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Abstract

In this work, we propose a novel voxel representation
which allows for efficient, real-time processing of point
clouds with deep neural networks. Our approach takes a
2D representation of a simple occupancy grid and produces
fine-grained 3D segmentation. We show that our approach
outperforms the state-of-the art while being an order of
magnitude faster. We can perform segmentation of large
outdoor scenes of size 160m x 80m in as little as 30ms. In
indoor scenarios, we can segment full rooms in less than
15ms. This is crucial for robotics applications which re-
quire real-time inference for safety critical tasks.

1. Introduction
Semantic scene understanding is one of the fundamental

building blocks in a wide range of applications in fields such
as graphics, human-computer interaction, image search,
autonomous driving and many others. Deriving seman-
tic information from 3D point clouds is rapidly gaining
traction, as 3D sensors are readily available in many of
these domains. For example, self-driving cars are typically
equipped with a roof-mounted LIDAR sensor. In the con-
text of indoor scenes, 3D sensors such as Microsoft Kinect
are typically used.

Deep convolutional neural networks have proven to be
very powerful tools to perform semantic understanding of
images in tasks such as classification [15, 27, 31, 11], detec-
tion [9, 24, 7] and semantic segmentation [16, 2, 3, 38]. Sev-
eral approaches leverage these advances to deal with point
clouds. Commonly, point clouds are first quantized in a pro-
cess known as voxelization, with the resulting voxel grid
being used as input to 3D CNNs (e.g. [12, 25, 32]). While
results have been rather impressive, a 3D representation is
inherently cubic, and can quickly become unmanageable as
the point cloud grows, even with optimizations. Further-
more, most of the computations are wasted as the 3D grid is
very sparse, i.e., most of the volume is empty.

An alternative is to work directly on the unstructured
point cloud [20, 22] by generating per-point features and

aggregating them to form a global feature representation.
However, these approaches also often struggle with pro-
cessing large-scale point clouds, as capturing local structure
within a complex scene can be challenging. Thus, they are
often implemented with a small receptive field, and large-
scale point clouds must be processed in smaller individ-
ual chunks. As a consequence the segmentation process is
slow and not very precise as global context is ignored. Re-
cently, [23] proposed to use graph neural networks, where
each point is a node in the graph and information is passed
along the edges during inference. Impressive results were
achieved, but memory consumption is an issue as learning
is performed via back-propagation through time. This pre-
vents these architectures from using very deep neural net-
works.

In contrast, in this paper we propose a novel voxel rep-
resentation of 3D point clouds that allows for the use of 2D
convolutions. We use a simple occupancy grid, and treat the
gravitational axis as the feature channel. Our 2D represen-
tation is faster and requires less memory than 3D alterna-
tives. We demonstrate the effectiveness of our approach in
3D point cloud segmentation of indoor and outdoor scenes
and show state-of-the-art results, with an order of magni-
tude speed-up during inference.

2. Related Work
In this section, we review existing work related to the

task of 3D point cloud semantic segmentation. While there
exists much work on hand crafted features for point cloud
segmentation (e.g., [35, 36, 10]), we focus on reviewing
recently proposed deep learning approaches.

Qi et al. [20] propose Pointnet, a framework for direct
processing of unordered sets of point clouds. A Multilayer
Perception (MLP) extracts per-point features, and a max
pooling layer is used as a symmetric aggregation function
to form a global feature. This was extended in Pointnet++
[22] to process the points in a hierarchical fashion to better
capture local structure. Results are strong on smaller point
clouds, but there is little evidence to support their ability
to effectively understand large, complex scenes. Experi-
ments performed rely on small per-patch processing (1m3
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for Pointnet, 1.5m3 for Pointnet++) and an assembling step
afterwards. In contrast, our approach takes a much larger
point cloud as input (often the entire scene), giving our net-
works a larger receptive field. Also directly working on
point clouds, Wang et al. [34] propose deep parametric con-
tinuous convolutions, in which a parameterized kernel func-
tion that spans the full continuous vector space is learned.
Results on the road scene dataset are strong, and inference
speed of their best model is comparable to ours (33ms vs.
29ms). However, the KD-Tree neighbour search prepro-
cessing step requires significant overhead, compared to our
simple voxelization (28ms vs. 1ms).

