All you want to know about GPs: Applications and Extensions of GPLVM

Raquel Urtasun and Neil Lawrence

TTI Chicago, University of Sheffield

June 16, 2012

Applications of GPLVM

We will concentrate on a few successful applications in computer vision

- Pose priors for character animation
- Pose priors for human pose estimation and tracking
- Deformation priors for shape estimation
- Shape priors for Segmentation

GPLVM for Character Animation

- Learn a GPLVM from a small mocap sequence
- Pose synthesis by solving an optimization problem

 $\underset{\mathbf{x},\mathbf{y}}{\operatorname{argmin}} - \log p(\mathbf{y}|\mathbf{x})$ such that $C(\mathbf{y}) = 0$

• These handle constraints may come from a user in an interactive session, or from a mocap system.

GPLVM for Character Animation

- Learn a GPLVM from a small mocap sequence
- Pose synthesis by solving an optimization problem

 $\underset{\mathbf{x},\mathbf{y}}{\operatorname{argmin}} - \log p(\mathbf{y}|\mathbf{x})$ such that $C(\mathbf{y}) = 0$

- These handle constraints may come from a user in an interactive session, or from a mocap system.
- Smooth the latent space by adding noise in order to reduce the number of local minima.
- Optimization in an annealed fashion over different anneal version of the latent space.

GPLVM for Character Animation

- Learn a GPLVM from a small mocap sequence
- Pose synthesis by solving an optimization problem

 $\underset{\mathbf{x},\mathbf{y}}{\operatorname{argmin}} - \log p(\mathbf{y}|\mathbf{x})$ such that $C(\mathbf{y}) = 0$

- These handle constraints may come from a user in an interactive session, or from a mocap system.
- Smooth the latent space by adding noise in order to reduce the number of local minima.
- Optimization in an annealed fashion over different anneal version of the latent space.

Application: Replay same motion

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

Application: Keyframing joint trajectories

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

Application: Deal with missing data in mocap

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

Application: Style Interpolation

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

Applications: Animation from Images

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

- Requires manual interaction
- Next we will see how to do this automatically with these models

The problem of human pose estimation

 The goal is given an image I to estimate the 3D location and orientation of the body parts y.

Notation

 $\phi - \text{the state to be estimated} \\ \mathbf{I} - \text{the image} \\ \mathbf{x} - \text{the latent representation} \\ n - \text{number of training samples} \\ \mathbf{I}_{t:0} - \text{image observations up to time } t \\ \mathbf{y}_{t:0} - \text{poses up to time } t \\ \end{cases}$

Pose estimation

• Generative approaches: focus on modeling

$$p(\phi|\mathbf{I}) = rac{p(\mathbf{I}|\phi)p(\phi)}{p(\mathbf{I})}$$

• Discriminative approaches: focus on modeling directly

 $\mathit{p}(\phi|\mathbf{I})$

We saw how to directly model $p(\phi, \mathbf{x})$ with a GP before, where $\phi = \mathbf{y}$. Let's now focus on generative approaches.

Generative approach models

$$p(\phi|\mathbf{I}) = rac{p(\mathbf{I}|\phi)p(\phi)}{p(\mathbf{I})}$$

Types of generative approaches:

- Bayesian approaches: focus on approximating p(φ|I), usually via sampling (e.g., particle filter).
- Optimization or energy-based techniques: focus on computing the MAP or ML estimate of p(φ|I).

Generative approach models

$$p(\phi|\mathbf{I}) = rac{p(\mathbf{I}|\phi)p(\phi)}{p(\mathbf{I})}$$

Types of generative approaches:

- Bayesian approaches: focus on approximating p(φ|I), usually via sampling (e.g., particle filter).
- Optimization or energy-based techniques: focus on computing the MAP or ML estimate of p(φ|I).

Common to all of them is the need to model

- Image likelihood: $p(\mathbf{I}|\phi)$
- Priors: $p(\phi)$

Generative approach models

$$p(\phi|\mathbf{I}) = rac{p(\mathbf{I}|\phi)p(\phi)}{p(\mathbf{I})}$$

Types of generative approaches:

- Bayesian approaches: focus on approximating p(φ|I), usually via sampling (e.g., particle filter).
- Optimization or energy-based techniques: focus on computing the MAP or ML estimate of p(φ|I).

Common to all of them is the need to model

- Image likelihood: $p(\mathbf{I}|\phi)$
- Priors: $p(\phi)$

In general p(I) is assumed constant and ignored. The different trackers then depend on the different modeling choices and optimization procedures.

Generative approach models

$$p(\phi|\mathbf{I}) = rac{p(\mathbf{I}|\phi)p(\phi)}{p(\mathbf{I})}$$

Types of generative approaches:

- Bayesian approaches: focus on approximating p(φ|I), usually via sampling (e.g., particle filter).
- Optimization or energy-based techniques: focus on computing the MAP or ML estimate of p(φ|I).

Common to all of them is the need to model

- Image likelihood: $p(\mathbf{I}|\phi)$
- Priors: $p(\phi)$

In general $p(\mathbf{I})$ is assumed constant and ignored. The different trackers then depend on the different modeling choices and optimization procedures.

