Three-dimensional matching

Vassos Hadzilacos

The three-dimensional matching problem 3DM, also known as tripartite matching, is the following decision problem:
Instance: $\langle A, B, C, T\rangle$, where A, B, C are finite sets of the same cardinality, and $T \subseteq A \times B \times C$.
Question: Is there a subset $M \subseteq T$ so that $|M|=|A|$ and the triples in M are disjoint in every component: if (a, b, c) and ($a^{\prime}, b^{\prime}, c^{\prime}$) are distinct triples in M then $a \neq a^{\prime}$ and $b \neq b^{\prime}$ and $c \neq c^{\prime}$? Such a subset M of T is called a (tripartite) matching of (A, B, C, T).
Note that, by definition, for each element $a \in A$ there is exactly one triple in a matching M that contains a; and similarly for each element of B and C. We say that each element of A, B, and C is covered (with no overlap) by M. Conversely, if a set M^{\prime} contains exactly n triples from $A \times B \times C$ and each element of A, B, and C is contained in one of these triples, then M^{\prime} is a matching (it cannot contain overlapping triples in any of the three dimensions).

Theorem 9.5 3DM is $\boldsymbol{N P}$-complete.
Proof. It is straightforward to show that $3 \mathrm{DM} \in \mathrm{NP}:$ A nondeterministic Turing machine can, in polynomial time, "guess" a list of n triples, where $n=|A|=|B|=|C|$ and then check that (a) all the triples on this list are in T, and (b) for each element of A, B, and C there is a triple on the list that contains it.

We prove that 3 DM is NP-hard by showing that $3 \mathrm{SAT} \leq_{m}^{p} 3 \mathrm{DM}$. Given a 3-CNF formula F we show how to construct, in polynomial time, an instance (A, B, C, T) of 3 DM so that

$$
\begin{equation*}
F \text { is satisfiable if and only if }(A, B, C, T) \text { has a matching. } \tag{*}
\end{equation*}
$$

First we explain the reduction. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the variables that appear in F, and let F consist of m clauses $C_{1}, C_{2}, \ldots, C_{m}$, where C_{j} is the disjuction of three literals $\ell_{j}^{1}, \ell_{j}^{2}$, and ℓ_{j}^{3}. So, each literal ℓ_{j}^{t} is either x_{i} (positive literal) or \bar{x}_{i} (negative literal) for some variable x_{i}.

The instance (A, B, C, T) of 3 DM that we will construct from F has triples that we will put in three groups, each serving a specific purpose:
Group I triples: For each variable x_{i} and clause C_{j} we add to T two triples $\left(a_{i j}, b_{i j}, x_{i j}^{1}\right)$ and $\left(a_{i j \oplus 1}, b_{i j}, x_{i j}^{0}\right)$, where $j \oplus 1=(j \bmod m)+1$ (i.e., increment that "circles back" to 1 after m). Intuitively, if the matching contains the triple $\left(a_{i j}, b_{i j}, x_{i j}^{1}\right)$, then the variable x_{i} is assigned the value 1 (true); and if it contains $\left(a_{i j \oplus 1}, b_{i j}, x_{i j}^{0}\right)$, then x_{i} is assigned the value 0 (false). Note that the triples that correspond to variable x_{i} for different clauses j are joined in a "crown" shape as shown here (pages 1-7) for an example were we have four clauses $(m=4)$; the shaded triples correspond to variable x_{1} being set to 1 , and the clear ones correspond to x_{1} being set to 0 . Because of this pattern of interconnection, a matching must choose either all the shaded or all the clear triples; in this way the variable x_{i} has a consistent value for all clauses j. For the Group I triples, the $a_{i j} \mathrm{~s}$ belong to set A, the $b_{i j} \mathrm{~s}$ belong to set B, and the $x_{i j}^{1} \mathrm{~s}$ and $x_{i j}^{0} \mathrm{~s}$ belong to set C. Inspired by the visualization of how these triples are interconnected we will refer to the third component of each of them as its tip.
Group II triples: Next we define $3 m$ triples, one for each literal appearing in a clause. Consider clause $C_{j}=\ell_{j}^{1} \vee \ell_{j}^{2} \vee \ell_{j}^{3}$. We will define three triples for C_{j}, one for each literal ℓ_{j}^{t}. For these three triples we
introduce two new elements $a_{j} \in A$ and $b_{j} \in B$. (These are not to be confused with the $a_{i j} \mathrm{~s}$ and $b_{i j} \mathrm{~s}$ defined for the Group I triples.)

- If $\ell_{j}^{t}=x_{i}$, i.e., ℓ_{j}^{t} is a positive literal for variable x_{i}, then we add to T a triple $\left(a_{j}, b_{j}, x_{i j}^{0}\right)$.
- If $\ell_{j}^{t}=\bar{x}_{i}$, i.e., ℓ_{j}^{t} is a negative literal for variable x_{i}, then we add to T a triple $\left(a_{j}, b_{j}, x_{i j}^{1}\right)$.