Convolutional neural networks have been extensively ap-
plied for various tasks such as object detection and seg-
mentation of 3D data [18, 21, 29, 28]. Recently, Riegler
et al. [25] propose an efficient octree representation for 3D
voxel grids. They provide implementations for CNN op-
erations on the octree in Torch. They show runtime im-
provements when increasing resolution and maintaining the
region of interest (i.e. increasing the sparsity of the occu-
pancy grid). However, the octree has a much smaller effect
when the region of interest is increased while maintaining
resolution (i.e. increasing the size of the occupancy grid).
In contrast, our method converts the 3D voxel grid into a
2D representation, with a simple regular binary occupancy
grid, allowing for sparsity-invariant efficient computation
with out-of-the-box methods available in all common deep
learning frameworks.

There also exists work on 2D representations of 3D data.
Su et al. [30] propose a framework that uses 2D renderings
obtained from multiple different camera viewpoints for 3D
object recognition. In the autonomous driving space, Chen
et al. [4] propose a sensory-fusion framework that uses LI-
DAR point clouds and RGB images to perform 3D object
detection. A 2D bird’s eye view (BEV) representation is
formed using M maximum height map slices, and a single
intensity slice and density slice. Luo et al. [17] and Yang
et al. [37] use a BEV representation formed directly from
the occupancy grid rather than relying on a hand-crafted
feature in the height domain. [4, 17, 37] primarily focus
on detection in flat and sparse outdoor scenes. In con-
trast our approach focuses on semantic segmentation in both
dense indoor scenes as well as sparse outdoor ones. Velas
et al. [33] also propose a 2D representation of 3D LIDAR
point clouds. Their approach encodes the 3D data as a 2D
signal in the polar coordinate domain, utilizing ring and hor-
izontal angle information. However, this approach has only
been shown applicable in a very specific domain (ground
detection for LIDAR point clouds) and is not easily gen-
eralizable to point clouds collected using other sensors or
methods. In contrast, our method takes a general 2D repre-
sentation in Euclidean space and thus is easily amenable to
a wider range of applications.

Figure 1. Left: Point cloud. Center: Voxelization step. Right: 3D
convolution with a single filter (top) vs. 2D convolution with a
single filter (bottom)

Huang et al. [12] propose a segmentation technique
where the network computes a single prediction for the en-
tire voxel grid and performs coarse segmentation using a
sliding window. Dai et al. [6] propose a 3D FCNN architec-
ture that produces more fine-grained predictions. Tchapmi
et al. [32] propose a framework using a 3D FCNN archi-
tecture, where a feature vector is computed for each voxel.
Voxel predictions are transferred to the points using trilinear
interpolation, and results are further improved by enforcing
spatial consistency using a conditional random field (CRF).
In contrast, our approach computes fine-grained predictions
in 3D using a 2D representation. We use a single feature
vector computed for all voxels in the same Z extent to make
individual predictions for each voxel.

3. Efficient Convolutions for 3D Point Clouds
Our approach can be summarized as follows. We first

represent the 3D point cloud using a 2D voxel representa-
tion. We use a simple occupancy grid, and treat the gravita-
tional axis as the feature channel. We then use a 2D CNN to
ingest the voxel representation and compute per-voxel class
scores. We finally project the per-voxel class scores into the
3D point cloud to obtain per-point class scores. Intuitively,
this representation has three desirable characteristics: it is
simple, memory efficient and fast.

In the following, we first formulate the problem and de-
scribe how the 2D representation is obtained. We then
describe the CNN architectures and loss function we em-
ployed and describe relationships to other closely related
models.

3.1. Point Cloud Voxelization

Given a set of observations O = {oi} representing a 3D
point cloud, we wish to predict a probability distribution
across K classes for all oi. Each oi is a vector consisting



Figure 2. 2D FCNN (left), 2D U-Net (right)

of pi representing its (x, y, z) location in Euclidean space,
and mi representing any other available sensor modalities
(e.g., RGB, intensity).

We begin by discretizing O into a representation that can
be ingested by a standard CNN architecture. We define a 3D
voxel grid V = {vx,y,z} in the Euclidean space to encom-
pass all pi. Each voxel cell vx,y,z is centred at (x̂, ŷ, ẑ) and
has a length, width, and height (l, w, h) respectively. We
characterize vx,y,z with several channels. The first channel
is the occupancy channel, which we set to be 1 if there ex-
ists a point which lies in vx,y,z , and 0 otherwise. If vx,y,z is
occupied, any additional sensor modalities mi are encoded
as additional channels (e.g., RGB information would be en-
coded in three additional channels). Note that if multiple
points lie within the same vx,y,z , a simple pooling opera-
tion can be performed. In our experience, we see that the
specific pooling operation (max, average, or random selec-
tion of a representative point) does not have a great effect
on performance.