Particle filter revisited

The posterior density is described with three terms

$$p(\phi_t | \mathbf{I}_{t:0}) = \frac{t(\mathbf{I}_t | \phi_t) p(\phi_t | \mathbf{I}_{t-1:0})}{p(\mathbf{I}_t | \mathbf{I}_{t-1:0})}$$

• Prior: defines the knowledge of the model

$$p(\phi_t|I_{t-1:0}) = \int p(\phi_t|\phi_{t-1})p(\phi_{t-1}|I_{t-1:0})d\phi_{t-1}$$

Particle filter revisited

The posterior density is described with three terms

$$p(\phi_t | \mathbf{I}_{t:0}) = \frac{t(\mathbf{I}_t | \phi_t) p(\phi_t | \mathbf{I}_{t-1:0})}{p(\mathbf{I}_t | \mathbf{I}_{t-1:0})}$$

• Prior: defines the knowledge of the model

$$p(\phi_t|\mathbf{I}_{t-1:0}) = \int p(\phi_t|\phi_{t-1})p(\phi_{t-1}|\mathbf{I}_{t-1:0})d\phi_{t-1}$$

• Likelihood: $p(\mathbf{I}_t | \phi_t)$ determines the measurement noise model

• Evidence: which involves

$$p(\mathbf{I}_n|\mathbf{I}_{t-1:0}) = \int p(\mathbf{I}_t|\phi_t) p(\phi_t|\mathbf{I}_{t-1:0}) d\phi_t$$

Particle filter revisited

The posterior density is described with three terms

$$p(\phi_t | \mathbf{I}_{t:0}) = \frac{t(\mathbf{I}_t | \phi_t) p(\phi_t | \mathbf{I}_{t-1:0})}{p(\mathbf{I}_t | \mathbf{I}_{t-1:0})}$$

• Prior: defines the knowledge of the model

$$p(\phi_t|\mathbf{I}_{t-1:0}) = \int p(\phi_t|\phi_{t-1})p(\phi_{t-1}|\mathbf{I}_{t-1:0})d\phi_{t-1}$$

- \bullet Likelihood: $p(\mathbf{I}_t | \boldsymbol{\phi}_t)$ determines the measurement noise model
- Evidence: which involves

$$p(\mathbf{I}_n|\mathbf{I}_{t-1:0}) = \int p(\mathbf{I}_t|\phi_t) p(\phi_t|\mathbf{I}_{t-1:0}) d\phi_t$$

Optimization techniques

It is defined as minimizing the following programs:

$$\begin{split} \phi_{ML}^* &= \operatorname*{argmin}_{\phi} - \log p(\mathbf{I}|\phi) \\ \phi_{MAP}^* &= \operatorname*{argmin}_{\phi} - \log p(\mathbf{I}|\phi) - \log p(\phi) \end{split}$$

It suffers from the following problems:

- Local minima: usually $-\log p(\mathbf{I}|\phi)$ is a non-convex function of ϕ .
- Initialization: usually hand initialized or use discriminative approaches.
- Drift: As times goes, the estimate gets worst.
- Difficult to define a good general $-\log p(\mathbf{I}|\phi)$.

Optimization techniques

It is defined as minimizing the following programs:

$$\phi_{ML}^{*} = \operatorname*{argmin}_{\phi} - \log p(\mathbf{I}|\phi)$$

$$\phi_{MAP}^{*} = \operatorname*{argmin}_{\phi} - \log p(\mathbf{I}|\phi) - \log p(\phi)$$

It suffers from the following problems:

- Local minima: usually $-\log p(\mathbf{I}|\phi)$ is a non-convex function of ϕ .
- Initialization: usually hand initialized or use discriminative approaches.
- Drift: As times goes, the estimate gets worst.
- Difficult to define a good general $-\log p(\mathbf{I}|\phi)$.

Usually computationally more efficient than particle filter (if not use GPU). This can be combined with particle filter to create hybrid monte-carlo.

Optimization techniques

It is defined as minimizing the following programs:

$$\phi_{ML}^{*} = \operatorname*{argmin}_{\phi} - \log p(\mathbf{I}|\phi)$$

$$\phi_{MAP}^{*} = \operatorname*{argmin}_{\phi} - \log p(\mathbf{I}|\phi) - \log p(\phi)$$

It suffers from the following problems:

- Local minima: usually $-\log p(\mathbf{I}|\phi)$ is a non-convex function of ϕ .
- Initialization: usually hand initialized or use discriminative approaches.
- Drift: As times goes, the estimate gets worst.
- Difficult to define a good general $-\log p(\mathbf{I}|\phi)$.

Usually computationally more efficient than particle filter (if not use GPU). This can be combined with particle filter to create hybrid monte-carlo.

GPLVM as a prior for Tracking

Likelihood models: $p(\mathbf{I}|\phi)$

- Monocular tracking: 2D-3D correspondences, silhouettes, edges, template matching, etc.
- Multi-view tracking: stereo, visual hull, etc.
- **Priors:** $p(\phi)$
 - Pose priors
 - Dynamical priors
 - Shape priors

Note that I have defined ϕ as a general quantity, not just the pose, e.g., it includes the latent coordinates.

Generative tracking: Priors for 3D people tracking

- Learn off-line prior models from Mocap: GPLVM
- Use then online to constrain the tracking.

Tracking formulation

For each image *I_t* we have to estimate the state φ_t = (**y**_t, **x**_t).
Bayesian formulation of the tracking

$$p(\phi_{t:t+\tau}|\mathbf{I}_{t:t+\tau},\mathbf{X},\mathbf{Y}) \propto \prod_{i} p(\mathbf{I}_{t+i}|\phi_{t+i}) \prod_{i} p(\mathbf{y}_{t+i}|\mathbf{x}_{t+i},\mathbf{X},\mathbf{Y})$$

- The image likelihood is composed of the distance to 2D joints automatically tracked using WSL (Jepson et al. 03).
- Tracking by minimizing

$$-\log p(\phi_{t:t+ au} | \mathbf{I}_{t:t+ au}, \mathbf{X}, \mathbf{Y}) = \mathcal{L}_{images} + \mathcal{L}_{prior}$$

Tracking from a single example!

[R. Urtasun, D. J. Fleet, A. Hertzmann and P. Fua, ICCV 2005]

• Feature or bug?

