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Notation

p data dimensionality
q latent dimensionality
n number of data points
Y design matrix containing our data n × p
X matrix of latent variables n × q

Row vector from matrix A given by ai ,: column vector a:,j and element
given by ai ,j .
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Online Resources

All source code and slides are available online

Tutorial homepage is

I http:

//ttic.uchicago.edu/~rurtasun/tutorials/GP_tutorial.html.
I Code available at

http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/.

Urtasun & Lawrence () GP tutorial June 16, 2012 3 / 40

http://ttic.uchicago.edu/~rurtasun/tutorials/GP_tutorial.html
http://ttic.uchicago.edu/~rurtasun/tutorials/GP_tutorial.html
http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/


High Dimensional Data

High dimensional data dominates many application domains.

Examples include:

a customer in a data base, where the features might include their
purchase history, where they live, their sex, and age;

a digitized photograph, where the features include the pixel
intensities, time, date, and location of the photograph;

human motion capture data for the movie and games industries,
where features consist of a time series of angles at each
joint;

human speech, where the features consist of the energy at different
frequencies (or across the cepstrum) as a time series;

a webpage or other document, features could consist of frequencies
of given words in a set of documents and linkage
information between documents;

gene expression data, features consist of the level of expression of
thousands of genes.
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Mixtures of Gaussians
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Figure: Two dimensional data sets.
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Mixtures of Gaussians
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Figure: Complex structure not a problem for mixtures of Gaussians.
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Thinking in High Dimensions

Two dimensional plots of Gaussians can be misleading.

Our low dimensional intuitions can fail dramatically.

Two major issues:

1 In high dimensions all the data moves to a ‘shell’. There is nothing
near the mean!

2 Distances between points become constant.
3 These affects apply to many densities.

Let’s consider a Gaussian “egg”.
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The Gaussian Egg

Volumes: 65.8%, 4.8% 29.4%

Figure: One dimensional Gaussian density.
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The Gaussian Egg

Volumes: 59.4%, 7.4% 33.2%

Figure: Two dimensional Gaussian density.
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The Gaussian Egg

Volumes: 56.1%, 9.2%, 34.7%

Figure: Three dimensional Gaussian density.
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Mathematics

What is the density of probability mass?

yi ,k ∼ N
(
0, σ2

)
=⇒ y2

i ,k ∼ σ2χ2
1

y
i,1

y
i,2

y
i,2

y
i,1+

22

Square of sample from Gaussian is scaled chi-squared density
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22

Chi squared density is a variant of the gamma density with shape
parameter a = 1

2 , rate parameter b = 1
2σ2 , G (x |a, b) = ba

Γ(a)x
a−1e−bx .
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Mathematics

What is the density of probability mass?

yi ,k ∼ N
(
0, σ2

)
=⇒ y2
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y
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Addition of gamma random variables with the same rate is gamma with
sum of shape parameters (yi ,ks are independent)
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Mathematics

What is the density of probability mass?

1

p

p∑
k=1

y2
i ,k ∼ G

(p
2
,

p

2σ2

)

=⇒

〈
1

p

p∑
k=1

y2
i ,k

〉
= σ2

y
i,1

y
i,2

y
i,2

y
i,1+

22

Scaling of gamma density scales the rate parameter
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Where is the Mass?
Squared distances are gamma distributed.

0
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0.75

1

1 4 16 64 256 1024

dimension

Figure: Plot of probability mass versus dimension. Plot shows the volume of
density inside 0.95 of a standard deviation (yellow), between 0.95 and 1.05
standard deviations (green), over 1.05 and standard deviations (white).
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Looking at Gaussian Samples
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Interpoint Distances

The other effect in high dimensions is all points become equidistant.

Can show this for Gaussians with a similar proof to the above,

yi ,k ∼ N
(
0, σ2

k

)
yj ,k ∼ N

(
0, σ2

k

)
yi ,k − yj ,k ∼ N

(
0, 2σ2

k

)
(yi ,k − yj ,k)2 ∼ G

(
1

2
,

1

4σ2
k

)

For spherical Gaussian, σ2
k = σ2

p∑
k=1

(yi ,k − yj ,k)2 ∼ G
(
p

2
,

1

4σ2

)
1

p

p∑
k=1

(yi ,k − yj ,k)2 ∼ G
(p

2
,

p

4σ2

)
Dimension normalized distance between points is drawn from a
gamma. Mean is 2σ2. Variance is 8σ2

p .
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Central Limit Theorem and Non-Gaussian Case

We can compute the density of squared distance analytically for
spherical, independent Gaussian data.