3.2. From 3D to 2D

In standard CNN architectures, the input of a N dimen-
sional convolution layer is aN+1 dimensional tensor, with
N spatial dimensions and a single feature dimension. For
example, a 3D CNN can be used to ingest the voxel grid V,
with the input being a tensor of size L×W ×H × C with
L,W,H representing the dimensions of the voxel grid, and
C representing the number of channels in each voxel cell.

In contrast, here we treat the voxel grid V with voxel
cells vx,y,z as a voxel image V′ with voxel patches v′

x,y .
V′ is essentially a bird’s eye view of V, with the gravita-
tional axis z as the feature channel. See Figure 1 for a visu-
alization. Sensor information encoded as additional chan-
nels in each voxel cell can be flattened, resulting in a matrix
of size L×W × (HC) as the input to our 2D CNN.

3.3. Model Architecture

We explore two different architectures to process our 2D
voxel representation.

2D Fully Convolutional Neural Network: Our first ar-
chitecture is a modification of VGG [27]. We refer the
reader to Figure 2 (left) for an illustration. Our network
takes as input the voxel image V′. We then use a set of 2D
convolution layers with kernel size 3 and stride 1, interlaced
with 2D max-pooling layers with kernel size 2 and stride 2.
Each convolution layer is followed with a ReLU activation
layer and batch normalization [13]. We double the number
of output channels each time V′ is downscaled, keeping the
amount of computation in each layer approximately equal.

Towards the final layers, the network learns to compute
a feature vector fx,y for each voxel patch v′x,y in the now
downscaled V′. Note that because we are using a 2D bird’s
eye view representation, the feature vector fx,y correspond-
ing to the voxel patch v′x,y must encode information for the
voxel cells vx,y,z . In other words, a single feature vector
encodes class information for multiple voxel cells along the
gravitational axis. To overcome this issue, we decode fx,y
using a 1×1 convolution layer, withH×K number of out-
put channels, which represents a separate probability distri-
bution across K classes for each voxel cell vx,y,z .

A softmax is then applied to each voxel cell in the
down-scaled voxel grid to obtain class predictions. We bi-
linearly interpolate the per-voxel predictions in the down-
scaled voxel grid back to its original size. We then use near-
est neighbor interpolation to obtain per-point predictions.
This has a similar effect as the strategy used in [32], where
per-point predictions are instead directly obtained through
trilinear interpolation of the downscaled voxel grid. The ad-
vantage of our approach is the ability to train on a per-voxel
metric rather than a per-point metric. This is preferred as we



found using a per-point metric to be computationally costly
without much impact on results.

2D U-Net: Pooling layers achieve increased receptive
fields and spatial invariance at the cost of resolution, which
can negatively impact semantic segmentation tasks. We
choose to adopt the U-Net [26, 5] architecture as shown in
Figure 2 (right) as a method to address this issue. The U-Net
structure consists of an encoder and decoder network. The
encoder network consists of convolution and pooling lay-
ers, eventually learning strong, context-aware features, at
the cost of lost boundary information during pooling. The
decoder network consists of convolution and bilinear up-
sampling layers, which further process the features learned
by the encoder network. Importantly, at each step, the acti-
vations from the corresponding layer in the encoder network
are copied and concatenated in the channel dimension. Intu-
itively, this allows the network to see high definition bound-
ary information while being aware of the larger context.

3.4. Loss Function

Severely class imbalanced datasets can hinder perfor-
mance, especially if the under-represented classes are con-
sidered more important. For example, this arises in au-
tonomous driving scenarios where pedestrians and bicy-
clists are much less common than other categories such as
road or background. To address this issue, we train the
network using a class-balanced weighted cross-entropy loss
similar to [8] defined as,

H(y, x) = −
∑
i

αi p(yi) log (p(xi)) (1)

αi = median freq/fi (2)

where fi is the number of points of class i in the training set
divided by the total number of points in the training set, and
median freq being the median of frequencies fi.