Non-rigid shape deformation

Monocular 3D shape recovery is severely under-constrained:

- Complex deformations and low-texture objects.
- Deformation models are required to disambiguate.
- Building realistic physics-based models is very complex.
- Learning the models is a popular alternative.

Global deformation models

State-of-the-art techniques learn global models that

- require large amounts of training data,
- must be learned for each new object.

Key observations

- Locally, all parts of a physically homogeneous surface obey the same deformation rules.
- Oeformations of small patches are much simpler than those of a global surface, and thus can be learned from fewer examples.

 \rightarrow Learn Local Deformation Models and combine them into a global one representing the particular shape of the object of interest.

Overview of the method

Use a Product of Experts (POE) paradigm (Hinton 99):

- High dimensional data subject to low dimensional constraints.
- A global deformation should be composed of highly probable local ones.
- For homogeneous materials, all local patches follow the same deformation rules.
- Learn a single local model, and replicate it to cover the whole object.

Use a Product of Experts (POE) paradigm (Hinton 99):

- High dimensional data subject to low dimensional constraints.
- A global deformation should be composed of highly probable local ones.
- For homogeneous materials, all local patches follow the same deformation rules.
- Learn a single local model, and replicate it to cover the whole object.

Use a Product of Experts (POE) paradigm (Hinton 99):

- High dimensional data subject to low dimensional constraints.
- A global deformation should be composed of highly probable local ones.
- For homogeneous materials, all local patches follow the same deformation rules.
- Learn a single local model, and replicate it to cover the whole object.

Use a Product of Experts (POE) paradigm (Hinton 99):

- High dimensional data subject to low dimensional constraints.
- A global deformation should be composed of highly probable local ones.
- For homogeneous materials, all local patches follow the same deformation rules.
- Learn a single local model, and replicate it to cover the whole object.

 \rightarrow Same deformation model represents arbitrary shapes and topologies.

Tracking

- For each image I_t we have to estimate the state $\phi_t = (\mathbf{y}_t, \mathbf{x}_t)$.
- Bayesian formulation of the tracking

$$p(\phi_t | \mathbf{I}_t, \mathbf{X}, \mathbf{Y}) \propto p(\mathbf{I}_t | \phi_t) p(\mathbf{y}_t | \mathbf{x}_t, \mathbf{X}, \mathbf{Y}) p(\mathbf{x}_t)$$

• The image likelihood is composed of texture (template matching) and edge information

$$p(\mathbf{I}_t|\phi_t) = p(\mathbf{T}_t|\phi_t)p(\mathbf{E}_t|\phi_t)$$

• Tracking by minimizing the posterior

Tracking poorly-textured surfaces

Same prior model for different shapes

More complex materials

Different topology and Occlusions

• Represent contours with elliptic Fourier descriptors

• Learn a GPLVM on the parameters of those descriptors

• Represent contours with elliptic Fourier descriptors

- Learn a GPLVM on the parameters of those descriptors
- We can now generate close contours from the latent space

• Represent contours with elliptic Fourier descriptors

- Learn a GPLVM on the parameters of those descriptors
- We can now generate close contours from the latent space
- Segmentation is done by non-linear minimization of an image-driven energy which is a function of the latent space

• Represent contours with elliptic Fourier descriptors

- Learn a GPLVM on the parameters of those descriptors
- We can now generate close contours from the latent space
- Segmentation is done by non-linear minimization of an image-driven energy which is a function of the latent space

GPLVM on Contours

[V. Prisacariu and I. Reid, ICCV 2011]

Segmentation Results

[V. Prisacariu and I. Reid, ICCV 2011]

Does it work all the time?

Is training with so little data a bug or a feature?

• It relies on the optimization of a non-convex function

$$\mathcal{L} = rac{p}{2} \ln |\mathbf{K}| + rac{p}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}) \; .$$

• It relies on the optimization of a non-convex function

$$\mathcal{L} = \frac{p}{2} \ln |\mathbf{K}| + \frac{p}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T})$$

• Even with the right dimensionality, they can result in poor representations if initialized far from the optimum.

• It relies on the optimization of a non-convex function

$$\mathcal{L} = \frac{p}{2} \ln |\mathbf{K}| + \frac{p}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T})$$

• Even with the right dimensionality, they can result in poor representations if initialized far from the optimum.

• This is even worst if the dimensionality of the latent space is small.

• It relies on the optimization of a non-convex function

$$\mathcal{L} = rac{p}{2} \ln |\mathbf{K}| + rac{p}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T})$$

• Even with the right dimensionality, they can result in poor representations if initialized far from the optimum.

- This is even worst if the dimensionality of the latent space is small.
- As a consequence this models have only been applied to small databases of a single activity.

Solutions that have been proposed

- Constrain the back-mapping
- 2 Incorporate dynamics when learning the latent space
- 8 Rank priors for continuous dimensionality reduction
- Incorporate prior knowledge
- Stochastic gradient descent optimization

1) Back Constraints

Local Distance Preservation (Lawrence et al. 06)

- Most dimensional reduction techniques preserve local distances.
- The GP-LVM does not.
- GP-LVM maps smoothly from latent to data space.
 - Points close in latent space are close in data space.
 - This does not imply points close in data space are close in latent space.
- Kernel PCA maps smoothly from data to latent space.
 - Points close in data space are close in latent space.
 - This does not imply points close in latent space are close in data space.

Back Constraints in the GP-LVM

Back Constraints

• The Neuroscale (Lowe, 96) made latent positions a function of the data.

$$x_{i,j} = f_j(\mathbf{y}_{i,:}; \mathbf{v})$$

- We can use the same idea to force the GP-LVM to respect local distances.
 - By constraining each x_i to be a 'smooth' mapping from y_i local distances can be respected.
- This works because in the GP-LVM we maximise wrt latent variables, we don't integrate out.
- Can use any 'smooth' function:
 - Neural network.
 - 2 RBF Network.
 - Sernel based mapping.

