turing machine, check whether c is an accepting computation of M on y.

The format of the formula that represents the Σ_{2} language Fin is not an accident. It turns out that the pattern established by Theorem 18 for Σ_{1} is extended for Σ_{2} and, in fact, for all levels of the Arithmetic Hierarchy:

- A language L is in Σ_{2} if and only if $L=\left\{x: \exists y_{1} \forall y_{2} P\left(x, y_{1}, y_{2}\right)\right\}$, for some decidable predicate P,
- a language L is in Σ_{3} if and only if $L=\left\{x: \exists y_{1} \forall y_{2} \exists y_{3} P\left(x, y_{1}, y_{2}, y_{3}\right)\right\}$, for some decidable predicate P,
- a language L is in Σ_{4} if and only if $L=\left\{x: \exists y_{1} \forall y_{2} \exists y_{3} \forall y_{4} P\left(x, y_{1}, y_{2}, y_{3}, y_{4}\right)\right\}$, for some decidable predicate P,
- ...
and, in general,
- a language L is in Σ_{i} if and only if $L=\left\{x: \exists y_{1} \forall y_{2} \exists y_{3} \ldots \mathbf{Q} y_{i} P\left(x, y_{1}, y_{2}, y_{3}, \ldots y_{i}\right)\right\}$, and for some decidable predicate P, where the quantifier \mathbf{Q} is \forall if i is even, and \exists if i is odd.

By complementing the language, negating the formula, and noting that if a predicate is decidable then so is its negation, we also have:

- A language L is in Π_{i} if and only if $L=\left\{x: \forall y_{1} \exists y_{2} \forall y_{3} \ldots \mathbf{Q} y_{i} P\left(x, y_{1}, y_{2}, y_{3}, \ldots y_{i}\right)\right\}$, for some decidable predicate P, where the quantifier \mathbf{Q} is \forall if i is odd, and \exists if i is even.

A few remarks about are in order before we prove this important and useful fact.
(1) The logical formulas that describe the predicates are in prenex normal form, i.e., they consist of a sequence of quantifiers, followed by a quantifier-free formula. You know from CSCB36 that every predicate logic formula is equivalent to a formula in prenex normal form.
(2) The quantifier-free part of the formula defines a predicate that is decidable: There is a Turing machine that, given specific values for all the arguments, can determine whether the predicate is true or not for those values.
(3) For languages in Σ_{i}, the string of quantifiers starts with \exists and then the type of quantifiers alternate between \exists and \forall; for languages in Π_{i}, the string of quantifiers starts with \forall and then the type of quantifiers alternates.
(4) What determines the level i is the number of alternations, not the number of quantifiers. This is because, as we mentioned earlier, we can encode a run of similarly-quantified variables by a single quantified variable; for example, $\forall y_{i 1} \forall y_{i 2} \ldots \forall y_{i k}$ can be written as $\forall y_{i}$, where $y_{i}=\left\langle y_{i 1}, y_{i 2}, \ldots, y_{i k}\right\rangle$; and similarly for a run of existential quantifiers.

Notation 21 For every positive integer i we will use the symbol \boldsymbol{Q}_{i} to stand for the quantifier \exists if i is odd and for the quantifier \forall if i is even; the symbol $\overline{\boldsymbol{Q}}_{i}$ stands for the dual quantifier: \forall if i is odd and \exists if i is even.

Theorem 22 (Kleene) For every $i \geq 1$, a language L is in
(a) Σ_{i} if and only if $L=\left\{x: \exists y_{1} \forall y_{2} \exists y_{3} \ldots \boldsymbol{Q}_{i} y_{i} P\left(x, y_{1}, y_{2}, y_{3}, \ldots y_{i}\right)\right\}$, and
(b) Π_{i} if and only if $L=\left\{x: \forall y_{1} \exists y_{2} \forall y_{3} \ldots \overline{\boldsymbol{Q}}_{i} y_{i} P\left(x, y_{1}, y_{2}, y_{3}, \ldots y_{i}\right)\right\}$,
where P is some decidable predicate.
The following lemma generalizes Theorem 18 and does most of the work for the proof of Theorem 22 ,
Lemma 23 For every $i \geq 1$, a language L is in Σ_{i} if and only if $L=\{x: \exists y P(x, y)\}$, where P is a Π_{i-1} predicate ${ }^{5}$

Proof of Lemma 23. Use induction on i, generalizing ideas in the proof of Theorem 18 ,
The basis, $i=1$, is just Theorem 18, since a Π_{0} predicate is, by definition of Π_{0}, decidable. For the induction step, let $i \geq 2$ and suppose that the lemma holds for $i-1$; we will prove that it holds for i.
IF: Suppose $L=\{x: \exists y P(x, y)\}$ where $P(x, y)$ is a Π_{i-1} predicate. We will prove that $L \in \Sigma_{i}$ by constructing an OTM that accepts L using an oracle in Σ_{i-1}.