More generally, for independent data, the central limit theorem
applies.

I The mean squared distance in high dimensional space is the mean of
the variances.

I The variance about the mean scales as p−1.
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Summary until now

In high dimensions if individual dimensions are independent the
distributions behave counter intuitively.

All data sits at one standard deviation from the mean.

The densities of squared distances can be analytically calculated for
the Gaussian case.

For non-Gaussian independent systems we can invoke the central limit
theorem.

Next we will consider example data sets and see how their interpoint
distances are distributed.
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Sanity Check
Data sampled from independent Gaussian distribution

If dimensions are independent, we expect low variance, Gaussian
behavior for the distribution of squared distances.

Distance distribution for a Gaussian with p = 1000, n = 1000

0

1

2

3

4

5

0 1 2 3 4 5 6

squared distance

Figure: A good match betwen theory and the samples for a 1000 dimensional
Gaussian distribution.
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Sanity Check
Same data generation, but fewer data points.

If dimensions are independent, we expect low variance, Gaussian
behaviour for the distribution of squared distances.

Distance distribution for a Gaussian with p = 1000, n = 100
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squared distance

Figure: A good match betwen theory and the samples for a 1000 dimensional
Gaussian distribution.
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Oil Data

Simulated measurements from an
oil pipeline (Bishop 93)

Pipeline contains oil, water and gas.

Three phases of flow in
pipeline—homogeneous, stratified
and annular.

Gamma densitometry sensors
arranged in a configuration around
pipeline.

Homogeneous

Stratified

Annular

oil

water

gas
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Oil Data

12 simulated measurements of oil flow in a pipe.

Nature of flow is dependent on relative proportion of oil, water and
gas.
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0.4
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0.7

0 1 2 3 4 5 6

squared distance

Figure: Interpoint squared distance distribution for oil data with p = 12 (variance
of squared distances is 1.98 vs predicted 0.667).
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Stick Man Data

n = 55 frames of motion capture.

xyz locations of 34 points on the
body.

p = 102 dimensional data.

“Run 1” available from http:

//accad.osu.edu/research/

mocap/mocap_data.htm.

Changing

Angle

of Run
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Stick Man

Motion capture data inter point distance histogram.
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Figure: Interpoint squared distance distribution for stick man data with p = 102
(variance of squared distances is 1.09 vs predicted 0.0784).
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Microarray Data

Gene expression measurements
reflecting the cell cycle in yeast
(Spellman 98)

p = 6, 178 Genes measured for
n = 77 experiments

Data available from
http://genome-www.stanford.

edu/cellcycle/data/rawdata/

individual.htm.

Yeast

Cell

Cycle
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Microarray Data

Spellman yeast cell cycle.
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Figure: Interpoint squared distance distribution for Spellman microarray data with
p = 6178 (variance of squared distances is 0.694 vs predicted 0.00129).
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Where does practice depart from our theory?

The situation for real data does not reflect what we expect.

Real data exhibits greater variances on interpoint distances.

I Somehow the real data seems to have a smaller effective dimension.

Let’s look at another p = 1000.

Urtasun & Lawrence () GP tutorial June 16, 2012 22 / 40



1000-D Gaussian

Distance distribution for a different Gaussian with p = 1000
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5

0 1 2 3 4 5 6

squared distance

1 Gaussian has a specific low rank covariance matrix C = WW> + σ2I.

2 Take σ2 = 1e − 2 and sample W ∈ <1000×2 from N (0, 1).
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1000-D Gaussian
Distance distribution for a different Gaussian with p = 1000

0
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0.2

0.3

0.4

0.5

0 1 2 3 4 5 6

squared distance

1 Gaussian has a specific low rank covariance matrix C = WW> + σ2I.

2 Take σ2 = 1e − 2 and sample W ∈ <1000×2 from N (0, 1).

3 Theoretical curve taken assuming dimensionality of 2.
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Linear Probabilistic Dimensionality Reduction

Where does this Low Rank Covariance Matrix Come From?

