All you want to know about GPs: Linear Dimensionality Reduction

Raquel Urtasun and Neil Lawrence

TTI Chicago, University of Sheffield

June 16, 2012

Notation

р	data dimensionality	
q	latent dimensionality	
п	number of data points	
Υ	design matrix containing our data	$n \times p$
Χ	matrix of latent variables	$n \times q$

Row vector from matrix **A** given by $\mathbf{a}_{i,:}$ column vector $\mathbf{a}_{:,j}$ and element given by $\mathbf{a}_{i,j}$.

Online Resources

All source code and slides are available online

- Tutorial homepage is
 - http: //ttic.uchicago.edu/~rurtasun/tutorials/GP_tutorial.html.

Code available at http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/.

- High dimensional data dominates many application domains.
- Examples include:
 - a customer in a data base, where the features might include their purchase history, where they live, their sex, and age;

- High dimensional data dominates many application domains.
- Examples include:
 - a customer in a data base, where the features might include their purchase history, where they live, their sex, and age;
 - a digitized photograph, where the features include the pixel intensities, time, date, and location of the photograph;

- High dimensional data dominates many application domains.
- Examples include:

a customer in a data base, where the features might include their purchase history, where they live, their sex, and age; a digitized photograph, where the features include the pixel intensities, time, date, and location of the photograph; human motion capture data for the movie and games industries, where features consist of a time series of angles at each joint;

- High dimensional data dominates many application domains.
- Examples include:

a customer in a data base, where the features might include their purchase history, where they live, their sex, and age; a digitized photograph, where the features include the pixel intensities, time, date, and location of the photograph; human motion capture data for the movie and games industries, where features consist of a time series of angles at each joint;

human speech, where the features consist of the energy at different frequencies (or across the cepstrum) as a time series;

- High dimensional data dominates many application domains.
- Examples include:

a customer in a data base, where the features might include their purchase history, where they live, their sex, and age;
a digitized photograph, where the features include the pixel intensities, time, date, and location of the photograph;
human motion capture data for the movie and games industries, where features consist of a time series of angles at each joint;
human speech, where the features consist of the energy at different frequencies (or across the cepstrum) as a time series;

a webpage or other document, features could consist of frequencies of given words in a set of documents and linkage information between documents;

- High dimensional data dominates many application domains.
- Examples include:

a customer in a data base, where the features might include their purchase history, where they live, their sex, and age;
 a digitized photograph, where the features include the pixel intensities, time, date, and location of the photograph;
 human motion capture data for the movie and games industries, where features consist of a time series of angles at each joint;
 human speech, where the features consist of the energy at different frequencies (or across the cepstrum) as a time series;

a webpage or other document, features could consist of frequencies of given words in a set of documents and linkage information between documents;

gene expression data, features consist of the level of expression of thousands of genes.

- High dimensional data dominates many application domains.
- Examples include:

a customer in a data base, where the features might include their purchase history, where they live, their sex, and age; a digitized photograph, where the features include the pixel intensities, time, date, and location of the photograph; human motion capture data for the movie and games industries, where features consist of a time series of angles at each joint; human speech, where the features consist of the energy at different frequencies (or across the cepstrum) as a time series; a webpage or other document, features could consist of frequencies of given words in a set of documents and linkage

information between documents;

gene expression data, features consist of the level of expression of thousands of genes.

Mixtures of Gaussians

Figure: Two dimensional data sets.

Mixtures of Gaussians

Figure: Complex structure not a problem for mixtures of Gaussians.

Thinking in High Dimensions

- Two dimensional plots of Gaussians can be misleading.
- Our low dimensional intuitions can fail dramatically.
- Two major issues:
 - In high dimensions all the data moves to a 'shell'. There is nothing near the mean!
 - 2 Distances between points become constant.
 - 3 These affects apply to many densities.
- Let's consider a Gaussian "egg".

Thinking in High Dimensions

- Two dimensional plots of Gaussians can be misleading.
- Our low dimensional intuitions can fail dramatically.
- Two major issues:
 - In high dimensions all the data moves to a 'shell'. There is nothing near the mean!
 - ② Distances between points become constant.
 - On the set of the s
- Let's consider a Gaussian "egg".

