All you want to know about GPs: Linear Dimensionality Reduction

Raquel Urtasun and Neil Lawrence

TTI Chicago, University of Sheffield

June 16, 2012

Notation

p	data dimensionality	
q	latent dimensionality	
n	number of data points	
\mathbf{Y}	design matrix containing our data	$n \times p$
\mathbf{X}	matrix of latent variables	$n \times q$

Row vector from matrix \mathbf{A} given by $\mathbf{a}_{i,:}$ column vector $\mathbf{a}_{:, j}$ and element given by $a_{i, j}$.

Online Resources

All source code and slides are available online

- Tutorial homepage is
- http:
//ttic.uchicago.edu/~rurtasun/tutorials/GP_tutorial.html.
- Code available at http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/.

High Dimensional Data

- High dimensional data dominates many application domains.
- Examples include:
a customer in a data base, where the features might include their purchase history, where they live, their sex, and age;

High Dimensional Data

- High dimensional data dominates many application domains.
- Examples include:
a customer in a data base, where the features might include their purchase history, where they live, their sex, and age;
a digitized photograph, where the features include the pixel intensities, time, date, and location of the photograph;

High Dimensional Data

- High dimensional data dominates many application domains.
- Examples include:
a customer in a data base, where the features might include their purchase history, where they live, their sex, and age;
a digitized photograph, where the features include the pixel intensities, time, date, and location of the photograph;
human motion capture data for the movie and games industries, where features consist of a time series of angles at each joint;

High Dimensional Data

- High dimensional data dominates many application domains.
- Examples include:
a customer in a data base, where the features might include their purchase history, where they live, their sex, and age;
a digitized photograph, where the features include the pixel intensities, time, date, and location of the photograph; human motion capture data for the movie and games industries, where features consist of a time series of angles at each joint;
human speech, where the features consist of the energy at different frequencies (or across the cepstrum) as a time series;

High Dimensional Data

- High dimensional data dominates many application domains.
- Examples include:
a customer in a data base, where the features might include their purchase history, where they live, their sex, and age;
a digitized photograph, where the features include the pixel intensities, time, date, and location of the photograph; human motion capture data for the movie and games industries, where features consist of a time series of angles at each joint;
human speech, where the features consist of the energy at different frequencies (or across the cepstrum) as a time series;
a webpage or other document, features could consist of frequencies of given words in a set of documents and linkage information between documents;

High Dimensional Data

- High dimensional data dominates many application domains.
- Examples include:
a customer in a data base, where the features might include their purchase history, where they live, their sex, and age;
a digitized photograph, where the features include the pixel intensities, time, date, and location of the photograph; human motion capture data for the movie and games industries, where features consist of a time series of angles at each joint;
human speech, where the features consist of the energy at different frequencies (or across the cepstrum) as a time series;
a webpage or other document, features could consist of frequencies of given words in a set of documents and linkage information between documents;
gene expression data, features consist of the level of expression of thousands of genes.

High Dimensional Data

- High dimensional data dominates many application domains.
- Examples include:
a customer in a data base, where the features might include their purchase history, where they live, their sex, and age;
a digitized photograph, where the features include the pixel intensities, time, date, and location of the photograph;
human motion capture data for the movie and games industries, where features consist of a time series of angles at each joint;
human speech, where the features consist of the energy at different frequencies (or across the cepstrum) as a time series;
a webpage or other document, features could consist of frequencies of given words in a set of documents and linkage information between documents;
gene expression data, features consist of the level of expression of thousands of genes.

Mixtures of Gaussians

Figure: Two dimensional data sets.

Mixtures of Gaussians

Figure: Complex structure not a problem for mixtures of Gaussians.

Thinking in High Dimensions

- Two dimensional plots of Gaussians can be misleading.
- Our low dimensional intuitions can fail dramatically.
- Two major issues:
(1) In high dimensions all the data moves to a 'shell'. There is nothing near the mean!
(O Distances between points become constant.
(3) These affects apply to many densities.
- Let's consider a Gaussian "egg".