Recall that to say $P(x, y)$ is a Π_{i-1} predicate means that the language $L_{P}=\{\langle x, y\rangle: P(x, y)\}$ is in Π_{i-1}. Thus, $\overline{L_{P}}=\{\langle x, y\rangle: P(x, y)\}$ is in Σ_{i-1}. Consider the following OTM, using oracle $\overline{L_{P}}$, where y_{i} is the i th string in shortlex order:

```
on input }x\mathrm{ :
    for each }i:=1,2,3,\ldots\mathrm{ do
        write }\langlex,\mp@subsup{y}{i}{}\rangle\mathrm{ on the query tape
        enter the query state
        if the response of the oracle is "no" then accept
```

We now show that this OTM using oracle $\overline{L_{P}}$ recognizes L.

- If $x \in L$, by definition of L, there is some string y such that $P(x, y)$. Therefore, in some iteration of the while loop the string $\langle x, y\rangle$ written on the query tape belongs to L_{P}, and thus the oracle for $\overline{L_{P}}$ will reply "no", and the OTM accepts x.
- If $x \notin L$, by definition of L, there is no string y such that $P(x, y)$. Therefore, in every iteration of the while loop the string $\langle x, y\rangle$ written on the query tape does not belong to L_{P}, and so the oracle for $\overline{L_{P}}$ will reply "yes" and the loop will not terminate. Thus, the OTM does not accept x.

This shows that the above OTM with oracle $\overline{L_{P}} \in \Sigma_{i-1}$ recognizes L, so $L \in \Sigma_{i}$, as wanted.
Only IF: Now suppose that $L \in \Sigma_{i}$. We want to show that there is a predicate P in Π_{i-1} such that

$$
\begin{equation*}
x \in L \quad \Leftrightarrow \quad \exists y P(x, y) \tag{3}
\end{equation*}
$$

Since $L \in \Sigma_{i}$ there is an OTM M that recognizes L using an oracle $A \in \Sigma_{i-1}$. By the induction hypothesis applied to language A, there is a Π_{i-2} predicate R such that

$$
\begin{align*}
y \in A & \Leftrightarrow \quad \exists v R(y, v), \tag{4}\\
\text { and therefore } & z \notin A \tag{5}
\end{align*} \Leftrightarrow \quad \forall w \neg R(z, w) .
$$

Roughly speaking, the predicate $P(x, y)$ we are looking for, that satisfies (3), asserts that y encodes an accepting computation c of M on x using A.

To see how to do this, let us consider such an accepting computation c of M on x using A. It consists of a finite sequence of configurations. A step of the computation is the transition between successive

[^3]configurations in this sequence. We call a step from configuration C to configuration C^{\prime} regular, if the OTM is not in the query state $q_{\text {? }}$ in configuration C; we call it a yes query step (respectively, no query step), if the OTM is in the query state in C and responds "yes" (respectively "no") in C^{\prime}. To be an accepting computation of M on x using oracle A, c must satisfy the following conditions:
(a) It starts with the initial configuration of M on x;
(b) it ends with an accepting configuration of M;
(c) every regular step of c is consistent with the transition function of M;
(d) in every yes query step of c, the string in the query tape before the step belongs to A; and
(e) in every no query step of c, the string in the query tape before the step does not belong to A.

As we noted when we justified Observation 17, (a)-(c) can be checked by a Turing machine; (d) and (e), however, cannot necessarily be checked by a Turing machine because A is a language in Σ_{i-1} and is therefore quite possibly undecidable. To check (d) and (e) we will use the predicate R that acts as a verifier for A, and leverage (4) and (5) to construct the predicate P that acts as a verifier for L.