As mentioned earlier, we choose to train the network
with a loss defined on a per voxel metric rather than a
per-point metric because projecting voxel predictions to the
point cloud is computationally costly but not necessarily ad-
vantageous. Note that all unoccupied voxels are treated as a
don’t care class, with α = 0.

3.5. Relation to other methods

3D convolutions: Notice that our approach can also be
described in the framework of 3D convolutions. Lets define
a 2D FCNN with convolution layers of kernel size k × k to
ingest our 2D representation of an input voxel grid of size
L × W × H × C. We can also define a 3D FCNN such
that the first convolution layer has a kernel size k × k ×H ,
and define subsequent convolution layers with kernel size
k × k × 1. These two networks will be identical.

Seperable filters: We can also compare our method to
spatially separable filters explored in [19], where given a
3D kernel U , the goal is to find 1D kernels Ux, Uy, Uz such
that

f ∗ U = f ∗ Ux ∗ Uy ∗ Uz (3)

where ∗ denotes the convolution operator, and Ux, Uy, Uz

are applied along the x, y, z axis respectively. While the
separable filter would approximate a 3D convolution with
kernel size k × k × k using 1D convolutions with kernel
size k× 1× 1 along each axis, our approach uses a k× k×
1 kernel, and collapses the 3rd dimension into the feature
channel.

4. Experimental Results
We evaluate our model on various 3D datasets and em-

pirically showcase both the strengths and weaknesses of our
approach. First, we evaluate on a dense, indoor benchmark
dataset. Following that, we evaluate on a new, sparse, out-
door road scene dataset. By using two contrasting datasets,
we show that our 2D representation is generalizable and ap-
plicable to a variety of problems.

We train all our models using Adam optimizer [14], with
learning rate 0.0001, weight decay 0.0005, and betas 0.9,
0.999. We implement our experiments using PyTorch. Al-
though we train on a per-voxel loss, all metrics subsequently
reported in this paper are per-point. The primary metrics
we use for evaluation are mean class accuracy (mAcc) and
mean class IOU (mIOU). We define mAcc as

mAcc =
1

K

K∑
i

tpi

tpi + fni

(4)

where K is the number of classes, tp is the number of true
positives, and fn is the number of false negatives. Similar-
ily, we define mIOU as

mIOU =
1

K

K∑
i

tpi

tpi + fni + fpi

(5)

where K is the number of classes, tp is the number of true
positives, fn is the number of false negatives and fp is the
number of false positives.

4.1. Stanford Large-Scale 3D Indoor Spaces Dataset

The Stanford Large-Scale 3D Indoor Spaces Dataset
(S3DIS) [1] dataset contains Matterport 3D scans of 6 in-
door areas in 3 different buildings, covering a total of 270
rooms and over 6000m2. Each point contains RGB and
global XYZ information, along with a semantic label from
1 of 13 classes (7 structural classes, 5 moveable classes and
1 clutter class for all other elements). To be comparable to
[32], we also train on Areas 1, 2, 3, 4, 6 and test on Area 5.



Method mIOU mAcc runtime (ms)
Pointnet [20] 41.09 48.98 -

3D-FCNN-TI [32] 47.46 54.91 435
SEGCloud [32] 48.92 57.35 -
2D-FCNN(ours) 44.13 62.85 7
2D-Unet(ours) 51.27 64.69 13

2D-Unet+RGB(ours) 51.76 68.28 14

Table 1. S3DIS dataset results, time calculated for inference of
16m x 16m x 5m

Figure 3. S3DIS dataset results: confusion matrix for 2D-U-Net

We process our training data by dividing each room into
blocks of size 16m×16m (X, Y) and keeping the entire Z
extent to ensure that the floor and ceiling are present in ev-
ery block. Rooms larger than 16m×16m are represented
with multiple, overlapping blocks. Each block is then di-
vided into a voxel grid in a manner as described in Sec-
tion 3.1. First, we experiment with a model that only uses
voxel occupancy, discarding all RGB information. We di-
vide the voxel grid into 320×320×50 voxel cells with di-
mensions 5cm×5cm×10cm. Our initial voxel grid only
covers 16m×16m×5m, so we include a bucket bin above
5m to include any remaining points. This makes the final
voxel grid a 3D tensor of size 320×320×51. To supple-
ment the training data, we perform data augmentation, us-
ing random rotation about the gravitational axis and scaling
[32]. Next, we experiment with incorporating the RGB in-
formation available. Recall that RGB information is repre-
sented as additional channels in each voxel cell. To take a
2D representation, we flatten these additional channels into
the feature dimension, effectively expanding our input fea-
ture channel size by a factor of 4. This makes our input for
RGB models a 3D matrix of size 320×320×204.

