All you want to know about GPs: Gaussian Process Latent Variable Model

Raquel Urtasun and Neil Lawrence

TTI Chicago, University of Sheffield
June 16, 2012

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample
every nanosecond from now until the end of
the universe, you won't
 see the original six!

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe, you won't
 see the original six!

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe, you won't
 see the original six!

Simple Model of Digit

Rotate a 'Prototype'

MATLAB Demo

demDigitsManifold([1 2], 'all')

MATLAB Demo

demDigitsManifold([1 2], 'all')

MATLAB Demo

demDigitsManifold([1 2], 'sixnine')

Low Dimensional Manifolds

Pure Rotation is too Simple

- In practice the data may undergo several distortions.
- e.g. digits undergo 'thinning', translation and rotation.
- For data with 'structure':
- we expect fewer distortions than dimensions;
- we therefore expect the data to live on a lower dimensional manifold.
- Conclusion: deal with high dimensional data by looking for lower dimensional non-linear embedding.

Feature Selection

Figure: demRotationDist. Feature selection via distance preservation.

Feature Selection

Figure: demRotationDist. Feature selection via distance preservation.

Feature Selection

Figure: demRotationDist. Feature selection via distance preservation.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. Residuals are much reduced.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. Residuals are much reduced.

Which Rotation?

- We need the rotation that will minimise residual error.
- Retain features/directions with maximum variance.

Which Rotation?

- We need the rotation that will minimise residual error.
- Retain features/directions with maximum variance.
- Error is then given by the sum of residual variances.

$$
E(\mathbf{X})=\frac{2}{p} \sum_{k=q+1}^{p} \sigma_{k}^{2} .
$$

Which Rotation?

- We need the rotation that will minimise residual error.
- Retain features/directions with maximum variance.
- Error is then given by the sum of residual variances.

$$
E(\mathbf{X})=\frac{2}{p} \sum_{k=q+1}^{p} \sigma_{k}^{2}
$$

- Rotations of data matrix do not effect this analysis.
- Rotate data so that largest variance directions are retained.

Which Rotation?

- We need the rotation that will minimise residual error.
- Retain features/directions with maximum variance.
- Error is then given by the sum of residual variances.

$$
E(\mathbf{X})=\frac{2}{p} \sum_{k=q+1}^{p} \sigma_{k}^{2} .
$$

- Rotations of data matrix do not effect this analysis.
- Rotate data so that largest variance directions are retained.

Reminder: Principal Component Analysis

- How do we find these directions?
- Find directions in data with maximal variance.
- That's what PCA does!
- PCA: rotate data to extract these directions.
- PCA: work on the sample covariance matrix $\mathbf{S}=n^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$.

Principal Coordinates Analysis

- The rotation which finds directions of maximum variance is the eigenvectors of the covariance matrix.
- The variance in each direction is given by the eigenvalues.
- Problem: working directly with the sample covariance, S, may be impossible.

Equivalent Eigenvalue Problems

- Principal Coordinate Analysis operates on $\hat{\mathbf{Y}}^{T} \hat{\mathbf{Y}}$.
- Two eigenvalue problems are equivalent. One solves for the rotation, the other solves for the location of the rotated points.
- When $p<n$ it is easier to solve for the rotation, \mathbf{R}_{q}. But when $p>n$ we solve for the embedding (principal coordinate analysis). from distance matrix.
- Can we compute $\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\top}$ instead?

Equivalent Eigenvalue Problems

- Principal Coordinate Analysis operates on $\hat{\mathbf{Y}}^{T} \hat{\mathbf{Y}}$.
- Two eigenvalue problems are equivalent. One solves for the rotation, the other solves for the location of the rotated points.
- When $p<n$ it is easier to solve for the rotation, \mathbf{R}_{q}. But when $p>n$ we solve for the embedding (principal coordinate analysis). from distance matrix.
- Can we compute $\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\top}$ instead?

The Covariance Interpretation

- $n^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$ is the data covariance.
- $\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\top}$ is a centred inner product matrix.
- Also has an interpretation as a covariance matrix (Gaussian processes).
- It expresses correlation and anti correlation between data points.
- Standard covariance expresses correlation and anti correlation between data dimensions.