Consider the predicate $S(M, x, c, v, w)$ defined to be true if and only if all of the following hold:
(1) c encodes a finite sequence of configurations of M that starts with the initial configuration of M on x, ends with an accepting configuration of M, and each configuration other than the first is obtained from the previous configuration by a valid move of M.
(2) c has some number k of yes query steps with strings $y_{1}, y_{2}, \ldots, y_{k}$ on the query tape, and some number ℓ of no query steps with strings $z_{1}, z_{2}, \ldots, z_{\ell}$ on the query tape.
(3) v encodes a sequence of k strings $v_{1}, v_{2}, \ldots, v_{k}$.
(4) w encodes a sequence of ℓ strings $w_{1}, w_{2}, \ldots, w_{\ell}$.
(5) For each $i \in[1 . . k], R\left(y_{i}, v_{i}\right)$ holds; i.e., v_{i} certifies that $y_{i} \in A$.
(6) For each $i \in[1 . . \ell], \neg R\left(z_{i}, w_{i}\right)$ holds; i.e., w_{i} does not certify that $\left.z_{i} \in A\right]^{6}$

Since the predicate R is in Π_{i-2}, the language it represents $L_{R}=\{\langle y, v\rangle: R(y, v)\}$ is also in Π_{i-2}; therefore $\overline{L_{R}}$ is in Σ_{i-2}. There is an OTM N that decides (not merely recognizes) $S(M, x, c, v, w)$, using the Σ_{i-2} oracle $\overline{L_{R}}$: For (1)-(4) N does not need an oracle, and for (5) and (6) it uses $\overline{L_{R}}$: To determine whether $R\left(y_{i}, v_{i}\right)$ is true, N extracts y_{i} from the sequence of configurations that c encodes, writes the pair $\left\langle y_{i}, v_{i}\right\rangle$ on the query tape, and enters the query state; the $\overline{L_{R}}$ oracle responds "no" if and only if $R\left(y_{i}, v_{i}\right)$ is true, and so N can determine whether (5) holds. Similarly, to determine whether $R\left(z_{i}, w_{i}\right)$ is true, N extracts z_{i} from c, writes the pair $\left\langle z_{i}, w_{i}\right\rangle$ on the query tape, and enters the query state; the $\overline{L_{R}}$ oracle responds "yes" if and only if $\neg R\left(z_{i}, v_{i}\right)$ is true, and so N can determine whether (6) holds. Thus, the language L_{S} represented by S is decided by the OTM N using $\overline{L_{R}}$, and therefore the language $\overline{L_{S}}$ represented by $\neg S$ is decided by an OTM using $\overline{L_{R}}$ (merely by swapping the accept and reject states of $N)$. Therefore,
the predicate $\neg S(M, x, c, v, w)$ is decidable by an OTM using oracle $\overline{L_{R}}$.
Claim 24 Let $P^{\prime}(x, y)$ be any predicate that is decidable by an OTM using some oracle B. Then the predicate $\exists y P^{\prime}(x, y)$ is recognizable by an OTM using B.

[^4]Proof of Claim 24. We define a recognizer that uses B as follows: It runs through all possible y and checks whether $P^{\prime}(x, y)$ holds using the OTM decider for $P^{\prime}(x, y)$; if the decider accepts, then our recognizer accepts x, as it is true that the predicate $\exists y P^{\prime}(x, y)$ is true; if the decider rejects, we continue with the next y. So, if x satisfies the predicate $\exists y P^{\prime}(x, y)$, then the OTM accepts x; and if x does not satisfy the predicate $\exists y P^{\prime}(x, y)$, the recognizer will loop and does not accept x.

Applying Claim 24 to (6), we conclude that $\exists w \neg S(M, x, c, v, w)$ is recognizable using oracle $\overline{L_{R}}$; and since $\overline{L_{R}}$ is in Σ_{i-2}, the predicate $\exists w \neg S(M, x, c, v, w)$ is in Σ_{i-1}. Thus, its negation is in Π_{i-1} :
the predicate $\forall w S(M, x, c, v, w)$ is in Π_{i-1}.
Finally, consider the predicate

$$
\exists\langle c, v\rangle \forall w S(M, x, c, v, w)
$$

The free variables of this formula are M and x, and the formula states that there is a computation c and a string v so that for all strings w the following are true:
(1) c encodes a finite sequence of configurations of M that starts with the initial configuration of M on x, ends with and accepting configuration of M, and each configuration other than the first is obtained from the previous configuration by a valid move of M.
(2) c has some number k of yes query steps with strings $y_{1}, y_{2}, \ldots, y_{k}$ on the query tape, and some number ℓ of no query steps with strings $z_{1}, z_{2}, \ldots, z_{\ell}$ on the query tape.
(3) v encodes a sequence of k strings $v_{1}, v_{2}, \ldots, v_{k}$.
(4) w encodes a sequence of ℓ strings $w_{1}, w_{2}, \ldots, w_{\ell}$.
(5) For each $i \in[1 . . k], R\left(y_{i}, v_{i}\right)$ holds; i.e., v_{i} certifies that $y_{i} \in A$.
(6) For each $i \in[1 . . \ell], \neg R\left(z_{i}, w_{i}\right)$ holds; i.e., w_{i} does not certify that $z_{i} \in A$.