Thinking in High Dimensions

- Two dimensional plots of Gaussians can be misleading.
- Our low dimensional intuitions can fail dramatically.
- Two major issues:
(1) In high dimensions all the data moves to a 'shell'. There is nothing near the mean!
(2) Distances between points become constant.
(3) These affects apply to many densities.
- Let's consider a Gaussian "egg".

The Gaussian Egg

Volumes: $\quad 65.8 \% \quad 4.8 \% ~ 29.4 \%$

Figure: One dimensional Gaussian density.

The Gaussian Egg

Volumes: $\quad 59.4 \% ~ 7.4 \% ~ 33.2 \%$

Figure: Two dimensional Gaussian density.

The Gaussian Egg

Volumes: $\quad 56.1 \% \quad 9.2 \%, 34.7 \%$

Figure: Three dimensional Gaussian density.

Mathematics

What is the density of probability mass?

$$
\begin{aligned}
& y_{i, k} \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
& \Longrightarrow y_{i, k}^{2} \sim \sigma^{2} \chi_{1}^{2}
\end{aligned}
$$

$$
y_{i, 1}
$$

Square of sample from Gaussian is scaled chi-squared density

Mathematics

What is the density of probability mass?

$$
\begin{aligned}
y_{i, k} & \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
\Longrightarrow y_{i, k}^{2} & \sim \mathcal{G}\left(\frac{1}{2}, \frac{1}{2 \sigma^{2}}\right)
\end{aligned}
$$

Chi squared density is a variant of the gamma density with shape parameter $a=\frac{1}{2}$, rate parameter $b=\frac{1}{2 \sigma^{2}}, \mathcal{G}(x \mid a, b)=\frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-b x}$.

Mathematics

What is the density of probability mass?

$$
\begin{gathered}
y_{i, k} \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
\Longrightarrow y_{i, 1}^{2}+y_{i, 2}^{2} \sim \mathcal{G}\left(\frac{2}{2}, \frac{1}{2 \sigma^{2}}\right)
\end{gathered}
$$

Addition of gamma random variables with the same rate is gamma with sum of shape parameters ($y_{i, k} s$ are independent)

Mathematics

What is the density of probability mass?

$$
\begin{aligned}
& \sum_{k=1}^{p} y_{i, k}^{2} \sim \mathcal{G}\left(\frac{p}{2}, \frac{1}{2 \sigma^{2}}\right) \\
& \Longrightarrow\left\langle\sum_{k=1}^{p} y_{i, k}^{2}\right\rangle=p \sigma^{2}
\end{aligned}
$$

Addition of gamma random variables with the same rate is gamma with sum of shape parameters ($y_{i, k} s$ are independent)

Mathematics

What is the density of probability mass?

$$
\begin{aligned}
& \frac{1}{p} \sum_{k=1}^{p} y_{i, k}^{2} \sim \mathcal{G}\left(\frac{p}{2}, \frac{p}{2 \sigma^{2}}\right) \\
& \Longrightarrow\left\langle\frac{1}{p} \sum_{k=1}^{p} y_{i, k}^{2}\right\rangle=\sigma^{2}
\end{aligned}
$$

$$
y_{i, 1}
$$

Scaling of gamma density scales the rate parameter

Where is the Mass?

- Squared distances are gamma distributed.

Looking at Gaussian Samples

Interpoint Distances

- The other effect in high dimensions is all points become equidistant.
- Can show this for Gaussians with a similar proof to the above,

$$
\begin{gathered}
y_{i, k} \sim \mathcal{N}\left(0, \sigma_{k}^{2}\right) \quad y_{j, k} \sim \mathcal{N}\left(0, \sigma_{k}^{2}\right) \\
y_{i, k}-y_{j, k} \sim \mathcal{N}\left(0,2 \sigma_{k}^{2}\right) \\
\left(y_{i, k}-y_{j, k}\right)^{2} \sim \mathcal{G}\left(\frac{1}{2}, \frac{1}{4 \sigma_{k}^{2}}\right)
\end{gathered}
$$