Optimising BC-GPLVM

Computing Gradients

• GP-LVM normally proceeds by optimising

$$L(\mathbf{X}) = \log p(\mathbf{Y}|\mathbf{X})$$

with respect to **X** using $\frac{dL}{dX}$.

• The back constraints are of the form

$$x_{i,j} = f_j\left(\mathbf{y}_{i,:}; \mathbf{v}\right)$$

where \mathbf{v} are parameters.

 We can compute dL/dv via chain rule and optimise parameters of mapping.

Motion Capture Results

[N. Lawrence and J. Quinonero-Candela, ICML 2006]

demStick1 and demStick3

Figure: The latent space for the motion capture data with (*right*) and without (*left*) back constraints.

Stick Man Results

[N. Lawrence and J. Quinonero-Candela, ICML 2006]

demStickResults

Projection into data space from four points in the latent space. The inclination of the runner changes becoming more upright.

2) Adding Dynamics

MAP Solutions for Dynamics Models

- Data often has a temporal ordering.
- Markov-based dynamics are often used.
- For the GP-LVM
 - Marginalising such dynamics is intractable.
 - But: MAP solutions are trivial to implement.
- Many choices: Kalman filter, Markov chains etc..
- (Wang et al. 05) suggest using a Gaussian Process.

Gaussian Process Dynamics

GP-LVM with Dynamics

• Autoregressive Gaussian process mapping in latent space between time points.

t

Gaussian Process Dynamics

GP-LVM with Dynamics

• Autoregressive Gaussian process mapping in latent space between time points.

Gaussian Process Dynamics

GP-LVM with Dynamics

• Autoregressive Gaussian process mapping in latent space between time points.

Motion Capture Results

demStick1 and demStick2

Figure: The latent space for the motion capture data without dynamics (*left*), with auto-regressive dynamics (*right*) based on an exponentiated quadratic kernel.

Regressive Dynamics

Inner Groove Distortion

- Autoregressive unimodal dynamics, p(x_t|x_{t-1}).
- Forces spiral visualisation.
- Poorer model due to inner groove distortion.

Regressive Dynamics

Direct use of Time Variable

- Instead of auto-regressive dynamics, consider regressive dynamics.
- Take **t** as an input, use a prior $p(\mathbf{X}|\mathbf{t})$.
- User a Gaussian process prior for $p(\mathbf{X}|\mathbf{t})$.
- Also allows us to consider variable sample rate data.
- **Problem**: The notion of time might not be appropriate.

Motion Capture Results

[N. Lawrence and A. Moore, ICML 2007]

demStick1, demStick2 and demStick5

Figure: The latent space for the motion capture data without dynamics (*left*), with auto-regressive dynamics (*middle*) and with regressive dynamics (*right*) based on an exponentiated quadratic kernel.

Incorporating dynamics into Tracking

• The mapping from latent space to high dimensional space as

$$\mathbf{y}_{i,:} = \mathbf{W} \psi(\mathbf{x}_{i,:}) + \boldsymbol{\eta}_{i,:}, \quad ext{where} \quad \eta_{i,:} \sim N\left(\mathbf{0}, \sigma^2 \mathbf{I}\right).$$

• We can augment the model with ARMA dynamics. This is called Gaussian process dynamical models (GPDM) (Wang et al., 05).

$$\mathbf{x}_{t+1,:} = \mathbf{P}\phi(\mathbf{x}_{t:t- au,:}) + \boldsymbol{\gamma}_{i,:}, \quad \text{where} \quad \gamma_{i,:} \sim N\left(\mathbf{0}, \sigma_d^2 \mathbf{I}\right).$$

Model Learned for tracking

Model learned from 6 walking subjects,1 gait cycle each, on treadmill at same speed with a 20 DOF joint parameterization (no global pose)

Figure: Density

Figure: Randomly generated trajectories

Tracking results

[R. Urtasun, D. Fleet and P. Fua, CVPR 2006]

Estimated latent trajectories

[R. Urtasun, D. Fleet and P. Fua, CVPR 2006]

Figure: Estimated latent trajectories. (cian) - training data, (black) - exaggerated walk, (blue) - occlusion.

Visualization of Knee Pathology

Two subjects, four walk gait cycles at each of 9 speeds (3-7 km/hr)

Visualization of Knee Pathology

Two subjects, four walk gait cycles at each of 9 speeds (3-7 km/hr)

Two subjects with a knee pathology.

3) Rank Priors for Dimensionality Reduction

• No distortion is introduced by an initialization step; the latent coordinates are initialized to be the original observations

$$\mathbf{X}_{init} = \mathbf{Y}$$

- We introduce a prior over the latent space that encourages latent spaces to be low dimensional.
- Our method is able to estimate the latent space and its dimensionality.

- We want to encourage latent space that are low-dimensional.
- Dimensionality can be measure by the rank of XX^{T} .

- We want to encourage latent space that are low-dimensional.
- Dimensionality can be measure by the rank of XX^{T} .
- We would like to penalize the rank, but the rank is a discrete function. The optimization would have to solve a complex combinatorial problem.

- We want to encourage latent space that are low-dimensional.
- Dimensionality can be measure by the rank of XX^{T} .
- We would like to penalize the rank, but the rank is a discrete function. The optimization would have to solve a complex combinatorial problem.
- We relax the rank minimization and define a prior that encourages sparsity of the eigenvalues, such that:

$$\mathcal{L} = \frac{p}{2} \ln |\mathbf{K}| + \frac{p}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}) + \alpha \sum_{i=1}^{p} \phi(s_i)$$

with s_i the eigenvalues of $\bar{\mathbf{X}}\bar{\mathbf{X}}^T$, $\bar{\mathbf{X}}$ the zero-mean \mathbf{X} , and ϕ is a function that encourages sparsity.