It arises from a low dimensional approximation for the data set.

Probabilistic PCA (Tipping 99, Roweis 97)

I Linear Mapping from q-dimensional latent space to p-dimensional data
space.

I Corrupt the mapping by independent Gaussian noise.
I Marginalise latent variables using Gaussian prior.
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A bit more Notation

q— dimension of latent/embedded space
p— dimension of data space
n— number of data points

data, Y = [y1,:, . . . , yn,:]
> = [y:,1, . . . , y:,p] ∈ <n×p

centred data, Ŷ = [ŷ1,:, . . . , ŷn,:]
> = [ŷ:,1, . . . , ŷ:,p] ∈ <n×p, ŷi ,: = yi ,: − µ

latent variables, X = [x1,:, . . . , xn,:]
> = [x:,1, . . . , x:,q] ∈ <n×q

mapping matrix, W ∈ <p×q

ai ,: is a vector from the ith row of a given matrix A
a:,j is a vector from the jth row of a given matrix A
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Reading Notation

X and Y are design matrices

Data covariance given by 1
n Ŷ>Ŷ

cov (Y) =
1

n

n∑
i=1

ŷi ,:ŷ
>
i ,: =

1

n
Ŷ>Ŷ = S.

Inner product matrix given by YY>

K = (ki ,j)i ,j , ki ,j = y>i ,:yj ,:
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Linear Dimensionality Reduction
Find a lower dimensional plane embedded in a higher dimensional
space.
The plane is described by the matrix W ∈ <p×q.

x 2

x1

y = Wx + µ−→

y1y2
y3

Figure: Mapping a two dimensional plane to a higher dimensional space in a
linear way. Data are generated by corrupting points on the plane with noise.
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Linear Latent Variable Model

Probabilistic PCA

Linear-Gaussian
relationship between
latent variables and data,
yi ,: = Wxi ,: + µ + ηi ,:.

X are ‘nuisance’ variables.

Latent variable model
approach:

1 Define Gaussian prior
over latent space, X.

2 Integrate out nuisance
latent variables.

3 Optimize likelihood wrt
W, µ.

X W

Y

p (Y|X,W) =
n∏

i=1

N
(
yi,:|Wxi,: + µ, σ2I

)
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2 Integrate out nuisance
latent variables.

3 Optimize likelihood wrt
W, µ.

W

Y

p (Y|X,W) =
n∏

i=1

N
(
yi,:|Wxi,: + µ, σ2I

)

p (X) =
n∏

i=1

N
(
xi,:|0, I

)

p (Y|W,µ) =
n∏

i=1

N
(

yi,:|µ,WW> + σ2I
)
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Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

X W

Y

p
(

Ŷ|W
)

=
n∏

i=1

N
(

ŷi,:|0,WW> + σ2I
)
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Probabilistic PCA Solution
Probabilistic PCA Max. Likelihood Soln (Tipping 99)

X W

Y

p
(

Ŷ|W
)

=

p∏
j=1

N
(
ŷi,:|0,C

)
, C = WW> + σ2I

log p
(

Ŷ|W
)

= −
n

2
log |C| −

1

2
tr
(

C−1Ŷ>Ŷ
)

+ const.

If Uq are first q principal eigenvectors of n−1Ŷ>Ŷ and the corresponding eigenvalues are Λq ,

W = UqLR>, L =
(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.

Details
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PCA on Stick Man

First two principal components of stick man data.

−1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure: Stick man data projected onto their first two principal components.
demStickPpca1.
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PCA on Oil Data

First two principal components of oil data.
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Figure: Oil data projected onto their first two principal components.
demOilPpca1.
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PCA on Microarray
First two principal components of gene expression data.
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Figure: Microarray data projected onto their first two principal components.
demSpellmanPpca1. Different symbols show different experiment groups
(separate time series).
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Why Probabilistic PCA?

What is the point in probabilistic methods?

Could we not just project with regular PCA?

I Integration within other models (e.g. mixtures of PCA (Tipping 97),
temporal models).