Interpoint Distances

- The other effect in high dimensions is all points become equidistant.
- Can show this for Gaussians with a similar proof to the above,

$$
\begin{gathered}
y_{i, k} \sim \mathcal{N}\left(0, \sigma_{k}^{2}\right) \quad y_{j, k} \sim \mathcal{N}\left(0, \sigma_{k}^{2}\right) \\
y_{i, k}-y_{j, k} \sim \mathcal{N}\left(0,2 \sigma_{k}^{2}\right) \\
\left(y_{i, k}-y_{j, k}\right)^{2} \sim \mathcal{G}\left(\frac{1}{2}, \frac{1}{4 \sigma_{k}^{2}}\right)
\end{gathered}
$$

For spherical Gaussian, $\sigma_{k}^{2}=\sigma^{2}$

$$
\begin{aligned}
& \sum_{k=1}^{p}\left(y_{i, k}-y_{j, k}\right)^{2} \sim \mathcal{G}\left(\frac{p}{2}, \frac{1}{4 \sigma^{2}}\right) \\
& \frac{1}{p} \sum_{k=1}^{p}\left(y_{i, k}-y_{j, k}\right)^{2} \sim \mathcal{G}\left(\frac{p}{2}, \frac{p}{4 \sigma^{2}}\right)
\end{aligned}
$$

Dimension normalized distance between points is drawn from a gamma. Mean is $2 \sigma^{2}$. Variance is $\frac{8 \sigma^{2}}{p}$.

Interpoint Distances

- The other effect in high dimensions is all points become equidistant.
- Can show this for Gaussians with a similar proof to the above,

$$
\begin{aligned}
y_{i, k} \sim \mathcal{N}\left(0, \sigma_{k}^{2}\right) \quad y_{j, k} & \sim \mathcal{N}\left(0, \sigma_{k}^{2}\right) \\
y_{i, k}-y_{j, k} & \sim \mathcal{N}\left(0,2 \sigma_{k}^{2}\right) \\
\left(y_{i, k}-y_{j, k}\right)^{2} & \sim \mathcal{G}\left(\frac{1}{2}, \frac{1}{4 \sigma_{k}^{2}}\right)
\end{aligned}
$$

For spherical Gaussian, $\sigma_{k}^{2}=\sigma^{2}$

$$
\begin{aligned}
& \sum_{k=1}^{p}\left(y_{i, k}-y_{j, k}\right)^{2} \sim \mathcal{G}\left(\frac{p}{2}, \frac{1}{4 \sigma^{2}}\right) \\
& \frac{1}{p} \sum_{k=1}^{p}\left(y_{i, k}-y_{j, k}\right)^{2} \sim \mathcal{G}\left(\frac{p}{2}, \frac{p}{4 \sigma^{2}}\right)
\end{aligned}
$$

Dimension normalized distance between points is drawn from a gamma. Mean is $2 \sigma^{2}$. Variance is $\frac{8 \sigma^{2}}{p}$.

Central Limit Theorem and Non-Gaussian Case

- We can compute the density of squared distance analytically for spherical, independent Gaussian data.
- More generally, for independent data, the central limit theorem applies.

Central Limit Theorem and Non-Gaussian Case

- We can compute the density of squared distance analytically for spherical, independent Gaussian data.
- More generally, for independent data, the central limit theorem applies.
- The mean squared distance in high dimensional space is the mean of the variances.

Central Limit Theorem and Non-Gaussian Case

- We can compute the density of squared distance analytically for spherical, independent Gaussian data.
- More generally, for independent data, the central limit theorem applies.
- The mean squared distance in high dimensional space is the mean of the variances.
- The variance about the mean scales as p^{-1}.

Central Limit Theorem and Non-Gaussian Case

- We can compute the density of squared distance analytically for spherical, independent Gaussian data.
- More generally, for independent data, the central limit theorem applies.
- The mean squared distance in high dimensional space is the mean of the variances.
- The variance about the mean scales as p^{-1}.