- We want to encourage latent space that are low-dimensional.
- Dimensionality can be measure by the rank of XX^{T} .
- We would like to penalize the rank, but the rank is a discrete function. The optimization would have to solve a complex combinatorial problem.
- We relax the rank minimization and define a prior that encourages sparsity of the eigenvalues, such that:

$$\mathcal{L} = \frac{p}{2} \ln |\mathbf{K}| + \frac{p}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}) + \alpha \sum_{i=1}^{p} \phi(s_i)$$

with s_i the eigenvalues of $\bar{\mathbf{X}}\bar{\mathbf{X}}^T$, $\bar{\mathbf{X}}$ the zero-mean \mathbf{X} , and ϕ is a function that encourages sparsity.

Choice of the penalty function

• Common choice for sparseness is the power family

$$\phi(\mathbf{s}_i,\mathbf{r})=|\mathbf{s}_i|^r$$

r = 1 is a Laplace prior (i.e., L1 norm), which is linear.

• However, our objective function is non-convex. We use a penalty that drives faster to zero the small singular values

$$\phi(s_i) = \log(1 + \beta s_i) \; .$$

Choice of the penalty function

• Common choice for sparseness is the power family

$$\phi(s_i,r) = |s_i|^r$$

r = 1 is a Laplace prior (i.e., L1 norm), which is linear.

• However, our objective function is non-convex. We use a penalty that drives faster to zero the small singular values

$$\phi(s_i) = \log(1 + \beta s_i) \; .$$

Estimating the dimensionality

• Minimizing the negative log posterior results in a reduction of the energy of the spectrum. We prevent this by optimizing instead

$$\begin{split} \min_{\mathbf{y}, \theta} p(\mathbf{Y} | \mathbf{X}, \theta) \\ \text{s. t.} \forall i \ s_i \geq 0, \quad E(\mathbf{Y}) - E(\mathbf{X}) = 0 \end{split}$$

with the energy $E(\mathbf{X}) = \sum_{i} s_{i}^{2}$.

• Finally, we choose the dimensionality to be

$$Q = \operatorname{argmax}_{i} \frac{s_{i}}{s_{i+1} + \epsilon}$$

where $\epsilon \ll 1$, and $s_1 \ge s_2 \ge \cdots \ge s_D$

Estimating the dimensionality

• Minimizing the negative log posterior results in a reduction of the energy of the spectrum. We prevent this by optimizing instead

$$\begin{split} \min_{\mathbf{y}, \theta} p(\mathbf{Y} | \mathbf{X}, \theta) \\ \text{s. t.} \forall i \ s_i \geq 0, \quad E(\mathbf{Y}) - E(\mathbf{X}) = 0 \end{split}$$

with the energy $E(\mathbf{X}) = \sum_{i} s_{i}^{2}$.

• Finally, we choose the dimensionality to be

$$Q = \operatorname{argmax}_{i} \frac{s_{i}}{s_{i+1} + \epsilon}$$

where $\epsilon \ll 1$, and $s_1 \ge s_2 \ge \cdots \ge s_D$

Dimensionality Estimation Results

[A. Geiger, R. Urtasun and T. Darrell, CVPR 2009]

Tracking from Mocap

[A. Geiger, R. Urtasun and T. Darrell, CVPR 2009]

Figure: Tracking running (top) and walking (bottom) motions from 2D mocap data. Results are averaged over 10 splits.

Tracking and classifying in the kitchen domain

[A. Geiger, R. Urtasun and T. Darrell, CVPR 2009]

You can learn for the first time latent spaces that are composed of multiple motions.

GPLVM+LLE	our method		

4) Incorporating prior knowledge

- It is useful to use prior knowledge when additional information is available.
- We design priors over the latent space that incorporate the prior knowledge.
- Prior is based on the Locally Linear Embedding (LLE) [Roweiss, 01] cost function

$$\mathcal{L} = \frac{p}{2} \ln |\mathbf{K}| + \frac{p}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}) + \lambda \sum_{i=1}^{N} \sum_{q=1}^{d} ||\mathbf{x}_{i,q} - \sum_{j \in \eta_{i}} w_{ij,q} \mathbf{x}_{j,q}||^{2}$$

with $\mathbf{x}_{i,q}$ the *q*-th dimension of \mathbf{x}_i .

• We define the weights to reflect the prior knowledge.

4) Incorporating prior knowledge

- It is useful to use prior knowledge when additional information is available.
- We design priors over the latent space that incorporate the prior knowledge.
- Prior is based on the Locally Linear Embedding (LLE) [Roweiss, 01] cost function

$$\mathcal{L} = \frac{p}{2} \ln |\mathbf{K}| + \frac{p}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}) + \lambda \sum_{i=1}^{N} \sum_{q=1}^{d} ||\mathbf{x}_{i,q} - \sum_{j \in \eta_{i}} w_{ij,q} \mathbf{x}_{j,q}||^{2}$$

with $\mathbf{x}_{i,q}$ the *q*-th dimension of \mathbf{x}_i .

• We define the weights to reflect the prior knowledge.

Example 1: generate animations by sampling

[R. Urtasun, D. J Fleet, A. Geiger, J. Popovic, T. Darrell and N. Lawrence, ICML 2008]

- We learn style-content separation models using the following sources of prior knowledge
 - smoothness: points close in observation space should be close in latent space.
 - cyclic structure: points with similar phase should be close.
 - transitions: points where a transition could happen should be close in the latent space.