In other words, the predicate is true if and only if there is an accepting computation of the OTM M on input x using oracle A, i.e., if and only if $x \in L$. So,

$$
x \in L \quad \Leftrightarrow \quad \exists\langle c, v\rangle \underbrace{\forall w S(M, x, c, v, w)}_{\text {in } \Pi_{i-1}(\text { see } \mathbb{7}} .
$$

Thus, taking $P(x,\langle c, v\rangle)$ to be $\forall w S(M, x, c, v, w)$, we have that

$$
x \in L \quad \Leftrightarrow \quad \exists\langle c, v\rangle P(x,\langle c, v\rangle)
$$

for some Π_{i-1} predicate P, as wanted. This concludes the proof of Lemma 23 .
From Lemma 23 we immediately get
Corollary 25 For every $i \geq 1$, a language L is in Π_{i} if and only if $L=\{x: \forall y P(x, y)\}$, where P is a Σ_{i-1} predicate.

Finally, using Lemma 23 and Corollary 25, we can give the
Proof of Theorem 22. By induction on i. The base case $i=1$ is just Theorem 18 and Corollary 19 . For the induction step, consider any $i>1$ and assume that the Theorem holds for $i-1$; we will prove that it holds for i.

For part (a), consider any language $L \in \Sigma_{i}$. By Lemma 23 ,

$$
\begin{equation*}
x \in L \Leftrightarrow \exists y_{1} P^{\prime \prime}\left(x, y_{1}\right), \text { for some } \Pi_{i-1} \text { predicate } P^{\prime \prime} \tag{8}
\end{equation*}
$$

By definition of the language $L_{P^{\prime \prime}}$ represented by the predicate $P^{\prime \prime}$ and part (b) of the induction hypothesis applied to $L_{P^{\prime \prime}}$, we have

$$
\begin{equation*}
P^{\prime \prime}\left(x, y_{1}\right) \Leftrightarrow\left\langle x, y_{1}\right\rangle \in L_{P^{\prime \prime}} \Leftrightarrow \forall y_{2} \exists y_{3} \ldots \mathbf{Q}_{i} y_{i} P^{\prime}\left(\left\langle x, y_{1}\right\rangle, y_{2}, y_{3}, \ldots, y_{i}\right) \tag{9}
\end{equation*}
$$

for some decidable predicate P^{\prime}.
Now define the predicate $P\left(x, y_{1}, y_{2}, y_{3}, \ldots, y_{i}\right)$ to be true if and only if $P^{\prime}\left(\left\langle x, y_{1}\right\rangle, y_{2}, y_{3}, \ldots, y_{i}\right)$ is true. (That is, P is an $(i+1)$-place predicate that has the same truth value as the i-place predicate P^{\prime} when we replace in the first two arguments x and y_{1} of P by their encoding as a pair $\left\langle x, y_{1}\right\rangle$ and plug this, along with the remaining $i-1$ arguments of P, into P^{\prime}.) Since P^{\prime} is decidable, so is P.

From this, (8) and (9) we have

$$
\begin{aligned}
x \in L \Leftrightarrow \exists y_{1} P^{\prime \prime}\left(x, y_{1}\right) & \Leftrightarrow \exists y_{1} \forall y_{2} \exists y_{3} \ldots \mathbf{Q}_{i} y_{i} P^{\prime}\left(\left\langle x, y_{1}\right\rangle, y_{2}, y_{3}, \ldots, y_{i}\right) \\
& \Leftrightarrow \exists y_{1} \forall y_{2} \exists y_{3} \ldots \mathbf{Q}_{i} y_{i} \underbrace{P\left(x, y_{1}, y_{2}, y_{3}, \ldots, y_{i}\right)}_{\text {decidable }}
\end{aligned}
$$

which proves part (a).
Part (b) follows by noting that $L \in \Pi_{i}$ if and only if $\bar{L} \in \Sigma_{i}$, representing \bar{L} by a predicate according to part (a), and negating that predicate to get one that represents L.