Summary until now

- In high dimensions if individual dimensions are independent the distributions behave counter intuitively.
- All data sits at one standard deviation from the mean.
- The densities of squared distances can be analytically calculated for the Gaussian case.
- For non-Gaussian independent systems we can invoke the central limit theorem.
- Next we will consider example data sets and see how their interpoint distances are distributed.

Sanity Check

Data sampled from independent Gaussian distribution

- If dimensions are independent, we expect low variance, Gaussian behavior for the distribution of squared distances.
Distance distribution for a Gaussian with $p=1000, n=1000$

Figure: A good match betwen theory and the samples for a 1000 dimensional Gaussian distribution.

Sanity Check

Same data generation, but fewer data points.

- If dimensions are independent, we expect low variance, Gaussian behaviour for the distribution of squared distances.
Distance distribution for a Gaussian with $p=1000, n=100$

Figure: A good match betwen theory and the samples for a 1000 dimensional Gaussian distribution.

Oil Data

Homogeneous

- Simulated measurements from an oil pipeline (Bishop 93)
- Pipeline contains oil, water and gas.
- Three phases of flow in pipeline-homogeneous, stratified and annular.
- Gamma densitometry sensors arranged in a configuration around pipeline.

Stratified

Annular

Oil Data

Homogeneous

- Simulated measurements from an oil pipeline (Bishop 93)
- Pipeline contains oil, water and gas.
- Three phases of flow in pipeline-homogeneous, stratified and annular.
- Gamma densitometry sensors arranged in a configuration around pipeline.

Stratified

Annular

Oil Data

- 12 simulated measurements of oil flow in a pipe.
- Nature of flow is dependent on relative proportion of oil, water and gas.

Figure: Interpoint squared distance distribution for oil data with $p=12$ (variance of squared distances is 1.98 vs predicted 0.667).

Stick Man Data

Changing

- $n=55$ frames of motion capture.
- xyz locations of 34 points on the body.
- $p=102$ dimensional data.
- "Run 1" available from http: //accad.osu.edu/research/ mocap/mocap_data.htm.

of Run

Stick Man

- Motion capture data inter point distance histogram.

Figure: Interpoint squared distance distribution for stick man data with $p=102$ (variance of squared distances is 1.09 vs predicted 0.0784).

Microarray Data

- Gene expression measurements reflecting the cell cycle in yeast (Spellman 98)
- $p=6,178$ Genes measured for $n=77$ experiments
- Data available from

Microarray Data

- Spellman yeast cell cycle.

Figure: Interpoint squared distance distribution for Spellman microarray data with $p=6178$ (variance of squared distances is 0.694 vs predicted 0.00129).

Where does practice depart from our theory?

- The situation for real data does not reflect what we expect.
- Real data exhibits greater variances on interpoint distances.
- Somehow the real data seems to have a smaller effective dimension.
- Let's look at another $p=1000$.

1000-D Gaussian

Distance distribution for a different Gaussian with $p=1000$

(1) Gaussian has a specific low rank covariance matrix $\mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}$.
(2) Take $\sigma^{2}=1 e-2$ and sample $\mathbf{W} \in \Re^{1000 \times 2}$ from $\mathcal{N}(0,1)$.

1000-D Gaussian

Distance distribution for a different Gaussian with $p=1000$

(1) Gaussian has a specific low rank covariance matrix $\mathbf{C}=\mathbf{W W}^{\top}+\sigma^{2} \mathbf{I}$.
(2) Take $\sigma^{2}=1 e-2$ and sample $\mathbf{W} \in \Re^{1000 \times 2}$ from $\mathcal{N}(0,1)$.

1000-D Gaussian

Distance distribution for a different Gaussian with $p=1000$

(1) Gaussian has a specific low rank covariance matrix $\mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}$.
(2) Take $\sigma^{2}=1 e-2$ and sample $\mathbf{W} \in \Re^{1000 \times 2}$ from $\mathcal{N}(0,1)$.
(3) Theoretical curve taken assuming dimensionality of 2 .