Summary up to know on dimensionality reduction

- Distributions can behave very non-intuitively in high dimensions.
- Fortunately, most data is not really high dimensional.
- Probabilistic PCA exploits linear low dimensional structure in the data.
- Probabilistic interpretation brings with it many advantages: extensibility, Bayesian approaches, missing data.
- Didn't deal with the non-linearities highlighted by the six example!
- Let's look at non linear dimensionality reduction.

Spectral methods

- LLE (Roweis \& Saul, 00), ISOMAP (Tenenbaum et al. 00), Laplacian Eigenmaps (Belkin \&Niyogi, 01)
- Based on local distance preservation

Figure: LLE embeddings from densely sampled data

Tangled String

- Sometimes local distance preservation in data space is wrong.
- The pink and blue ball should be separated.

Tangled String

- Sometimes local distance preservation in data space is wrong.
- The pink and blue ball should be separated.
- But the assumption makes the problem simpler (for spectral methods it is convex).

Tangled String

- Sometimes local distance preservation in data space is wrong.
- The pink and blue ball should be separated.
- But the assumption makes the problem simpler (for
 spectral methods it is convex).

Generative Models

- Directly model the generating process.
- Map from string to position in space.
- How to model observation "generation"?

Example of data generation

Figure: A string in two dimensions, formed by mapping from one dimension, x, line to a two dimensional space, $\left[y_{1}, y_{2}\right]$ using nonlinear functions $f_{1}(\cdot)$ and $f_{2}(\cdot)$.

Difficulty for Probabilistic Approaches

- Propagate a probability distribution through a non-linear mapping.
- Normalisation of distribution becomes intractable.

$$
y_{j}=f_{j}(\mathbf{x})
$$

X_{1}
Figure: A three dimensional manifold formed by mapping from a two dimensional space to a three dimensional space.

Difficulty for Probabilistic Approaches

- Propagate a probability distribution through a non-linear mapping.
- Normalisation of distribution becomes intractable.

$$
y=\xrightarrow{f(x)}+\epsilon
$$

Figure: A Gaussian distribution propagated through a non-linear mapping. $y_{i}=f\left(x_{i}\right)+\epsilon_{i} . \epsilon \sim \mathcal{N}\left(0,0.2^{2}\right)$ and $f(\cdot)$ uses RBF basis, 100 centres between -4 and 4 and $\ell=0.1$. New distribution over y (right) is multimodal and difficult to normalize.

Mapping of Points

- Mapping points to higher dimensions is easy.

Figure: One dimensional Gaussian mapped to two dimensions.

Mapping of Points

- Mapping points to higher dimensions is easy.

Figure: Two dimensional Gaussian mapped to three dimensions.

Linear Dimensionality Reduction

Linear Latent Variable Model

- Represent data, Y, with a lower dimensional set of latent variables X.
- Assume a linear relationship of the form

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i,:},
$$

where

$$
\boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right) .
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Standard Latent variable
approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Standard Latent variable
 approach:
- Define Gaussian prior over latent space, \mathbf{X}.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, j} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

- Standard Latent variable approach:
- Define Gaussian prior over latent space, \mathbf{X}.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{l}\right) \\
p(\mathbf{X}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i_{i,:}} \mid \mathbf{0}, \mathbf{I}\right)
\end{aligned}
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between
 latent variables and data.
- Standard Latent variable approach:
- Define Gaussian prior over latent space, \mathbf{X}.
- Integrate out latent variables.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{l}\right) \\
p(\mathbf{X}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i,:} \mid \mathbf{0}, \mathbf{I}\right)
\end{aligned}
$$

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{l}\right)
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \mathbf{Y}^{\top} \mathbf{Y}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{W}=\mathbf{U}_{q} \mathbf{L} \mathbf{R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Linear Latent Variable Model III

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Novel Latent variable

approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, j} \mid \mathbf{W} \mathbf{x}_{i, \cdot}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Novel Latent variable
 approach:
- Define Gaussian prior over parameters, W.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i, j} \mid \mathbf{W} \mathbf{x}_{i, \cdot}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

- Novel Latent variable approach:
- Define Gaussian prior over parameters, W.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{l}\right) \\
p(\mathbf{W}) & =\prod_{i=1}^{p} \mathcal{N}\left(\mathbf{w}_{i,:} \mid \mathbf{0}, \mathbf{I}\right)
\end{aligned}
$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- Define linear-Gaussian relationship between
 latent variables and data.
- Novel Latent variable approach:
- Define Gaussian prior over parameters, W.
- Integrate out parameters.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right) \\
p(\mathbf{W}) & =\prod_{i=1}^{p} \mathcal{N}\left(\mathbf{w}_{i,:} \mid \mathbf{0}, \mathbf{I}\right)
\end{aligned}
$$