Note carefully that a positive literal's triple has $x_{i j}^{0}$ as its tip, while the negative literal's triple has $x_{i j}^{1}$ as its tip. Thus, each clause C_{j} contributes three such triples, one for each of its literals, all involving the two elements a_{j} and b_{j} and having as their third component one of the tips of Group I triples. For an illustration see here (pages 8-12).

The interpretation of the Group II triples is as follows: Because the three triples that correspond to clause C_{j} share a_{j} and b_{j}, and these are the only triples that contain these elements, a matching must include exactly one of them. We want to think of the corresponding literal of C_{j} as one that satisfies the clause. Thus, if the triple $\left(a_{j}, b_{j}, x_{i j}^{1}\right)$ is selected, which according to the definition means that the corresponding literal is \bar{x}_{i}, the matching must include the Group I triples with tip $x_{i j}^{0}$ (to avoid conflict with the Group I triple with tip $x_{i j}^{1}$). And this, according to our interpretation of the Group I triples, means that x_{i} is assigned 0 and thus satisfies the literal \bar{x}_{i}. By a similar reasoning, if the triple $\left(a_{j}, b_{j}, x_{i j}^{0}\right)$ is selected, x_{i} is assigned 1 and satisfies the literal x_{i}.
Group III triples: Group I and II triples involve $m n+m$ elements of A and $m n+m$ elements of B but $2 m n$ elements of C (the tips). Therefore, these triples can cover all elements of A and B but will leave $2 m n-(m n+m)=m(n-1)$ elements of C uncovered. To make all three sets have the same cardinality we add to A (respectively B) $m\left(n-1\right.$) new elements denoted \widehat{a}_{k} (respectively \widehat{b}_{k}), for $k \in[1 . . m(n-1)]$. And to ensure that all elements of C that remain uncovered by triples of Group I and II can be covered, and we add to T triples ($\widehat{a}_{k}, \widehat{b}_{k}, x_{i j}^{1}$) and ($\widehat{a}_{k}, \widehat{b}_{k}, x_{i j}^{0}$) for every $i \in[1 . . n], j \in[1 . . m]$, and $k \in[1 . . m(n-1)]$.

To recap, the instance (A, B, C, T) of 3 DM constructed from the 3 -CNF formula F with variables $x_{1}, x_{2}, \ldots x_{n}$ and clauses $C_{1}, C_{2}, \ldots, C_{m}$, where $C_{j}=\left(\ell_{j}^{1} \vee \ell_{j}^{2} \vee \ell_{j}^{3}\right)$ for literals $\ell_{j}^{1}, \ell_{j}^{2}$, and ℓ_{j}^{3} is as follows:

$$
\begin{aligned}
A= & \left\{a_{i j}: i \in[1 . . n] \text { and } j \in[1 . . m]\right\} \cup\left\{a_{j}: j \in[1 . . m]\right\} \cup\left\{\widehat{a}_{k}: k \in[1 . . m(n-1)]\right\} . \\
B= & \left\{b_{i j}: i \in[1 . . n] \text { and } j \in[1 . . m]\right\} \cup\left\{b_{j}: j \in[1 . . m]\right\} \cup\left\{\widehat{b}_{k}: k \in[1 . . m(n-1)]\right\} . \\
C= & \left\{x_{i j}^{1}, x_{i j}^{0}: i \in[1 . . n] \text { and } j \in[1 . . m]\right\} . \\
T= & \left\{\left(a_{i j}, b_{i j}, x_{i j}^{1}\right),\left(a_{i j \oplus 1}, b_{i j}, x_{i j}^{0}\right): i \in[1 . . n] \text { and } j \in[1 . . m]\right\} \\
& \cup\left\{\left(a_{j}, b_{j}, x_{i j}^{0}\right): j \in[1 . . m], i \in[1 . . n], \text { and } \ell_{j}^{t}=x_{i} \text { for some } t \in\{1,2,3\}\right\} \\
& \cup\left\{\left(a_{j}, b_{j}, x_{i j}^{1}\right): j \in[1 . . m], i \in[1 . . n], \text { and } \ell_{j}^{t}=\bar{x}_{i} \text { for some } t \in\{1,2,3\}\right\} \\
& \cup\left\{\left(\widehat{a}_{k}, \widehat{b}_{k}, x_{i j}^{1}\right),\left(\widehat{a}_{k}, \widehat{b}_{k}, x_{i j}^{0}\right): i \in[1 . . n], j \in[1 . . m], \text { and } k \in[1 . . m(n-1)]\right\} .
\end{aligned}
$$

The sets A, B, and C have $2 m n$ elements each, and T has $2 m n+3 m+m n m(n-1)=O\left(m^{2} n^{2}\right)$ triples. Therefore the size of (A, B, C, T) is a polynomial of the size of F (m clauses of three variables each, on n variables). So, $\langle A, B, C, T\rangle$ can be computed from $\langle F\rangle$ in polynomial time.