Linear Probabilistic Dimensionality Reduction

Where does this Low Rank Covariance Matrix Come From?

- It arises from a low dimensional approximation for the data set.
- Probabilistic PCA (Tipping 99, Roweis 97)

Linear Probabilistic Dimensionality Reduction

Where does this Low Rank Covariance Matrix Come From?

- It arises from a low dimensional approximation for the data set.
- Probabilistic PCA (Tipping 99, Roweis 97)
- Linear Mapping from q-dimensional latent space to p-dimensional data space.

Linear Probabilistic Dimensionality Reduction

Where does this Low Rank Covariance Matrix Come From?

- It arises from a low dimensional approximation for the data set.
- Probabilistic PCA (Tipping 99, Roweis 97)
- Linear Mapping from q-dimensional latent space to p-dimensional data space.
- Corrupt the mapping by independent Gaussian noise.

Linear Probabilistic Dimensionality Reduction

Where does this Low Rank Covariance Matrix Come From?

- It arises from a low dimensional approximation for the data set.
- Probabilistic PCA (Tipping 99, Roweis 97)
- Linear Mapping from q-dimensional latent space to p-dimensional data space.
- Corrupt the mapping by independent Gaussian noise.
- Marginalise latent variables using Gaussian prior.

Linear Probabilistic Dimensionality Reduction

Where does this Low Rank Covariance Matrix Come From?

- It arises from a low dimensional approximation for the data set.
- Probabilistic PCA (Tipping 99, Roweis 97)
- Linear Mapping from q-dimensional latent space to p-dimensional data space.
- Corrupt the mapping by independent Gaussian noise.
- Marginalise latent variables using Gaussian prior.

A bit more Notation

q - dimension of latent/embedded space
p - dimension of data space
n - number of data points

$$
\begin{aligned}
& \text { data, } \mathbf{Y}= {\left[\mathbf{y}_{1,:}, \ldots, \mathbf{y}_{n,:}\right]^{\top}=\left[\mathbf{y}_{:, 1}, \ldots, \mathbf{y}_{:, p}\right] \in \Re^{n \times p} } \\
& \text { centred data, } \hat{\mathbf{Y}}=\left[\hat{\mathbf{y}}_{1,:}, \ldots, \hat{\mathbf{y}}_{n,:}\right]^{\top}=\left[\hat{\mathbf{y}}_{:, 1}, \ldots, \hat{\mathbf{y}}_{:, p}\right] \in \Re^{n \times p}, \hat{\mathbf{y}}_{i,:}=\mathbf{y}_{i,:}-\boldsymbol{\mu} \\
& \text { latent variables, } \mathbf{X}=\left[\mathbf{x}_{1,:}, \ldots, \mathbf{x}_{n,:}\right]^{\top}=\left[\mathbf{x}_{:, 1}, \ldots, \mathbf{x}_{:, q}\right] \in \Re^{n \times q} \\
& \text { mapping matrix, } \mathbf{W} \in \Re^{p \times q}
\end{aligned}
$$

$\mathbf{a}_{i,:}$ is a vector from the i th row of a given matrix \mathbf{A}
$\mathbf{a}_{:, j}$ is a vector from the j th row of a given matrix \mathbf{A}

Reading Notation

\mathbf{X} and \mathbf{Y} are design matrices

- Data covariance given by $\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$

$$
\operatorname{cov}(\mathbf{Y})=\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{y}}_{i, i} \hat{\mathbf{y}}_{i,:}^{\top}=\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}=\mathbf{S}
$$

- Inner product matrix given by $\mathbf{Y} \mathbf{Y}^{\top}$

$$
\mathbf{K}=\left(k_{i, j}\right)_{i, j}, \quad k_{i, j}=\mathbf{y}_{i,:}^{\top} \mathbf{y}_{j,:}
$$

Linear Dimensionality Reduction

- Find a lower dimensional plane embedded in a higher dimensional space.
- The plane is described by the matrix $\mathbf{W} \in \Re^{p \times q}$.