2.4 Placing some languages in the hierarchy

Theorem 22 is very helpful in placing languages in the arithmetic hierarchy. Given the definition of a language, we look to represent that language using a formula in prenex normal form whose quantifier-free part involves decidable predicates; the number i of quantifier alternations determines the level at which the formula places the language and the type of the leading quantifier (\exists versus \forall) determines whether the language is in Σ_{i} or Π_{i}. We strive for the simplest (correct!) formula, to place the language in the lowest (most restrictive) set. We have seen a few examples of this process already; we demonstrate it further with more examples.

Some languages in level 2 of the arithmetic hierarchy

We have seen that Fin is in Σ_{2} based on two different approaches: First, we proved it by giving a recognizer that uses a Σ_{1} oracle (see Lemma 20 and its proof). We also gave a Σ_{2}-type predicate that represents Fin, namely

$$
\exists x \forall y \forall c(\underbrace{y \text { is after } x \text { in shortlex order } \rightarrow \neg T(M, y, c)}_{\text {decidable predicate of } M, x, y, c}) .
$$

By definition of Π_{2}, the complement of Fin, Infin, is in Π_{2}. We can also see this by noting that Infin is represented by the following formula:

$$
\forall x \exists y \exists c \underbrace{(y \text { is after } x \text { in shortlex order } \wedge T(M, y, c))}_{\text {decidable predicate of } M, x, y, c}
$$

which expresses the fact that M accepts an infinite number of string by asserting that for every string x, however large in shortlex order, there is an even larger y that M accepts.

As another example of a Π_{2} language consider ALL $=\left\{\langle M\rangle: \mathcal{L}(M)=\Sigma_{M}^{*}\right\}$ (where Σ_{M} denotes the input alphabet of Turing machine M). We can express this language as the set of codes of Turing machines M so that for every string x there is an accepting computation c of M on input x. So, AlL is represented by the predicate $\forall x \exists c T(M, x, c)$. Since this has two alternations of quantifiers, starting with a universal one, the corresponding language is in Π_{2}. Since All is in Π_{2} its complement $\overline{\operatorname{AlL}}$ is in Σ_{2}. By Theorem 22 this can also be seen by the fact that All is represented by the predicate $\exists x \forall c \neg T(M, x, c)$: there is some string x such that every c is not an accepting computation of M on x.

Consider the language Equiv $=\left\{\left\langle M_{1}, M_{2}\right\rangle: \mathcal{L}\left(M_{1}\right)=\mathcal{L}\left(M_{2}\right)\right\}$. To say that two Turing machines recognize the same language is to say that for each string x either both TMs do not accept x or both accept x. So Equiv is represented by the predicate

$$
\forall x \forall c_{1} \forall c_{2} \exists c_{3} \exists c_{4}(\underbrace{\left(\neg T\left(M_{1}, x, c_{1}\right) \wedge \neg T\left(M_{2}, x, c_{2}\right)\right) \vee\left(T\left(M_{1}, x, c_{3}\right) \wedge T\left(M_{2}, x, c_{4}\right)\right)}_{\text {decidable predicate of } M_{1}, M_{2}, x, c_{1}, c_{2}, c_{3}, c_{4}})
$$

which, according to Theorem 22, places Equiv in Π_{2}. Equiv is also represented by the predicate

$$
\forall x \exists c_{3} \exists c_{4} \underline{\forall c_{1} \forall c_{2}}(\underbrace{\left(\neg T\left(M_{1}, x, c_{1}\right) \wedge \neg T\left(M_{2}, x, c_{2}\right)\right) \vee\left(T\left(M_{1}, x, c_{3}\right) \wedge T\left(M_{2}, x, c_{4}\right)\right)}_{\text {decidable predicate of } M_{1}, M_{2}, x, c_{1}, c_{2}, c_{3}, c_{4}})
$$

which differs from the previous one only in the order of the underlined quantifiers. This formulation puts Equiv in Π_{3} !

There is no contradiction here: We know from Theorem 16 that $\Pi_{2} \subseteq \Pi_{3}$. The second of these choices represents Equiv with more quantifier alternations than is necessary. In general, the lowest possible level of the hierarchy, being more restrictive, gives us more information about the language. So, in general, we try to represent a language with the fewest possible number of quantifier alternations. We will return briefly to this phenomenon later (see subsection entitled "Complete languages").

It is important to understand that in general, we cannot move quantifiers around willy-nilly without changing the meaning of the formula. In the case of the two formulas that represent Equiv we could switch the order of the quantifiers for $c_{1}, c_{2}, c_{3}, c_{4}$ because, roughly speaking, each of them refers only to a different part of the quantifier-free part of the formula. In general, however, $\forall x \exists y P(x, y)$ is not equivalent to $\exists y \forall x P(x, y)$. For example, if $P(x, y)$ means " x is before y in shortlex order", then $\forall x \exists y P(x, y)$ is true but $\exists y \forall x P(x, y)$ is false.