For evaluation, we process the test data by dividing

rooms into blocks of 16m×16m, with no overlapping
blocks. Thus the network computes a class prediction once
for every point.

Runtime measurements: Runtime measurements re-
ported in Table 1 represent the amount of time required to
achieve predictions on a 16m×16m block, ignoring the ini-
tial voxelization step and the final step of projecting voxel
predictions back to the point cloud. We implement 3D-
FCNN-TI without the final trilinear interpolation to ob-
tain timings. We do not implement SEGCloud for timing,
as it is simply 3D-FCNN-TI with an additional CRF step.
Pointnet reports roughtly 1,000,000 points/second, and the
S3DIS dataset contains roughly 100,000 points/m2, imply-
ing a runtime of roughly 25s using our block sizes. How-
ever, per-point timings are omitted as they are not com-
parable with per-voxel timings especially on such a dense
dataset. Note that for this dense dataset, our voxelization
and devoxelization steps add 20ms to the pipeline in total.

Analysis: We see that both our vanilla 2D-FCNN and 2D-
U-Net outperforms Pointnet. Pointnet relies on comput-
ing a global feature vector, and we argue that it is diffi-
cult to find a meaningful global feature for large complex
scenes. As a result, they must perform segmentation on
small 1m×1m×1m blocks, limiting the receptive field. In
contrast, our method is able to leverage CNN architectures
to learn hierarchical features with varying contextual scales.

We see that while our 2D-FCNN underperforms, our 2D-
U-Net outperforms 3D-FCNN-TI and SEGCloud, with an
order of magnitude speed up. Despite the fact that rooms
in the S3DIS dataset are relatively cuboid, our 2D represen-
tation can still compete. However, our models noticeably
struggle with the ceiling class, which other methods seem
to perform well with ease. The confusion matrix in Figure 6
shows that our network often confuses ceiling with clutter.
After inspecting some example rooms, we see that there ex-
ists a few rooms with much higher than average ceilings,
and a plethora of clutter underneath. Because our network
is not spatially invariant to the gravitational axis, it is dif-
ficult to accurately classify the clutter situated at the most
common ceiling heights. On the other hand, our network
performs very strongly on classes that can be distinguished
easily from the bird’s eye view, (e.g. the door class). We
also notice a stronger performance in the board class. We
argue that a high resolution is a strong asset when distin-
guishing board from wall (to notice the small protrusion).
Because Pointnet does not discretize the point cloud, they
are able to outperform SEGCloud in this class. However,
because our network is not invariant in the gravitational
axis, we are more easily able to learn the average height
of a board, providing a helpful prior during inference. In
addition, our network uses more aggressive down-scaling,



Method ceiling floor wall beam column window door chair table bookcase sofa board clutter
Pointnet [20] 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22

3D-FCNN-TI [32] 90.17 96.48 70.16 0.00 11.40 33.36 21.12 76.12 70.07 57.89 37.46 11.16 41.61
SEGCloud [32] 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60
2D-FCNN(ours) 71.07 92.23 51.50 0.42 24.78 26.78 35.75 62.91 66.19 47.89 51.81 16.74 25.63
2D-U-Net(ours) 81.66 94.46 70.41 0.05 28.12 40.50 47.39 62.75 72.22 50.04 57.74 27.63 33.59

2D-U-Net+RGB(ours) 79.77 93.93 68.99 0.20 28.26 38.53 48.28 71.09 73.59 48.72 59.20 29.27 33.10

Table 2. S3DIS dataset results, class IOU

Figure 4. S3DIS qualitative results, from left to right: raw, ground truth, 2D-FCNN, 2D-U-Net

allowing for a larger receptive field. We are able to do this
because we supplement our network with the more com-
putationally heavy U-Net architecture. While methods ex-
plored in [32] would likely benefit from such a modifica-
tion as well, our representation’s efficiency allows us to do
so without increasing memory consumption and inference
time to an unreasonable amount.