The Gaussian Egg

Figure: One dimensional Gaussian density.

The Gaussian Egg

Figure: Two dimensional Gaussian density.

The Gaussian Egg

Volumes: 56.1%, 9.2%, 34.7%

Figure: Three dimensional Gaussian density.

What is the density of probability mass?

Square of sample from Gaussian is scaled chi-squared density

What is the density of probability mass?

0

Chi squared density is a variant of the gamma density with shape parameter $a = \frac{1}{2}$, rate parameter $b = \frac{1}{2\sigma^2}$, $\mathcal{G}(x|a,b) = \frac{b^a}{\Gamma(a)}x^{a-1}e^{-bx}$.

What is the density of probability mass?

0

Addition of gamma random variables with the same rate is gamma with sum of shape parameters $(y_{i,k}s \text{ are independent})$

What is the density of probability mass?

Addition of gamma random variables with the same rate is gamma with sum of shape parameters $(y_{i,k}$ s are independent)

What is the density of probability mass?

Scaling of gamma density scales the rate parameter

Where is the Mass?

• Squared distances are gamma distributed.

Looking at Gaussian Samples

Interpoint Distances

• The other effect in high dimensions is all points become equidistant.

• Can show this for Gaussians with a similar proof to the above,

$$\begin{split} y_{i,k} &\sim \mathcal{N}\left(0, \sigma_{k}^{2}\right) \qquad y_{j,k} \sim \mathcal{N}\left(0, \sigma_{k}^{2}\right) \\ y_{i,k} &- y_{j,k} \sim \mathcal{N}\left(0, 2\sigma_{k}^{2}\right) \\ \left(y_{i,k} - y_{j,k}\right)^{2} \sim \mathcal{G}\left(\frac{1}{2}, \frac{1}{4\sigma_{k}^{2}}\right) \end{split}$$

Interpoint Distances

- The other effect in high dimensions is all points become equidistant.
- Can show this for Gaussians with a similar proof to the above,

$$egin{aligned} y_{i,k} &\sim \mathcal{N}\left(0,\sigma_k^2
ight) & y_{j,k} &\sim \mathcal{N}\left(0,\sigma_k^2
ight) \ y_{i,k} &- y_{j,k} &\sim \mathcal{N}\left(0,2\sigma_k^2
ight) \ (y_{i,k} &- y_{j,k})^2 &\sim \mathcal{G}\left(rac{1}{2},rac{1}{4\sigma_k^2}
ight) \end{aligned}$$

For spherical Gaussian, $\sigma_k^2 = \sigma^2$

$$\sum_{k=1}^{p} (y_{i,k} - y_{j,k})^2 \sim \mathcal{G}\left(\frac{p}{2}, \frac{1}{4\sigma^2}\right)$$
$$\frac{1}{p} \sum_{k=1}^{p} (y_{i,k} - y_{j,k})^2 \sim \mathcal{G}\left(\frac{p}{2}, \frac{p}{4\sigma^2}\right)$$

Dimension normalized distance between points is drawn from a gamma. Mean is $2\sigma^2$. Variance is $\frac{8\sigma^2}{p}$.

Interpoint Distances

- The other effect in high dimensions is all points become equidistant.
- Can show this for Gaussians with a similar proof to the above,

$$egin{aligned} y_{i,k} &\sim \mathcal{N}\left(0,\sigma_k^2
ight) & y_{j,k} &\sim \mathcal{N}\left(0,\sigma_k^2
ight) \ y_{i,k} &- y_{j,k} &\sim \mathcal{N}\left(0,2\sigma_k^2
ight) \ & (y_{i,k} - y_{j,k})^2 &\sim \mathcal{G}\left(rac{1}{2},rac{1}{4\sigma_k^2}
ight) \end{aligned}$$

For spherical Gaussian, $\sigma_k^2 = \sigma^2$

$$\sum_{k=1}^{p} (y_{i,k} - y_{j,k})^2 \sim \mathcal{G}\left(rac{p}{2}, rac{1}{4\sigma^2}
ight)$$
 $rac{1}{p} \sum_{k=1}^{p} (y_{i,k} - y_{j,k})^2 \sim \mathcal{G}\left(rac{p}{2}, rac{p}{4\sigma^2}
ight)$

Dimension normalized distance between points is drawn from a gamma. Mean is $2\sigma^2$. Variance is $\frac{8\sigma^2}{p}$.