Placing a language in Δ_{2}

We have seen in Theorem 15(a) that $\Delta_{i}=\Sigma_{i} \cap \Pi_{i}$. Thus, one way of placing a language in Δ_{i} is to find two formulas that represent it, one placing it in Σ_{i} and one placing it in Π_{i}. Consider the language Unique $=\{\langle M\rangle:|\mathcal{L}(M)|=1\}$. This can be represented by the formula

$$
\exists x \exists c_{x} \forall y \forall c_{y} \underbrace{\left(T\left(M, x, c_{x}\right) \wedge\left(y \neq x \rightarrow \neg T\left(M, y, c_{y}\right)\right)\right)}_{\text {decidable predicate of } M, x, c_{x}, y, c_{y}}
$$

where of course we can combine the two existential quantifiers into one $\exists\left\langle x, c_{x}\right\rangle$ and the two universal ones into one $\forall\left\langle y, c_{y}\right\rangle$, and then have the encoded pairs be decoded in the (still decidable) quantifier-free part of the formula. This formula says that there is an accepting computation of M on some input x and that all other inputs y have no accepting computation by M. Since there are two quantifier alternations starting with \exists, this places UniQue into Σ_{2}.

Unique can also be represented by the formula

$$
\forall x \forall c_{x} \forall y \forall c_{y} \exists z \exists c_{z} \underbrace{\left(\left(T\left(M, x, c_{x}\right) \wedge T\left(M, y, x_{y}\right) \rightarrow x=y\right) \wedge T\left(M, z, c_{z}\right)\right)}_{\text {decidable predicate of } M, x, c_{x}, y, c_{y}, x, c_{z}} .
$$

This expresses the fact that M accepts exactly one string in a different way: Any two strings x and y that M accepts are the same, and there is some string z that M accepts. The form of this predicate places Unique into Π_{2}, since there are two quantifier alternations and the leading quantifier is \forall. Since Unique is in both Σ_{2} and Π_{2}, it is in Δ_{2}.

Some languages in level 3 of the arithmetic hierarchy

A language is called cofinite if its complement is finite. Clearly every cofinite language is infinite, but not every infinite language is cofinite. For example, the set of even-length strings over some alphabet is an infinite language that is not cofinite since its complement, the set of odd-length strings, is also infinite. A language is cofinite if, starting with some string x, it contains every string y after x in shortlex order. So, the set Cofin $=\{\langle M\rangle: \mathcal{L}(M)$ is cofinite $\}$ is represented by the formula

$$
\exists x \forall y \exists c \underbrace{(y \text { is after } x \text { in shortlex order } \rightarrow T(M, y, c))}_{\text {decidable predicate of } M, x, y, c} .
$$

This places Cofin into Σ_{3}.
Consider the language $\operatorname{REG}=\{\langle M\rangle: \mathcal{L}(M)$ is regular $\}$, i.e., the set of codes of Turing machines that recognize regular languages. Just as we can encode Turing machine as strings, we can encode finite state automata (FSA) as strings by establishing conventions for how to represent states, symbols, and the transition function, and how to identify the start state and the accepting states of the automaton. Without giving the details of such an encoding, let us assume an arbitrary, reasonable one; by "reasonable" we mean an encoding so that, given the code $\langle A\rangle$ of a FSA A, a Turing machine can determine the component parts of the FSA (e.g., it can determine the code of the initial state) and can use the encoding of the transition function to simulate the operation of A on any input string $x .7$ We can then represent the language REG by the following formula:

$$
\exists\langle A\rangle \forall x \exists c \underbrace{(A \text { is a FSA that accepts } x \leftrightarrow T(M, x, c))}_{\text {decidable predicate of } M, A, s, c} .
$$

This states that there is a FSA A that accepts the same strings as M, i.e., M recognizes the same language as some FSA. Since a language is regular if and only if it is accepted by a FSA, the above formula represents REG, and this places REG in Σ_{3} : the formula has three quantifier alternations starting with an existential quantifier applied to a decidable quantifier-free predicate. (Recall that by our assumption of a reasonable encoding for FSA, given $\langle A\rangle$ and x, a Turing machine can determine if A accepts x or not; there is no danger of looping in FSA!)