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{X} \mathbf{X}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence 03, Lawrence 05)

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence 03, Lawrence 05)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:}, j \mathbf{0}, \mathbf{K}\right), \quad \mathbf{K}=\mathbf{X} \mathbf{X}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{X})=-\frac{p}{2} \log |\mathbf{K}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\top}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q}^{\prime} are first q principal eigenvectors of $p^{-1} \mathbf{Y} \mathbf{Y}^{\top}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{X}=\mathbf{U}_{q}^{\prime} \mathbf{L R} \mathbf{R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \mathbf{Y}^{\top} \mathbf{Y}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{W}=\mathbf{U}_{q} \mathbf{L} \mathbf{R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Equivalence of Formulations

The Eigenvalue Problems are equivalent

- Solution for Probabilistic PCA (solves for the mapping)

$$
\mathbf{Y}^{\top} \mathbf{Y} \mathbf{U}_{q}=\mathbf{U}_{q} \boldsymbol{\Lambda}_{q} \quad \mathbf{W}=\mathbf{U}_{q} \mathbf{L R}^{\top}
$$

- Solution for Dual Probabilistic PCA (solves for the latent positions)

$$
\mathbf{Y} \mathbf{Y}^{\top} \mathbf{U}_{q}^{\prime}=\mathbf{U}_{q}^{\prime} \mathbf{\Lambda}_{q} \quad \mathbf{X}=\mathbf{U}_{q}^{\prime} \mathbf{L \mathbf { R } ^ { \top }}
$$

- Equivalence is from

$$
\mathbf{U}_{q}=\mathbf{Y}^{\top} \mathbf{U}_{q}^{\prime} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

- You have probably used this trick to compute PCA efficiently when number of dimensions is much higher than number of points.

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

- Novel Latent variable approach:

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{l}\right) \\
p(\mathbf{W})=\prod_{i=1}^{p} \mathcal{N}\left(\mathbf{w}_{i,:} \mid \mathbf{0}, \mathbf{l}\right) \\
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{: j, j} \mid \mathbf{0}, \mathbf{x} \mathbf{x}^{\top}+\sigma^{2} \mathbf{I}\right)
\end{gathered}
$$

- Define Gaussian prior over parameteters, W.
- Integrate out parameters.

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...

- The covariance matrix is a covariance function.

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{X X}^{\top}+\sigma^{2} \mathbf{l}\right)
$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
- The covariance matrix is a covariance function.
- We recognise it as the 'linear kernel'.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}) & =\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right) \\
\mathbf{K} & =\mathbf{X} \mathbf{X}^{\top}+\sigma^{2} \mathbf{I}
\end{aligned}
$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
- The covariance matrix is a covariance function.
- We recognise it as the 'linear kernel'.
- We call this the

Gaussian Process
Latent Variable model (GP-LVM).

$$
\begin{aligned}
& p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right) \\
& \mathbf{K}=\mathbf{X X}^{\top}+\sigma^{2} \mathbf{I} \\
& \text { This is a product of Gaussian processes } \\
& \text { with linear kernels. }
\end{aligned}
$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
- The covariance matrix is a covariance function.
- We recognise it as the 'linear kernel'.
- We call this the Gaussian Process Latent Variable model (GP-LVM).

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{: j, j} \mid \mathbf{0}, \mathbf{K}\right)
$$

Replace linear kernel with non-linear kernel for non-linear model.

Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

- The EQ covariance has the form $k_{i, j}=k\left(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}\right)$, where

$$
k\left(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}\right)=\alpha \exp \left(-\frac{\left\|\mathbf{x}_{i,:}-\mathbf{x}_{j,:}\right\|_{2}^{2}}{2 \ell^{2}}\right) .
$$

- No longer possible to optimise wrt X via an eigenvalue problem.
- Instead find gradients with respect to \mathbf{X}, α, ℓ and σ^{2} and optimise using conjugate gradients.

Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

- The EQ covariance has the form $k_{i, j}=k\left(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}\right)$, where

$$
k\left(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}\right)=\alpha \exp \left(-\frac{\left\|\mathbf{x}_{i,:}-\mathbf{x}_{j,:}\right\|_{2}^{2}}{2 \ell^{2}}\right) .
$$

- No longer possible to optimise wrt \mathbf{X} via an eigenvalue problem.
- Instead find gradients with respect to \mathbf{X}, α, ℓ and σ^{2} and optimise using conjugate gradients.

Stick Man

Generalization with less Data than Dimensions

- Powerful uncertainly handling of GPs leads to surprising properties.
- Non-linear models can be used where there are fewer data points than dimensions without overfitting.

Stick Man

Generalization with less Data than Dimensions

- Powerful uncertainly handling of GPs leads to surprising properties.
- Non-linear models can be used where there are fewer data points than dimensions without overfitting.
- Example: Modelling a stick man in 102 dimensions with 55 data points!

Stick Man

Generalization with less Data than Dimensions

- Powerful uncertainly handling of GPs leads to surprising properties.
- Non-linear models can be used where there are fewer data points than dimensions without overfitting.
- Example: Modelling a stick man in 102 dimensions with 55 data points!

Stick Man II

demStick1

Figure: The latent space for the stick man motion capture data.

Let's look at some applications and extensions of the GPLVM

Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
p(\mathbf{Y} \mid \mathbf{W}, \boldsymbol{\mu})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \boldsymbol{\mu}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Gradient of log likelihood

Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

Gradient of log likelihood

$$
\frac{\mathrm{d}}{\mathrm{~d} \mathbf{W}} \log p(\hat{\mathbf{Y}} \mid \mathbf{W})=-\frac{n}{2} \mathbf{C}^{-1} \mathbf{W}+\frac{1}{2} \mathbf{C}^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}} \mathbf{C}^{-1} \mathbf{W}
$$

Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
p(\hat{\mathbf{Y}} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\hat{\mathbf{y}}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}
$$

Gradient of log likelihood

Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
\begin{gathered}
p(\hat{\mathbf{Y}} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\hat{\mathbf{y}}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\hat{\mathbf{Y}} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}\right)+\text { const. }
\end{gathered}
$$

Gradient of log likelihood

Optimization

Seek fixed points

$$
\mathbf{0}=-\frac{n}{2} \mathbf{C}^{-1} \mathbf{W}+\frac{1}{2} \mathbf{C}^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}} \mathbf{C}^{-1} \mathbf{W}
$$

pre-multiply by 2 C

$$
\begin{gathered}
\mathbf{0}=-n \mathbf{W}+\hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}} \mathbf{C}^{-1} \mathbf{W} \\
\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}} \mathbf{C}^{-1} \mathbf{W}=\mathbf{W}
\end{gathered}
$$

Substitute W with singular value decomposition

$$
\mathbf{W}=\mathbf{U L R}^{\top}
$$

which implies

$$
\begin{aligned}
\mathbf{C} & =\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
& =\mathbf{U} \mathbf{L}^{2} \mathbf{U}^{\top}+\sigma^{2} \mathbf{I}
\end{aligned}
$$

Using matrix inversion lemma

$$
\mathbf{C}^{-1} \mathbf{W}=\mathbf{U} \mathbf{L}\left(\sigma^{2}+\mathbf{L}^{2}\right)^{-1} \mathbf{R}^{\top}
$$

Solution given by

$$
\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}} \mathbf{U}=\mathbf{U}\left(\sigma^{2}+\mathbf{L}^{2}\right)
$$

which is recognised as an eigenvalue problem.

- This implies that the columns of \mathbf{U} are the eigenvectors of $\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$ and that $\sigma^{2}+\mathbf{L}^{2}$ are the eigenvalues of $\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$.
- $l_{i}=\sqrt{\lambda_{i}-\sigma^{2}}$ where λ_{i} is the i th eigenvalue of $\frac{1}{n} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$.
- Further manipulation shows that if we constrain $\mathbf{W} \in \Re^{p \times q}$ then the solution is given by the largest q eigenvalues.

Probabilistic PCA Solution

- If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{W}=\mathbf{U}_{q} \mathbf{L} \mathbf{R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

- Some further work shows that the principal eigenvectors need to be retained.
- The maximum likelihood value for σ^{2} is given by the average of the discarded eigenvalues.