- We can compute the density of squared distance *analytically* for spherical, independent Gaussian data.
- More generally, for *independent* data, the *central limit theorem* applies.

- We can compute the density of squared distance *analytically* for spherical, independent Gaussian data.
- More generally, for *independent* data, the *central limit theorem* applies.
 - The mean squared distance in high dimensional space is the mean of the variances.

- We can compute the density of squared distance *analytically* for spherical, independent Gaussian data.
- More generally, for *independent* data, the *central limit theorem* applies.
 - The mean squared distance in high dimensional space is the mean of the variances.
 - The variance about the mean scales as p^{-1} .

- We can compute the density of squared distance *analytically* for spherical, independent Gaussian data.
- More generally, for *independent* data, the *central limit theorem* applies.
 - The mean squared distance in high dimensional space is the mean of the variances.
 - The variance about the mean scales as p^{-1} .

Summary until now

- In high dimensions if individual dimensions are *independent* the distributions behave counter intuitively.
- All data sits at one standard deviation from the mean.
- The densities of squared distances can be analytically calculated for the Gaussian case.
- For non-Gaussian *independent* systems we can invoke the central limit theorem.
- Next we will consider example data sets and see how their interpoint distances are distributed.

Sanity Check

Data sampled from independent Gaussian distribution

• If dimensions are independent, we expect low variance, Gaussian behavior for the distribution of squared distances.

Distance distribution for a Gaussian with p = 1000, n = 1000

Figure: A good match betwen theory and the samples for a 1000 dimensional Gaussian distribution.

Sanity Check

Same data generation, but fewer data points.

• If dimensions are independent, we expect low variance, Gaussian behaviour for the distribution of squared distances.

Distance distribution for a Gaussian with p = 1000, n = 100

Figure: A good match betwen theory and the samples for a 1000 dimensional Gaussian distribution.

pipeline.

Oil Data

GP tutorial

June 16, 2012 16 / 40

Simulated measurements from an oil pipeline (Bishop 93) • Pipeline contains oil, water and gas. Stratified • Three phases of flow in pipeline-homogeneous, stratified and annular. • Gamma densitometry sensors arranged in a configuration around

Annular

Homogeneous

- Simulated measurements from an oil pipeline (Bishop 93)
- Pipeline contains oil, water and gas.
- Three phases of flow in pipeline—homogeneous, stratified and annular.
- Gamma densitometry sensors arranged in a configuration around pipeline.
Oil Data

- 12 simulated measurements of oil flow in a pipe.
- Nature of flow is dependent on relative proportion of oil, water and gas.

Figure: Interpoint squared distance distribution for oil data with p = 12 (variance of squared distances is 1.98 vs predicted 0.667).

GP tutorial

of Run

Changing • n = 55 frames of motion capture. • xyz locations of 34 points on the

- p = 102 dimensional data.
- "Run 1" available from http: //accad.osu.edu/research/ mocap/mocap_data.htm.

Stick Man Data

body.

Stick Man

• Motion capture data inter point distance histogram.

Figure: Interpoint squared distance distribution for stick man data with p = 102 (variance of squared distances is 1.09 vs predicted 0.0784).

- Gene expression measurements reflecting the cell cycle in yeast (Spellman 98)
- p = 6,178 Genes measured for n = 77 experiments
- Data available from http://genome-www.stanford. edu/cellcycle/data/rawdata/ individual.htm.

Yeast

Cell

Cycle

Microarray Data

• Spellman yeast cell cycle.

Figure: Interpoint squared distance distribution for Spellman microarray data with p = 6178 (variance of squared distances is 0.694 vs predicted 0.00129).

Where does practice depart from our theory?

- The situation for real data does not reflect what we expect.
- Real data exhibits greater variances on interpoint distances.
 - Somehow the real data seems to have a smaller effective dimension.
- Let's look at another p = 1000.

1000-D Gaussian

Distance distribution for a different Gaussian with p = 1000

Gaussian has a specific low rank covariance matrix C = WW^T + σ²I.
Take σ² = 1e − 2 and sample W ∈ ℜ^{1000×2} from N (0, 1).