Figure: Mapping a two dimensional plane to a higher dimensional space in a linear way. Data are generated by corrupting points on the plane with noise.

Linear Latent Variable Model

Probabilistic PCA

- Linear-Gaussian relationship between latent variables and data, $\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}+\boldsymbol{\eta}_{i,:}$.
- \mathbf{X} are 'nuisance' variables.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Linear-Gaussian relationship between latent variables and data, $\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}+\boldsymbol{\eta}_{i,:}$.
- \mathbf{X} are 'nuisance' variables.
- Latent variable model

approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Linear-Gaussian relationship between latent variables and data, $\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}+\boldsymbol{\eta}_{i,:}$.
- \mathbf{X} are 'nuisance' variables.
- Latent variable model approach:
(1) Define Gaussian prior

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Linear-Gaussian relationship between latent variables and data, $\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}+\boldsymbol{\eta}_{i,:}$.
- \mathbf{X} are 'nuisance' variables.

- Latent variable model approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)
$$

(1) Define Gaussian prior over latent space, X.
(2) Integrate out nuisance

$$
p(\mathbf{X})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i,:} \mid \mathbf{0}, \mathbf{l}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Linear-Gaussian relationship between latent variables and data,

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}+\boldsymbol{\eta}_{i,:}
$$

- \mathbf{X} are 'nuisance' variables.
- Latent variable model approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)
$$

(1) Define Gaussian prior over latent space, \mathbf{X}.
(2) Integrate out nuisance latent variables.
(3) Optimize likelihood wrt W, μ.

Linear Latent Variable Model

Probabilistic PCA

- Linear-Gaussian relationship between latent variables and data, $\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}+\boldsymbol{\eta}_{i,:}$.
- \mathbf{X} are 'nuisance' variables.
- Latent variable model approach:
(1) Define Gaussian prior over latent space, \mathbf{X}.

$$
p(\mathbf{Y} \mid \mathbf{W}, \boldsymbol{\mu})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \boldsymbol{\mu}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{l}\right)
$$

(2) Integrate out nuisance latent variables.
(3) Optimize likelihood wrt $\mathbf{W}, \boldsymbol{\mu}$.

Linear Latent Variable Model

Probabilistic PCA

- Linear-Gaussian relationship between latent variables and data, $\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\mu}+\boldsymbol{\eta}_{i,:}$.
- X are 'nuisance' variables.
- Latent variable model approach:
(1) Define Gaussian prior over latent space, \mathbf{X}.

$$
p(\hat{\mathbf{Y}} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\hat{\mathbf{y}}_{i,:} \mid \mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

(2) Integrate out nuisance latent variables.
(3) Optimize likelihood wrt $\mathbf{W}, \boldsymbol{\mu}$.

Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
p(\hat{\mathbf{Y}} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\hat{\mathbf{y}}_{i,:} \mid \mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
\begin{aligned}
p(\hat{\mathbf{Y}} \mid \mathbf{W}) & =\prod_{j=1}^{p} \mathcal{N}\left(\hat{\mathbf{y}}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\hat{\mathbf{Y}} \mid \mathbf{W}) & =-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}\right)+\text { const. }
\end{aligned}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{W}=\mathbf{U}_{q} \mathbf{L R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

PCA on Stick Man

- First two principal components of stick man data.

Figure: Stick man data projected onto their first two principal components. demStickPpca1.

PCA on Oil Data

- First two principal components of oil data.

Figure: Oil data projected onto their first two principal components. demOilPpca1.

PCA on Microarray

- First two principal components of gene expression data.

Figure: Microarray data projected onto their first two principal components. demSpellmanPpca1. Different symbols show different experiment groups (separate time series).

Why Probabilistic PCA?

- What is the point in probabilistic methods?
- Could we not just project with regular PCA?

Why Probabilistic PCA?

- What is the point in probabilistic methods?
- Could we not just project with regular PCA?
- Integration within other models (e.g. mixtures of PCA (Tipping 97), temporal models).

Why Probabilistic PCA?