Consider the language Undec $=\{\langle M\rangle: \mathcal{L}(M)$ is undecidable $\}$, i.e., the set of codes of Turing machines that recognize undecidable languages. A language is undecidable if every Turing machine that recognizes it loops on some input. Let $H(M, x, c)$ be the predicate that is true if and only if c is a halting computation of Turing machine M on input x; i.e., c takes M from the initial configuration $q_{0} x$ to a configuration where M's state is the accept or reject state. Like Kleene's T-predicate, $H(M, x, c)$ is decidable. So, we can represent UnDEC by the following predicate

$$
\begin{aligned}
& \forall\left\langle M^{\prime}\right\rangle \forall x \forall c_{1} \forall c_{2} \exists c_{3} \exists c_{4} \exists y \forall c_{5} \\
&(\underbrace{\left(\left(\neg T\left(M, x, c_{1}\right) \wedge \neg T\left(M^{\prime}, x, c_{2}\right)\right) \vee\left(T\left(M, x, c_{3}\right) \wedge T\left(M^{\prime}, x, c_{4}\right)\right)\right)}_{M \text { and } M^{\prime} \text { are equivalent: for every } x, \text { both don't accept it or both accept it }} \rightarrow \neg H\left(M^{\prime}, y, c_{5}\right))
\end{aligned}
$$

[^5]It states that every Turing machine M^{\prime} that is equivalent to M (every string is either rejected by both or accepted by both) fails to halt on some input y - i.e., M^{\prime} is not a decider. This places Undec in Π_{3}.

Complete languages

Recall our example of EQUIV, which one formula placed in Π_{2} and another in Π_{3}. As we explained, the first formula gives us more accurate information about the actual "degree of unsolvability" of this language than the second. But this raises the question: can we know when the predicate that represents a language gives us the most accurate information? In terms of Theorem 22 this means expressing it with the fewest quantifier alternations. How do we know, for example, that there is no way of representing EQUIV with just one kind of quantifier (all existential or all universal), placing it in level 1?

One way of doing this is by using the concept of complete languages, which we introduced earlier to prove that every level of the arithmetic hierarchy contains new languages, inherently "more undecidable" than those in lower levels. For example, if we show that EQUIV is a complete language for Π_{2}, which as you will recall intuitively means that Equiv is one of the "hardest" languages in Π_{2}, then Equiv cannot also be in Π_{1}.

To see why this is the case, we first note the following:
Theorem 26 Let L, L^{\prime} be languages such that $L \leq_{m} L^{\prime}$, and A be any language.
(a) If L^{\prime} is recognizable using oracle A then so is L; equivalently, if L is not recognizable using A then neither is L^{\prime}.
(b) If L^{\prime} is decidadable using oracle A then so is L; equivalently, if L is not decidadable using A then neither is L^{\prime}.

This generalizes facts we have already seen in relation to regular (non-oracle) Turing machines, and is proved in a very similar way (left as an exercise to remind you the proofs of these earlier results).

Theorem 27 For all $i>j \geq 1$, if L is Σ_{i}-complete (respectively, Π_{i}-complete) then $L \notin \Sigma_{j}$ (respectively, Π_{j}).

Proof. We will show the proof for Σ; the proof for Π is similar.
Suppose, for contradiction, that L is a Σ_{i}-complete language, yet $L \in \Sigma_{j}$ for some $j<i$. Since L is Σ_{i}-complete and $H^{i} \in \Sigma_{i}$, we have $H^{i} \leq_{m} L$. Since $L \in \Sigma_{j}$ and H^{j} is Σ_{j}-complete, we also have $L \leq_{m} \Sigma^{j}$. So, by transitivity of $\leq_{m}, H^{i} \leq_{m} H^{j}$. Since $H^{j} \in \Sigma_{j}, H^{j}$ is recognized by an OTM using some oracle in Σ_{j-1}; and since $H^{i} \leq_{m} H^{j}$, by Theorem 26(a), H^{i} is recognized by an OTM using some oracle in Σ_{j-1}, so $H^{i} \in \Sigma_{j}$, contradicting Theorem 15 (recall that H^{i} is in Σ_{i} and not in lower levels).

As an application, consider the language Fin. We have already seen that this language is in Σ_{2} — in fact we have proved this in two different ways, (a) by showing a recognizer for FiN that uses a Σ_{1} oracle (see proof of Theorem 20 and (b) by representing the language with a formula of the appropriate form based on Theorem 22. We will prove that Fin is Σ_{2}-complete; so, by Theorem 27, level 2 is the lowest to which FIn belongs: it cannot be represented by a formula that involves fewer than two quantifier alternations.