1000-D Gaussian

Distance distribution for a different Gaussian with p = 1000

Gaussian has a specific low rank covariance matrix C = WW^T + σ²I.
Take σ² = 1e − 2 and sample W ∈ ℜ^{1000×2} from N (0, 1).

1000-D Gaussian

Distance distribution for a different Gaussian with p = 1000

squared distance

9 Gaussian has a specific low rank covariance matrix $\mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}$.

2 Take $\sigma^2 = 1e - 2$ and sample $\mathbf{W} \in \Re^{1000 \times 2}$ from $\mathcal{N}(0, 1)$.

Theoretical curve taken assuming dimensionality of 2.

Urtasun & Lawrence ()

- It arises from a low dimensional approximation for the data set.
- Probabilistic PCA (Tipping 99, Roweis 97)

- It arises from a low dimensional approximation for the data set.
- Probabilistic PCA (Tipping 99, Roweis 97)
 - Linear Mapping from q-dimensional latent space to p-dimensional data space.

- It arises from a low dimensional approximation for the data set.
- Probabilistic PCA (Tipping 99, Roweis 97)
 - Linear Mapping from q-dimensional latent space to p-dimensional data space.
 - Corrupt the mapping by independent Gaussian noise.

- It arises from a low dimensional approximation for the data set.
- Probabilistic PCA (Tipping 99, Roweis 97)
 - Linear Mapping from q-dimensional latent space to p-dimensional data space.
 - Corrupt the mapping by independent Gaussian noise.
 - Marginalise latent variables using Gaussian prior.

- It arises from a low dimensional approximation for the data set.
- Probabilistic PCA (Tipping 99, Roweis 97)
 - Linear Mapping from q-dimensional latent space to p-dimensional data space.
 - Corrupt the mapping by independent Gaussian noise.
 - Marginalise latent variables using Gaussian prior.

A bit more Notation

data,
$$\mathbf{Y} = [\mathbf{y}_{1,:}, \dots, \mathbf{y}_{n,:}]^{\top} = [\mathbf{y}_{:,1}, \dots, \mathbf{y}_{:,p}] \in \Re^{n \times p}$$

centred data, $\hat{\mathbf{Y}} = [\hat{\mathbf{y}}_{1,:}, \dots, \hat{\mathbf{y}}_{n,:}]^{\top} = [\hat{\mathbf{y}}_{:,1}, \dots, \hat{\mathbf{y}}_{:,p}] \in \Re^{n \times p}$, $\hat{\mathbf{y}}_{i,:} = \mathbf{y}_{i,:} - \mu$
latent variables, $\mathbf{X} = [\mathbf{x}_{1,:}, \dots, \mathbf{x}_{n,:}]^{\top} = [\mathbf{x}_{:,1}, \dots, \mathbf{x}_{:,q}] \in \Re^{n \times q}$
mapping matrix, $\mathbf{W} \in \Re^{p \times q}$

 $\mathbf{a}_{i,:}$ is a vector from the *i*th row of a given matrix \mathbf{A} $\mathbf{a}_{:,j}$ is a vector from the *j*th row of a given matrix \mathbf{A}

Reading Notation

X and Y are design matrices

• Data covariance given by $\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$

$$\operatorname{cov}\left(\mathbf{Y}\right) = rac{1}{n}\sum_{i=1}^{n}\hat{\mathbf{y}}_{i,:}\hat{\mathbf{y}}_{i,:}^{\top} = rac{1}{n}\hat{\mathbf{Y}}^{\top}\hat{\mathbf{Y}} = \mathbf{S}.$$

• Inner product matrix given by $\mathbf{Y}\mathbf{Y}^{\top}$

$$\mathbf{K} = (k_{i,j})_{i,j}, \qquad k_{i,j} = \mathbf{y}_{i,:}^{\top} \mathbf{y}_{j,:}$$

Linear Dimensionality Reduction

- Find a lower dimensional plane embedded in a higher dimensional space.
- The plane is described by the matrix $\mathbf{W} \in \Re^{p imes q}$.