It remains to show that the construction satisfies ($*$).
[Only IF] Suppose F is satisfiable and let τ be a truth assignment that satisfies it. Then collect triples from T into a set M (that will become a matching) as follows:
(1) For all $i \in[1 . . n]$,

- if $\tau\left(x_{i}\right)=1$ then add to M the triples $\left(a_{i j}, b_{i j}, x_{i j}^{1}\right)$ for all $j \in[1 . . m]$;
- if $\tau\left(x_{i}\right)=0$ then add to M the triples $\left(a_{i j \oplus 1}, b_{i j}, x_{i j}^{0}\right)$ for all $j \in[1 . . m]$.

These are Group I triples that cover all $a_{i j} \mathrm{~s}$ and $b_{i j} \mathrm{~s}$, and $m n$ of the $x_{i j}^{1} \mathrm{~s}$ and $x_{i j}^{0} \mathrm{~s}$.
(2) For each $j \in[1 . . m]$, let $t \in\{1,2,3\}$ be such that $\tau\left(\ell_{j}^{t}\right)=1$. Such a t must exist for every j, since τ satisfies every clause C_{j} of F. If there are multiple such t s for some j, pick any one of them. Then add to M the following triples from T :

- if $\ell_{j}^{t_{j}}=x_{i}$ then add $\left(a_{j}, b_{j}, x_{i j}^{0}\right)$ to M
- if $\ell_{j}^{t_{j}}=\bar{x}_{i}$ then add $\left(a_{j}, b_{j}, x_{i j}^{1}\right)$ to M.

These are Group II triples that cover all $a_{j} \mathrm{~s}$ and $b_{j} \mathrm{~s}$, and m of the $x_{i j}^{0} \mathrm{~s}$ and $x_{i j}^{1} \mathrm{~s}$.
(3) For each $k \in[1 . . m(n-1)]$, add to M a triple $\left(\widehat{a}_{k}, \widehat{b}_{k}, x_{i j}^{b}\right)$, where $b \in\{0,1\}$, for one of the $m(n-1)$ $x_{i j}^{b} \mathrm{~s}$ that are not covered by triples added to M in (1) or (2).

By construction, M has the right number of triples $2 m n$, and every element of A, B, and C is included in some triple of M, so M is a matching.
[IF] Suppose M is a matching of (A, B, C, T). We will show that there is a truth assignment τ that satisfies F.

First consider the Group I triples associated with variable x_{i}, i.e., triples of the form $\left(a_{i j}, b_{i j}, x_{i j}^{b}\right)$ for $j \in[1 . . m]$ and $b \in\{0,1\}$. Since M is a matching, exactly one of the following is the case: either
(1) M contains $\left(a_{i j}, b_{i j}, x_{i j}^{1}\right)$ for all $j \in[1 . . m]$, or
(2) M contains $\left(a_{i j \oplus 1}, b_{i j}, x_{i j}^{0}\right)$ for all $j \in[1 . . m]$.

Accordingly define

$$
\tau\left(x_{i}\right)= \begin{cases}1, & \text { if }(1) \text { is the case } \\ 0, & \text { if }(2) \text { is the case }\end{cases}
$$

Next consider the Group II triples associated with clause $C_{j}, j \in[1 . . m]$, i.e., triples of the form $\left(a_{j}, b_{j}, x_{i j}^{b}\right)$, for some $i \in[1 . . n]$ and $b \in\{0,1\}$. There are three such triples and exactly one of them is in M (because they all share a_{j} and b_{j} and no other triple has these elements). Let ($a_{j}, b_{j}, x_{i j}^{b}$) be the triple of this form that is in M. There are two cases:

Case 1. $\quad b=1$. Then, by definition of T, for some $t \in[1 . .3], \ell_{j}^{t}=\bar{x}_{i}$. Since M contains $\left(a_{j}, b_{j}, x_{i j}^{1}\right)$, it cannot contain ($a_{i j}, b_{i j}, x_{i j}^{1}$) (otherwise two triples would have the same third component, contradicting that M is a matching); so M must contain $\left(a_{i j \oplus 1}, b_{i j}, x_{i j}^{0}\right)$ (because these are the only two triples that contain $b_{i j}$). Then, by the above definition of $\tau, \tau\left(x_{i}\right)=0$ and so $\tau\left(\bar{x}_{i}\right)=1$. Since $\ell_{j}^{t}=\bar{x}_{i}, \tau$ satisfies one of the literals of clause C_{j} and therefore the entire clause.

Case 2. $\quad b=0$. By similar reasoning, τ satisfies clause C_{j}.
We have proved that τ satisfies every clause C_{j}; therefore F is satisfiable.

The two-dimensional counterpart of 3DM is known as bipartite matching and is solvable in polynomial time by reduction to the maximum flow problem.