Figure: GPLVM

Figure: Topologies

Figure: Sampling

Example 2: generate animations from user constrains

R. Urtasun, D. J Fleet, A. Geiger, J. Popovic, T. Darrell and N. Lawrence, ICML 2008]

- This problem can be formulated very similarly to tracking.
- Minimize the distance to the user constrains given the motion priors.

5) Stochastic Gradient Descent

[N. Lawrence and R. Urtasun, ICML 2009]

- Learning: maximize likelihood wrt **X** and θ .
- This typically get's stuck close to initialization
- We suggest stochastic gradient descent.
 - Do local updates, by selecting points at random
 - Compute gradients in the local neighborhood of the selected points.
- The complexity of each iteration is only $\mathcal{O}(R^3)$, with $R \ll N$, with R the size of the neighborhood
- If the matrix has missing data (e.g., netflix challenge) this is exact, otherwise it's an approximation.

Stochastic Algorithm

Algorithm 1: Stochastic GPLVM Randomly initialize X Set θ with an initial guess for t = 1:Trandomly select \mathbf{x}_r find *R* neighbors around \mathbf{x}_r : $\mathbf{X}_R = \mathbf{X} \in \mathcal{R}$ Compute $\frac{\partial L}{\partial \mathbf{X}_{P}}$ and $\frac{\partial L}{\partial \mathbf{A}_{P}}$ Update **X** and θ : $\Delta \mathbf{X}_t = \mu_X \cdot \Delta \mathbf{X}_{t-1} + \eta_X \cdot \frac{\partial L}{\partial \mathbf{X}_t}$ $\mathbf{X}_t \leftarrow \mathbf{X}_{t-1} + \Delta \mathbf{X}_t$ $\Delta \boldsymbol{\theta}_t = \mu_{\boldsymbol{\theta}} \cdot \Delta \boldsymbol{\theta}_{t-1} + \eta_{\boldsymbol{\theta}} \cdot \frac{\partial L}{\partial \boldsymbol{\theta}_2}$ $\boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} + \Delta \boldsymbol{\theta}_t$

Figure: Stochastic gradient descent and incremental learning for the GPLVM; $\mu_{(.)}$ is a momentum parameter and $\eta_{(.)}$ is the learning rate.

Results on MOCAP

Figure: Within- and cross-subject 3D tracking errors for each type of activity sequence with respect to amount of additive noise for different number of particles

Smooth Latent Space Learning

[A. Yao, J. Gall, L. Van Gool and R. Urtasun, NIPS 2011]

Humaneva Results

[A. Yao, J. Gall, L. Van Gool and R. Urtasun, NIPS 2011]

Train	Test	[Xu07]	[Li10]	GPLVM	CRBM	imCRBM	Ours
S1	S1	-	-	57.6 ± 11.6	48.8 ± 3.7	58.6 ± 3.9	44.0 ± 1.8
S1,2,3	S1	140.3	-	64.3 ± 19.2	55.4 ± 0.8	54.3 ± 0.5	41.6 ± 0.8
S2	S2	-	68.7 ± 24.7	98.2 ± 15.8	47.4 ± 2.9	67.0 ± 0.7	54.4 ± 1.8
S1,2,3	S2	149.4	-	155.9 ± 48.8	99.1 ± 23.0	69.3 ± 3.3	64.0 ± 2.9
S3	S3	-	69.6 ± 22.2	71.6 ± 10.0	49.8 ± 2.2	51.4 ± 0.9	45.4 ± 1.1
S1,2,3	S3	156.3	-	$123.8. \pm 16.7$	70.9 ± 2.1	$\textbf{43.4} \pm \textbf{4.1}$	46.5 ± 1.4

Model	Tracking Error		
[Pavlovic00] as reported in [Li07]	569.90 ± 209.18		
[Lin06] as reported in [Li07]	380.02 ± 74.97		
GPLVM	121.44 ± 30.7		
[Li07]	117.0 ± 5.5		
Best CRBM [Taylor10]	75.4 ± 9.7		
Ours	74.1 ± 3.3		

Is that all?

Other Extensions

- Discriminative GPLVMs
- 2 Hierarchical GPLVMs
- Multi-output GPLVM
- Oeformation transfer
- Style-content separation
- Onnectivity priors for animation

• We introduce a prior that is based on the Fisher criteria

$$p(\mathbf{X}) \propto \exp\left\{-rac{1}{\sigma_d^2} tr\left(\mathbf{S}_w^{-1}\mathbf{S}_b
ight)
ight\} \; ,$$

with \mathbf{S}_b the between class matrix and \mathbf{S}_w the within class matrix

• We introduce a prior that is based on the Fisher criteria

$$p(\mathbf{X}) \propto \exp\left\{-rac{1}{\sigma_d^2} tr\left(\mathbf{S}_w^{-1}\mathbf{S}_b
ight)
ight\} \; ,$$

with \mathbf{S}_b the between class matrix and \mathbf{S}_w the within class matrix

$$\mathbf{S}_{b} = \sum_{i=1}^{L} \frac{n_{i}}{N} (\mathbf{M}_{i} - \mathbf{M}_{0}) (\mathbf{M}_{i} - \mathbf{M}_{0})^{T}$$

where $\mathbf{X}^{(i)} = [\mathbf{x}_1^{(i)}, \cdots, \mathbf{x}_{n_i}^{(i)}]$ are the n_i training points of class i, \mathbf{M}_i is the mean of the elements of class i, and \mathbf{M}_0 is the mean of all the training points of all classes.