Figure: Mapping a two dimensional plane to a higher dimensional space in a linear way. Data are generated by corrupting points on the plane with noise.

- Linear-Gaussian relationship between latent variables and data, $\mathbf{y}_{i,:} = \mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\mu} + \boldsymbol{\eta}_{i,:}$.
- X are 'nuisance' variables.

$$p(\mathbf{Y}|\mathbf{X},\mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\mu}, \sigma^{2}\mathbf{I}\right)$$

- Linear-Gaussian relationship between latent variables and data, y_{i,:} = Wx_{i,:} + μ + η_{i,:}.
- X are 'nuisance' variables.
- Latent variable model approach:

$$p(\mathbf{Y}|\mathbf{X},\mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\mu}, \sigma^{2}\mathbf{I})$$

- Linear-Gaussian relationship between latent variables and data, y_{i,:} = Wx_{i,:} + μ + η_{i,:}.
- X are 'nuisance' variables.
- Latent variable model approach:
 - Define Gaussian prior over *latent space*, X.

$$p(\mathbf{Y}|\mathbf{X},\mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\mu}, \sigma^{2}\mathbf{I}\right)$$

- Linear-Gaussian relationship between latent variables and data, y_{i,:} = Wx_{i,:} + μ + η_{i,:}.
- X are 'nuisance' variables.
- Latent variable model approach:
 - Define Gaussian prior over *latent space*, X.
 - 2 Integrate out nuisance *latent variables.*

$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} | \mathbf{W} \mathbf{x}_{i,:} + \boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)$$

$$p(\mathbf{X}) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I}\right)$$

Probabilistic PCA

- Linear-Gaussian relationship between latent variables and data, y_{i,:} = Wx_{i,:} + μ + η_{i,:}.
- X are 'nuisance' variables.
- Latent variable model approach:
 - Define Gaussian prior over *latent space*, X.
 - Integrate out nuisance latent variables.
 - Optimize likelihood wrt
 W, μ.

$$p(\mathbf{Y}|\mathbf{X},\mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\mu}, \sigma^{2}\mathbf{I})$$

$$p(\mathbf{X}) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I}\right)$$
$$p(\mathbf{Y} | \mathbf{W}, \boldsymbol{\mu}) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} | \boldsymbol{\mu}, \mathbf{W} \mathbf{W}^{\top} + \sigma^{2} \mathbf{I}\right)$$

p

- Linear-Gaussian relationship between latent variables and data, y_{i,:} = Wx_{i,:} + μ + η_{i,:}.
- X are 'nuisance' variables.
- Latent variable model approach:
 - Define Gaussian prior over *latent space*, X.
 - Integrate out nuisance latent variables.
 - Optimize likelihood wrt
 W, μ.

$$p(\mathbf{Y}|\mathbf{W}, \boldsymbol{\mu}) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} | \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^{\top} + \sigma^{2} \mathbf{I}\right)$$

- Linear-Gaussian relationship between latent variables and data, y_{i,:} = Wx_{i,:} + μ + η_{i,:}.
- X are 'nuisance' variables.
- Latent variable model approach:
 - Define Gaussian prior over *latent space*, X.
 - Integrate out nuisance latent variables.
 - Optimize likelihood wrt
 W, μ.

$$p\left(\hat{\mathbf{Y}}|\mathbf{W}\right) = \prod_{i=1}^{n} \mathcal{N}\left(\hat{\mathbf{y}}_{i,:}|\mathbf{0}, \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}\right)$$

Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$p\left(\hat{\mathbf{Y}}|\mathbf{W}\right) = \prod_{j=1}^{\nu} \mathcal{N}\left(\hat{\mathbf{y}}_{j,:}|\mathbf{0},\mathbf{C}\right), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}$$

$$\log p\left(\hat{\mathbf{Y}}|\mathbf{W}\right) = -\frac{n}{2}\log|\mathbf{C}| - \frac{1}{2}\operatorname{tr}\left(\mathbf{C}^{-1}\hat{\mathbf{Y}}^{\top}\hat{\mathbf{Y}}\right) + \operatorname{const.}$$

If \mathbf{U}_q are first q principal eigenvectors of $n^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$ and the corresponding eigenvalues are $\mathbf{\Lambda}_q$,

$$\mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{R}^{\top}, \qquad \mathbf{L} = \left(\mathbf{\Lambda}_q - \sigma^2 \mathbf{I}\right)^{\frac{1}{2}}$$

where R is an arbitrary rotation matrix.