Theorem 28 FIN is Σ_{2}-complete.
Proof. By Theorem 20, Fin $\in \Sigma_{2}$. It remains to prove that for each $L \in \Sigma_{2}, L \leq{ }_{m}$ Fin. Since $L \in \Sigma_{2}$, there is a decidable predicate $P(x, y, z)$ such that

$$
\begin{equation*}
x \in L \Leftrightarrow \exists y \forall z P(x, y \cdot z) \tag{10}
\end{equation*}
$$

Let M_{P} be a Turing machine that decides P. We will show a computable function $f: x \mapsto\langle M\rangle$ so that
(a) if $x \in L$ then $\mathcal{L}(M)$ is finite, and
(b) if $x \notin L$ then $\mathcal{L}(M)$ is infinite.

Given x, the computable function f produces the code $\langle M\rangle$ of the following Turing machine:

```
M:= on input w:
    for each y that precedes w in shortlex order do
        for each z in shortlex order do
            run }\mp@subsup{M}{P}{}\mathrm{ on }\langlex,y,z
            If MP}\mp@subsup{M}{P}{}\mathrm{ rejects (i.e., P(x,y,z) is false) then break # continue with next y
    accept
```

- If $x \in L$, by (10), there exists some y such that for all $z, P(x, y, z)$ is true. Let y_{0} be the first such y in shortlex order. Consider the computation of M on any input w that is after y_{0} in lexicographic order. By the choice of y_{0}, for every y preceding y_{0} is lexicographic order there is some z such that $P(x, y, z)$ is false, so all iterations of the outer for-loop for y preceding y_{0} will terminate by the conditional in line 5 . When the outer for-loop is executed for y_{0}, the inner for-loop will not terminate, because M_{P} will accept input $\left\langle x, y_{0}, z\right\rangle$, for every z (since $P\left(x, y_{0}, z\right)$ is true for all z). Therefore M does not accept any string w that is after y_{0} in shortlex order, and so $\mathcal{L}(M)$ is finite, as wanted for (a).
- If $x \notin L$, by $\sqrt{10}$, for every y there is some x such that $P(x, y, z)$ is false. Consider the computation of M on any input w. For each y considered in the outer for-loop, eventually the inner for-loop will be executed for some z such that $P(x, y, z)$ is false, and so the inner for-loop will terminate by the conditional in line 5. So, after being executed for all y that precede w in shortlex order, the outer for-loop will also terminate and M accepts w in line 6 . Therefore, in this case M accepts every input w and so $\mathcal{L}(M)$ is infinite, as wanted for (b).

Since Fin is complete for Σ_{2}, it is straightforward to argue that its complement, Infin, is likewise complete for Π_{2}. It turns out that All is complete for Π_{2} and therefore $\overline{\operatorname{ALL}}$ is complete for Σ_{2}, and that Cofin, and REG are complete for Σ_{3} (and so their complements complete for Π_{3}), and that UndEc is complete for Π_{3} (and so its complement DEC is complete for Σ_{3}). The proofs of these results are beyond the scope of this document.

[^0]: ${ }^{1}$ I am grateful to Yiyang Zhou, former teaching assistant for this course, who provided extensive comments and corrections that improved this document significantly. Naturally I am responsible for any remaining errors.

[^1]: ${ }^{2}$ We could use any decidable set as H^{0} - except, for somewhat technical reasons, \varnothing and Σ^{*} - so we fix a specific very simple decidable set other than these two.

[^2]: ${ }^{3}$ There are, in fact, two kinds of completeness, mapping-completeness (based on mapping reductions \leq_{m}) and Turingcompleteness (based on Turing reductions \leq_{T}). In this course we will deal exclusively with the more refined notion of completeness, based on mapping reductions.
 ${ }^{4}$ You can see now why we could not use \varnothing or the set of all strings for H^{0}.

[^3]: ${ }^{5}$ Recall that " P is a Π_{i-1} predicate" is an abbreviation for "the language L_{P} represented by the predicate P is in Π_{i-1} ".

[^4]: ${ }^{6}$ Be sure to understand the difference between w_{i} not certifying that z_{i} is a member of A (which is what we claim here), and w_{i} certifying that z_{i} is not a member of A.

[^5]: ${ }^{7}$ An example of an unreasonable encoding would be one that includes rules such as "a state of the FSA is an accepting state if and only if it is encoded by a string that also represents a Turing machine that halts on empty tape". These are logically sound rules, but a Turing machine cannot use them to simulate the operation of the FSA.