• We introduce a prior that is based on the Fisher criteria

$$p(\mathbf{X}) \propto \exp\left\{-rac{1}{\sigma_d^2} tr\left(\mathbf{S}_w^{-1}\mathbf{S}_b
ight)
ight\} \; ,$$

with \mathbf{S}_b the between class matrix and \mathbf{S}_w the within class matrix

$$\mathbf{S}_{b} = \sum_{i=1}^{L} \frac{n_{i}}{N} (\mathbf{M}_{i} - \mathbf{M}_{0}) (\mathbf{M}_{i} - \mathbf{M}_{0})^{T}$$
$$\mathbf{S}_{w} = \sum_{i=1}^{L} \frac{n_{i}}{n} \left[\frac{1}{n_{i}} \sum_{k=1}^{N_{i}} (\mathbf{x}_{k}^{(i)} - \mathbf{M}_{i}) (\mathbf{x}_{k}^{(i)} - \mathbf{M}_{i})^{T} \right]$$

where $\mathbf{X}^{(i)} = [\mathbf{x}_1^{(i)}, \cdots, \mathbf{x}_{n_i}^{(i)}]$ are the n_i training points of class i, \mathbf{M}_i is the mean of the elements of class i, and \mathbf{M}_0 is the mean of all the training points of all classes.

• As before the model is learned by maximizing $p(\mathbf{Y}|\mathbf{X})p(\mathbf{X})$.

• We introduce a prior that is based on the Fisher criteria

$$p(\mathbf{X}) \propto \exp\left\{-rac{1}{\sigma_d^2} tr\left(\mathbf{S}_w^{-1}\mathbf{S}_b
ight)
ight\} \; ,$$

with \mathbf{S}_b the between class matrix and \mathbf{S}_w the within class matrix

Figure: 2D latent spaces learned by D-GPLVM on the oil dataset are shown, with 100 training examples and different values of σ_d . Note that as $1/\sigma_d^2$ increases the model becomes more discriminative but has worse generalization.

Experimental evaluation

[R. Urtasun and T. Darrell, ICML 2007]

Figure: Mean classification error for the (left) oil (middle) UCI-Wine and (right) USPS datasets. The oil datasets has 3 classes and D = 12. The UCI-Wine database has 2 classes with D = 13. The USPS dataset consist on discriminating 3's and 5's, D = 256.

Hierarchical GP-LVM

2) Stacking Gaussian Processes

- Regressive dynamics provides a simple hierarchy.
 - The input space of the GP is governed by another GP.

- By stacking GPs we can consider more complex hierarchies.
- Ideally we should marginalise latent spaces
 - In practice we seek MAP solutions.

Two Correlated Subjects

[N. Lawrence and A. Moore, ICML 2007]

Figure: Hierarchical model of a 'high five'.

Urtasun & Lawrence ()

Within Subject Hierarchy

Decomposition of Body

Figure: Decomposition of a subject.

Single Subject Run/Walk

[N. Lawrence and A. Moore, ICML 2007]

Figure: Hierarchical model of a walk and a run.

3) Modeling Multiple Outputs with GPLVM

- Single space to model correlations between two different data sources, e.g., images & text, image & pose.
- Shared latent spaces: (Shon et al. NIPS'06, Ek et al. MLMI'07, Navaratnam et al. ICCV'07).

- Effective when the views are correlated.
- But not all information is shared between both views.

3) Modeling Multiple Outputs with GPLVM

- Single space to model correlations between two different data sources, e.g., images & text, image & pose.
- Shared latent spaces: (Shon et al. NIPS'06, Ek et al. MLMI'07, Navaratnam et al. ICCV'07).

- Effective when the views are correlated.
- But not all information is shared between both views.

Shared-Private Factorization

- In real scenarios, the views are neither fully independent, nor fully correlated.
- Shared models
 - either allow information relevant to a single view to be mixed in the shared signal,
 - or are unable to model such private information.
- Solution: Model shared and private information (Ek et al. MLMI'08, Leen 2008)

Factorized Orthogonal Latent Spaces (FOLS)

A FOLS model can be learned by minimizing (Salzmann et al. 10)

$$\mathcal{L} = \mathcal{L}_{\textit{data}} + \mathcal{L}_{\textit{ortho}} + \mathcal{L}_{\textit{dim}} + \mathcal{L}_{\textit{energy}} \;.$$

- It does continuous dimensionality reduction
- Orthogonality prior to encourage the different latent spaces to be non-redundant.

$$L_{ortho} = \alpha \sum_{i} \left(|| \mathbf{X}^{T} \cdot \mathbf{Z}^{(i)} ||_{F}^{2} + \sum_{j > i} || (\mathbf{Z}^{(i)})^{T} \cdot \mathbf{Z}^{(j)} ||_{F}^{2} \right)$$

Experiments: discriminative pose estimation

We seek to recover the 3D pose from image features

- $\mathbf{Y}^{(1)}$ is image representation
- **Y**⁽²⁾ pose (i.e., 3D angles for each joint)

Humaneva: Jog and Walk

[M. Salzmann, C. Ek, R. Urtasun and T. Darrell, AISTATS 2010]

Discriminative Pose Estimation: hopeless?

4) Modeling Pose and Shape

- Model two types of variation: phenotype variation and pose
- They model each variation with an independent GPLVM

- Models have to be registered!
- Combine both at inference by "deformation transfer" [Sumner et al., 04]

$$\mathbf{V} = \mathbf{V}^{\mathcal{A}} + \mathbf{J}(\mathbf{V}^{\mathcal{S}} - \mathbf{V}^{0}) + \mathbf{n}_{V}$$

Generating 3D Shapes

• For shape synthesis the posterior is non-Gaussian, thus it requires approximations

Matching Silhouettes

Silhouette matching is a two-stage process

- Initial segmentation using Grabcuts
- Project the 3D shape to the 2D image plane
- Chamfer matching of 2D silhouettes

Results: Sharks

[Y. Chen, T. Kim and R. Cipolla, ECCV 2010]

Results: Humans

[Y. Chen, T. Kim and R. Cipolla, ECCV 2010]