▶ Details

PCA on Stick Man

• First two principal components of stick man data.

Figure: Stick man data projected onto their first two principal components. demStickPpca1.

PCA on Oil Data

• First two principal components of oil data.

Figure: Oil data projected onto their first two principal components. demOilPpca1.

PCA on Microarray

• First two principal components of gene expression data.

Figure: Microarray data projected onto their first two principal components. demSpellmanPpca1. Different symbols show different experiment groups (separate time series).

• What is the point in probabilistic methods?

• Could we not just project with regular PCA?

- What is the point in probabilistic methods?
- Could we not just project with regular PCA?
 - Integration within other models (*e.g.* mixtures of PCA (Tipping 97), temporal models).

- What is the point in probabilistic methods?
- Could we not just project with regular PCA?
 - Integration within other models (*e.g.* mixtures of PCA (Tipping 97), temporal models).
 - Model selection through Bayesian treatment of parameters (Bishop 98)

- What is the point in probabilistic methods?
- Could we not just project with regular PCA?
 - Integration within other models (*e.g.* mixtures of PCA (Tipping 97), temporal models).
 - Model selection through Bayesian treatment of parameters (Bishop 98)
 - Marginalisation of missing data (Tipping 99)

- What is the point in probabilistic methods?
- Could we not just project with regular PCA?
 - Integration within other models (*e.g.* mixtures of PCA (Tipping 97), temporal models).
 - Model selection through Bayesian treatment of parameters (Bishop 98)
 - Marginalisation of missing data (Tipping 99)

Oil and Missing Data

Figure: Projection of the oil data set on to q = 2 latent dimensions. *Left*: full data set with no missing data. *Right*: data set with 10% values missing at random.

Oil and Missing Data

Figure: Projection of the oil data set on to q = 2 latent dimensions. *Left*: full data set with no missing data. *Right*: data set with 20% values missing at random.
Oil and Missing Data

Figure: Projection of the oil data set on to q = 2 latent dimensions. *Left*: full data set with no missing data. *Right*: data set with 30% values missing at random.

Oil and Missing Data

Figure: Projection of the oil data set on to q = 2 latent dimensions. *Left*: full data set with no missing data. *Right*: data set with 50% values missing at random.

It's difficult not to find a paper that doesn't use it!

• EigenFaces: **y** is an image of a face (Sirovich & Kirby 87, Turk & Pentland 91)

Figure: Yale faces: Image from C. de CORO

- EigenFaces: **y** is an image of a face (Sirovich & Kirby 87, Turk & Pentland 91)
- Morphable Model for the Synthesis of 3D Faces (Blanz & Vetter 99)

- EigenFaces: **y** is an image of a face (Sirovich & Kirby 87, Turk & Pentland 91)
- Morphable Model for the Synthesis of 3D Faces (Blanz & Vetter 99)
- Tracking where **y** is the full motion (e.g., all poses for a full golf swing) (Siddenbladh et al. 02, Urtasun et al. 05)

- EigenFaces: **y** is an image of a face (Sirovich & Kirby 87, Turk & Pentland 91)
- Morphable Model for the Synthesis of 3D Faces (Blanz & Vetter 99)
- Tracking where **y** is the full motion (e.g., all poses for a full golf swing) (Siddenbladh et al. 02, Urtasun et al. 05)
- Object recognition: PCA-SIFT (Ke et al. 04)

- EigenFaces: **y** is an image of a face (Sirovich & Kirby 87, Turk & Pentland 91)
- Morphable Model for the Synthesis of 3D Faces (Blanz & Vetter 99)
- Tracking where **y** is the full motion (e.g., all poses for a full golf swing) (Siddenbladh et al. 02, Urtasun et al. 05)
- Object recognition: PCA-SIFT (Ke et al. 04)
- Object detection: Deformable part-based models (Felzenbwald et al. 10)

It's difficult not to find a paper that doesn't use it!