- What is the point in probabilistic methods?
- Could we not just project with regular PCA?
- Integration within other models (e.g. mixtures of PCA (Tipping 97), temporal models).
- Model selection through Bayesian treatment of parameters (Bishop 98)

Why Probabilistic PCA?

- What is the point in probabilistic methods?
- Could we not just project with regular PCA?
- Integration within other models (e.g. mixtures of PCA (Tipping 97), temporal models).
- Model selection through Bayesian treatment of parameters (Bishop 98)
- Marginalisation of missing data (Tipping 99)

Why Probabilistic PCA?

- What is the point in probabilistic methods?
- Could we not just project with regular PCA?
- Integration within other models (e.g. mixtures of PCA (Tipping 97), temporal models).
- Model selection through Bayesian treatment of parameters (Bishop 98)
- Marginalisation of missing data (Tipping 99)

Oil and Missing Data

Figure: Projection of the oil data set on to $q=2$ latent dimensions. Left: full data set with no missing data. Right: data set with 10% values missing at random.

Oil and Missing Data

Figure: Projection of the oil data set on to $q=2$ latent dimensions. Left: full data set with no missing data. Right: data set with 20% values missing at random.

Oil and Missing Data

Figure: Projection of the oil data set on to $q=2$ latent dimensions. Left: full data set with no missing data. Right: data set with 30% values missing at random.

Oil and Missing Data

Figure: Projection of the oil data set on to $q=2$ latent dimensions. Left: full data set with no missing data. Right: data set with 50% values missing at random.

Is (P)PCA Used in Computer Vision?

It's difficult not to find a paper that doesn't use it!

- EigenFaces: \mathbf{y} is an image of a face (Sirovich \& Kirby 87, Turk \& Pentland 91)

Figure: Yale faces: Image from C. de CORO

Is (P)PCA Used in Computer Vision?

It's difficult not to find a paper that doesn't use it!

- EigenFaces: \mathbf{y} is an image of a face (Sirovich \& Kirby 87, Turk \& Pentland 91)
- Morphable Model for the Synthesis of 3D Faces (Blanz \& Vetter 99)

Is (P)PCA Used in Computer Vision?

It's difficult not to find a paper that doesn't use it!

- EigenFaces: \mathbf{y} is an image of a face (Sirovich \& Kirby 87, Turk \& Pentland 91)
- Morphable Model for the Synthesis of 3D Faces (Blanz \& Vetter 99)
- Tracking where \mathbf{y} is the full motion (e.g., all poses for a full golf swing) (Siddenbladh et al. 02, Urtasun et al. 05)

Is (P)PCA Used in Computer Vision?

It's difficult not to find a paper that doesn't use it!

- EigenFaces: \mathbf{y} is an image of a face (Sirovich \& Kirby 87, Turk \& Pentland 91)
- Morphable Model for the Synthesis of 3D Faces (Blanz \& Vetter 99)
- Tracking where \mathbf{y} is the full motion (e.g., all poses for a full golf swing) (Siddenbladh et al. 02, Urtasun et al. 05)
- Object recognition: PCA-SIFT (Ke et al. 04)

Is (P)PCA Used in Computer Vision?

It's difficult not to find a paper that doesn't use it!

- EigenFaces: \mathbf{y} is an image of a face (Sirovich \& Kirby 87, Turk \& Pentland 91)
- Morphable Model for the Synthesis of 3D Faces (Blanz \& Vetter 99)
- Tracking where \mathbf{y} is the full motion (e.g., all poses for a full golf swing) (Siddenbladh et al. 02, Urtasun et al. 05)
- Object recognition: PCA-SIFT (Ke et al. 04)
- Object detection: Deformable part-based models (Felzenbwald et al. 10)

Is (P)PCA Used in Computer Vision?

It's difficult not to find a paper that doesn't use it!