I Model selection through Bayesian treatment of parameters (Bishop 98)
I Marginalisation of missing data (Tipping 99)
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Oil and Missing Data
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Figure: Projection of the oil data set on to q = 2 latent dimensions. Left: full
data set with no missing data. Right: data set with 10% values missing at
random.

Urtasun & Lawrence () GP tutorial June 16, 2012 34 / 40



Oil and Missing Data

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

Figure: Projection of the oil data set on to q = 2 latent dimensions. Left: full
data set with no missing data. Right: data set with 20% values missing at
random.
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Oil and Missing Data
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Figure: Projection of the oil data set on to q = 2 latent dimensions. Left: full
data set with no missing data. Right: data set with 30% values missing at
random.
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Oil and Missing Data
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Figure: Projection of the oil data set on to q = 2 latent dimensions. Left: full
data set with no missing data. Right: data set with 50% values missing at
random.
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Is (P)PCA Used in Computer Vision?
It’s difficult not to find a paper that doesn’t use it!

EigenFaces: y is an image of a face (Sirovich & Kirby 87, Turk & Pentland
91)

Figure: Yale faces: Image from C. de CORO
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It’s difficult not to find a paper that doesn’t use it!

EigenFaces: y is an image of a face (Sirovich & Kirby 87, Turk & Pentland
91)

Morphable Model for the Synthesis of 3D Faces (Blanz & Vetter 99)

Tracking where y is the full motion (e.g., all poses for a full golf swing)
(Siddenbladh et al. 02, Urtasun et al. 05)

(Walk) (Run)
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Is (P)PCA Used in Computer Vision?

It’s difficult not to find a paper that doesn’t use it!

EigenFaces: y is an image of a face (Sirovich & Kirby 87, Turk & Pentland
91)

Morphable Model for the Synthesis of 3D Faces (Blanz & Vetter 99)

Tracking where y is the full motion (e.g., all poses for a full golf swing)
(Siddenbladh et al. 02, Urtasun et al. 05)

Object recognition: PCA-SIFT (Ke et al. 04)

Object detection: Deformable part-based models (Felzenbwald et al. 10)

· · ·

You probably have used it too! (Audience et al. )
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Let’s see what Neil has to say ...
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Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

X W

Y

p (Y|W,µ) =
n∏

i=1

N
(

yi,:|µ,WW> + σ2I
)

Gradient of log likelihood
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Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

X W

Y

p
(

Ŷ|W
)

=
n∏

i=1

N
(

ŷi,:|0,WW> + σ2I
)

Gradient of log likelihood

d

dW
log p

(
Ŷ|W

)
= −n

2
C−1W +

1

2
C−1Ŷ>ŶC−1W
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, C = WW> + σ2I

log p
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n
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1

2
tr
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C−1Ŷ>Ŷ
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Optimization
Seek fixed points

0 = −n

2
C−1W +

1

2
C−1Ŷ>ŶC−1W

pre-multiply by 2C
0 = −nW + Ŷ>ŶC−1W

1

n
Ŷ>ŶC−1W = W

Substitute W with singular value decomposition

W = ULR>

which implies

C = WW> + σ2I

= UL2U> + σ2I

Using matrix inversion lemma

C−1W = UL
(
σ2 + L2

)−1
R>
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Solution given by

1

n
Ŷ>ŶU = U

(
σ2 + L2

)
which is recognised as an eigenvalue problem.

This implies that the columns of U are the eigenvectors of 1
n Ŷ>Ŷ and

that σ2 + L2 are the eigenvalues of 1
n Ŷ>Ŷ.

li =
√
λi − σ2 where λi is the ith eigenvalue of 1

n Ŷ>Ŷ.

Further manipulation shows that if we constrain W ∈ <p×q then the
solution is given by the largest q eigenvalues.
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Probabilistic PCA Solution

If Uq are first q principal eigenvectors of n−1Ŷ>Ŷ and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.

Some further work shows that the principal eigenvectors need to be
retained.

The maximum likelihood value for σ2 is given by the average of the
discarded eigenvalues.

Return

Urtasun & Lawrence () GP tutorial June 16, 2012 40 / 40


	Appendix