- EigenFaces: **y** is an image of a face (Sirovich & Kirby 87, Turk & Pentland 91)
- Morphable Model for the Synthesis of 3D Faces (Blanz & Vetter 99)
- Tracking where **y** is the full motion (e.g., all poses for a full golf swing) (Siddenbladh et al. 02, Urtasun et al. 05)
- Object recognition: PCA-SIFT (Ke et al. 04)
- Object detection: Deformable part-based models (Felzenbwald et al. 10)

...

It's difficult not to find a paper that doesn't use it!

- EigenFaces: **y** is an image of a face (Sirovich & Kirby 87, Turk & Pentland 91)
- Morphable Model for the Synthesis of 3D Faces (Blanz & Vetter 99)
- Tracking where **y** is the full motion (e.g., all poses for a full golf swing) (Siddenbladh et al. 02, Urtasun et al. 05)
- Object recognition: PCA-SIFT (Ke et al. 04)
- Object detection: Deformable part-based models (Felzenbwald et al. 10)

• • • •

• You probably have used it too! (Audience et al.)

Let's see what Neil has to say ...

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{W}}\log p\left(\hat{\mathbf{Y}}|\mathbf{W}\right) = -\frac{n}{2}\mathbf{C}^{-1}\mathbf{W} + \frac{1}{2}\mathbf{C}^{-1}\hat{\mathbf{Y}}^{\top}\hat{\mathbf{Y}}\mathbf{C}^{-1}\mathbf{W}$$

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

Optimization

Seek fixed points

$$\mathbf{0} = -\frac{n}{2}\mathbf{C}^{-1}\mathbf{W} + \frac{1}{2}\mathbf{C}^{-1}\hat{\mathbf{Y}}^{\top}\hat{\mathbf{Y}}\mathbf{C}^{-1}\mathbf{W}$$

pre-multiply by 2C

$$\mathbf{0} = -n\mathbf{W} + \hat{\mathbf{Y}}^{\top}\hat{\mathbf{Y}}\mathbf{C}^{-1}\mathbf{W}$$
$$\frac{1}{n}\hat{\mathbf{Y}}^{\top}\hat{\mathbf{Y}}\mathbf{C}^{-1}\mathbf{W} = \mathbf{W}$$

Substitute W with singular value decomposition

 $\mathbf{W} = \mathbf{U} \mathbf{L} \mathbf{R}^\top$

which implies

$$\mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}$$
$$= \mathbf{U}\mathbf{L}^{2}\mathbf{U}^{\top} + \sigma^{2}\mathbf{I}$$

Using matrix inversion lemma

$$\mathbf{C}^{-1}\mathbf{W} = \mathbf{U}\mathbf{L}\left(\sigma^{2} + \mathbf{L}^{2}
ight)^{-1}\mathbf{R}^{ op}$$

Solution given by

$$\frac{1}{n}\hat{\mathbf{Y}}^{\top}\hat{\mathbf{Y}}\mathbf{U}=\mathbf{U}\left(\sigma^{2}+\mathbf{L}^{2}\right)$$

which is recognised as an eigenvalue problem.

- This implies that the columns of U are the eigenvectors of ¹/_n Ŷ^TŶ and that σ² + L² are the eigenvalues of ¹/_n Ŷ^TŶ.
- $I_i = \sqrt{\lambda_i \sigma^2}$ where λ_i is the *i*th eigenvalue of $\frac{1}{n} \hat{\mathbf{Y}}^\top \hat{\mathbf{Y}}$.
- Further manipulation shows that if we constrain $\mathbf{W} \in \Re^{p \times q}$ then the solution is given by the largest q eigenvalues.

Probabilistic PCA Solution

If U_q are first q principal eigenvectors of n⁻¹Ŷ^TŶ and the corresponding eigenvalues are Λ_q,

$$\mathbf{W} = \mathbf{U}_{q} \mathbf{L} \mathbf{R}^{\top}, \quad \mathbf{L} = \left(\mathbf{\Lambda}_{q} - \sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}$$

where \mathbf{R} is an arbitrary rotation matrix.

- Some further work shows that the *principal* eigenvectors need to be retained.
- The maximum likelihood value for σ^2 is given by the average of the discarded eigenvalues.

🕨 Return