5) Style Content Separation and Multi-linear models

Multiple aspects that affect the input signal, interesting to factorize them

Multilinear models

• Style-Content Separation (Tenenbaum & Freeman 00)

$$\mathbf{y} = \sum_{ij} w_{ij} a_i b_j + \epsilon$$

• Multi-linear analysis (Vasilescu & Terzopoulous 02)

$$\mathbf{y} = \sum_{ijk\cdots} w_{ijk\cdots} a_i b_j c_k \cdots + \epsilon$$

• Non-linear basis functions (Elgammal & Lee, 2004)

$$\mathbf{y} = \sum_{ij} w_{ij} a_i \phi_j(b) + \epsilon$$

Multi (non)-linear models with GPs

In the GPLVM

$$\mathbf{y} = \sum_{j} w_{j} \phi_{j}(\mathbf{x}) + \epsilon = \mathbf{w}^{T} \Phi(\mathbf{x}) + \epsilon$$

with

$$E[\mathbf{y},\mathbf{y}'] = \Phi(\mathbf{x})^T \Phi(\mathbf{y}) + \beta^{-1} \delta = k(\mathbf{x},\mathbf{x}') + \beta^{-1} \delta$$

• Multifactor Gaussian process

$$\mathbf{y} = \sum_{i,j,k,\cdots} w_{ijk\cdots} \phi_i^{(1)} \phi_j^{(1)} \phi_k^{(1)} \cdots + \epsilon$$

with

$$E[\mathbf{y},\mathbf{y}'] = \prod_{i} \Phi^{(i)T} \Phi^{(i)} + \beta^{-1} \delta = \prod_{i} k_i(\mathbf{x}^{(i)}, \mathbf{x}^{(i)'}) + \beta^{-1} \delta$$

Multi (non)-linear models with GPs

In the GPLVM

$$\mathbf{y} = \sum_{j} w_{j} \phi_{j}(\mathbf{x}) + \epsilon = \mathbf{w}^{T} \Phi(\mathbf{x}) + \epsilon$$

with

$$E[\mathbf{y},\mathbf{y}'] = \Phi(\mathbf{x})^T \Phi(\mathbf{y}) + \beta^{-1} \delta = k(\mathbf{x},\mathbf{x}') + \beta^{-1} \delta$$

• Multifactor Gaussian process

$$\mathbf{y} = \sum_{i,j,k,\cdots} w_{ijk\cdots} \phi_i^{(1)} \phi_j^{(1)} \phi_k^{(1)} \cdots + \epsilon$$

with

$$E[\mathbf{y},\mathbf{y}'] = \prod_{i} \Phi^{(i)} \Phi^{(i)} + \beta^{-1} \delta = \prod_{i} k_i(\mathbf{x}^{(i)},\mathbf{x}^{(i)'}) + \beta^{-1} \delta$$

• Learning in this model is the same, just the kernel changes.

Multi (non)-linear models with GPs

In the GPLVM

$$\mathbf{y} = \sum_{j} w_{j} \phi_{j}(\mathbf{x}) + \epsilon = \mathbf{w}^{T} \Phi(\mathbf{x}) + \epsilon$$

with

$$E[\mathbf{y},\mathbf{y}'] = \Phi(\mathbf{x})^T \Phi(\mathbf{y}) + \beta^{-1} \delta = k(\mathbf{x},\mathbf{x}') + \beta^{-1} \delta$$

• Multifactor Gaussian process

$$\mathbf{y} = \sum_{i,j,k,\cdots} w_{ijk\cdots} \phi_i^{(1)} \phi_j^{(1)} \phi_k^{(1)} \cdots + \epsilon$$

with

$$E[\mathbf{y},\mathbf{y}'] = \prod_{i} \Phi^{(i)} \Phi^{(i)} + \beta^{-1} \delta = \prod_{i} k_i(\mathbf{x}^{(i)},\mathbf{x}^{(i)'}) + \beta^{-1} \delta$$

• Learning in this model is the same, just the kernel changes.

Training Data

Each training motion is a collection of poses, sharing the same combination of subject (s) and gait (g).

Character Animation

[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]

Training data, 6 sequences, 314 frames in total

Generating new styles for a subject

[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]

Interpolating Gaits

[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]

Generating Different Styles

[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]

6) Continuous Character Control

- When employing GPLVM, different motions get too far apart
- Difficult to generate animations where we transition between motions
- Back-constraints or topologies are not enough
- New prior that enforces connectivity in the graph

$$\ln p(\mathbf{X}) = w_c \sum_{i,j} \ln K_{ij}^d$$

with the graph diffusion kernel K^d obtain from

$$K_{ij}^d = \exp(\beta \mathbf{H})$$
 with $\mathbf{H} = -\mathbf{T}^{-1/2}\mathbf{L}\mathbf{T}^{-1/2}$

the graph Laplacian, and **T** is a diagonal matrix with $T_{ii} = \sum_{j} w(\mathbf{x}_i, \mathbf{x}_j)$,

$$L_{ij} = \begin{cases} \sum_k w(\mathbf{x}_i, \mathbf{x}_k) & \text{if } i = j \\ -w(\mathbf{x}_i, \mathbf{x}_j) & \text{otherwise.} \end{cases}$$

and $w(\mathbf{x}_i, \mathbf{x}_j) = ||\mathbf{x}_i - \mathbf{x}_j||^{-p}$ measures similarity.

Embeddings: Walking

Figure: Walking embeddings learned (a) without the connectivity term, (b) with $w_c = 0.1$, and (c) with $w_c = 1.0$.

Embeddings: Punching

Figure: Embeddings for the punching task (a) with and (b) without the connectivity term.

Video Results

[S. Levine, J. Wang, A. Haraux, Z. Popovic and V. Koltun, Siggraph 2012]