- EigenFaces: \mathbf{y} is an image of a face (Sirovich \& Kirby 87, Turk \& Pentland 91)
- Morphable Model for the Synthesis of 3D Faces (Blanz \& Vetter 99)
- Tracking where \mathbf{y} is the full motion (e.g., all poses for a full golf swing) (Siddenbladh et al. 02, Urtasun et al. 05)
- Object recognition: PCA-SIFT (Ke et al. 04)
- Object detection: Deformable part-based models (Felzenbwald et al. 10)

Is (P)PCA Used in Computer Vision?

It's difficult not to find a paper that doesn't use it!

- EigenFaces: \mathbf{y} is an image of a face (Sirovich \& Kirby 87, Turk \& Pentland 91)
- Morphable Model for the Synthesis of 3D Faces (Blanz \& Vetter 99)
- Tracking where \mathbf{y} is the full motion (e.g., all poses for a full golf swing) (Siddenbladh et al. 02, Urtasun et al. 05)
- Object recognition: PCA-SIFT (Ke et al. 04)
- Object detection: Deformable part-based models (Felzenbwald et al. 10)
- . .
- You probably have used it too! (Audience et al.)

Let's see what Neil has to say ...

Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
p(\mathbf{Y} \mid \mathbf{W}, \boldsymbol{\mu})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \boldsymbol{\mu}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Gradient of log likelihood

Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

Gradient of log likelihood

$$
\frac{\mathrm{d}}{\mathrm{~d} \mathbf{W}} \log p(\hat{\mathbf{Y}} \mid \mathbf{W})=-\frac{n}{2} \mathbf{C}^{-1} \mathbf{W}+\frac{1}{2} \mathbf{C}^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}} \mathbf{C}^{-1} \mathbf{W}
$$

Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
p(\hat{\mathbf{Y}} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\hat{\mathbf{y}}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}
$$

Gradient of log likelihood

Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
\begin{gathered}
p(\hat{\mathbf{Y}} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\hat{\mathbf{y}}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\hat{\mathbf{Y}} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}\right)+\text { const. }
\end{gathered}
$$

Gradient of log likelihood

Optimization

Seek fixed points

$$
\mathbf{0}=-\frac{n}{2} \mathbf{C}^{-1} \mathbf{W}+\frac{1}{2} \mathbf{C}^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}} \mathbf{C}^{-1} \mathbf{W}
$$

pre-multiply by 2 C

$$
\begin{gathered}
\mathbf{0}=-n \mathbf{W}+\hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}} \mathbf{C}^{-1} \mathbf{W} \\
\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}} \mathbf{C}^{-1} \mathbf{W}=\mathbf{W}
\end{gathered}
$$

Substitute W with singular value decomposition

$$
\mathbf{W}=\mathbf{U L R}^{\top}
$$

which implies

$$
\begin{aligned}
\mathbf{C} & =\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
& =\mathbf{U} \mathbf{L}^{2} \mathbf{U}^{\top}+\sigma^{2} \mathbf{I}
\end{aligned}
$$

Using matrix inversion lemma

$$
\mathbf{C}^{-1} \mathbf{W}=\mathbf{U} \mathbf{L}\left(\sigma^{2}+\mathbf{L}^{2}\right)^{-1} \mathbf{R}^{\top}
$$

Solution given by

$$
\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}} \mathbf{U}=\mathbf{U}\left(\sigma^{2}+\mathbf{L}^{2}\right)
$$

which is recognised as an eigenvalue problem.

- This implies that the columns of \mathbf{U} are the eigenvectors of $\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$ and that $\sigma^{2}+\mathbf{L}^{2}$ are the eigenvalues of $\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$.
- $l_{i}=\sqrt{\lambda_{i}-\sigma^{2}}$ where λ_{i} is the i th eigenvalue of $\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$.
- Further manipulation shows that if we constrain $\mathbf{W} \in \Re^{p \times q}$ then the solution is given by the largest q eigenvalues.

Probabilistic PCA Solution

- If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{W}=\mathbf{U}_{q} \mathbf{L} \mathbf{R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

- Some further work shows that the principal eigenvectors need to be retained.
- The maximum likelihood value for σ^{2} is given by the average of the discarded eigenvalues.