Through our experiments with the S3DIS dataset,
we demonstrate that the 2D representation can (perhaps
counter-intuitively) work well for scenes that are not just
flat, achieving state-of-the-art results, with speed-ups in the
range of an order of magnitude.

Method mIOU mAcc runtime (ms)
Pointnet [20] 38.05 46.97 -

3D-FCNN (ours) 47.35 68.83 137
3D-U-Net(ours) 58.02 81.47 306
2D-FCNN (ours) 48.98 80.42 12
2D-U-Net (ours) 56.14 79.72 29

Table 3. 3D Road Scene Dataset results, time calculated for infer-
ence of 160m x 80m

4.2. 3D Road Scene Dataset

We perform experiments on a new, very large-scale
3D road scene dataset, which contains annotated point



Method vehicle bicyclist pedestrian motorcycle animal road background
Pointnet [20] 76.73 2.85 6.62 8.02 0.0 91.96 89.83

3D-FCNN (ours) 82.67 21.38 33.64 17.97 0.22 90.82 84.73
3D-U-Net(ours) 91.29 43.35 43.91 45.01 3.24 92.40 86.96
2D-FCNN (ours) 84.31 15.89 36.88 27.30 1.65 91.86 85.04
2D-U-Net (ours) 91.15 27.41 51.44 41.19 1.55 92.45 87.82

Table 4. 3D Road Scene Dataset results, class IOU

Figure 5. 3D Road scene dataset qualitative results, from left to right: ground truth, 2D-U-Net, Errors

clouds obtained from video snippets captured using a roof-
mounted Lidar. This dataset is very large scale and contains
more than 200 billion points. Our per point annotations con-
tained 7 classes (vehicle, pedestrian, bicyclist, motorcyclist,
animal, road, and background). As expected from a real-

world dataset of this nature, class imbalance is present in
this dataset, with the background, road and vehicle class
making up 61%, 31% and 7% of all points respectively,
leaving approximately 1% for the remaining classes. The
dataset is composed of snippets, where each snippet con-



Figure 6. 3D Road Scene dataset results: confusion matrix for 2D-
U-Net

tains approximately 250 frames, with each frame contain-
ing approximately 100 000 points. We randomly partition
the dataset on a snippet level to obtain separate train and test
snippets. We test on 16 000 randomly sampled frames from
the test snippets.

We use the same networks used in the S3DIS experi-
ment. For a fair comparison, we also implement the 3D
version of our 2D networks. To do so, we replace all 2D lay-
ers with their 3D counterparts, and further divide the output
channel by 2. Note that our resulting 3D FCNN network can
be compared to [32], but more lightweight, with more ag-
gressive down-sampling and the CRF post-processing step
omitted. All models are trained using the weighted cross
entropy loss detailed in Section 3.4. Because of the severe
class imbalance, the weighted cross entropy can be very un-
stable, so we clip all gradients to a magnitude of 1. We
train on a region of interest of size 64m×64m×4m, with
the ego-car in the center (32m in front/behind the car, 32m
to the left/right of the car, and 4m above the ground). We
use voxel cells with size 20cm, 20cm, 10cm for our mod-
els. Due to the sheer size of the dataset, we do not perform
any data augmentation during training. For evaluation, we
test on a 160m×80m×4m region of interest, again with the
ego-car in the center.

In addition to our own voxel-based approaches, we also
implement a Pointnet [20] model for comparison. Unlike
experiments in the S3DIS dataset, our implemented Point-
net model takes as input the entire point cloud, rather than
1m blocks. This is done in the interest of inference speed,
as segmenting small chunks of the point cloud would be too
slow for our requirements. Quantitative results are shown
in Tables 3 and 4, and qualitative results in Figure 5.

Runtime measurements: Runtime measurements re-
ported in Table 3 represent the amount of time required
to achieve predictions on a 160m×80m×4m block, ignor-
ing the initial voxelization step, and final step of projecting
voxel predictions back to the point cloud. Pointnet takes
roughly 100ms per ROI, but per-point timings are omitted
as they are not comparable with per-voxel timings. For this
sparse dataset, our voxelization and devoxelization steps
add 1ms to the pipeline in total.

Analysis: Results show we outperform Pointnet in this
dataset as well. We see that when taking in the entire point
cloud, the Pointnet architecture has difficulty capturing the
detailed local structure in complex road scenes. As a re-
sult, Pointnet has a strong performance in large classes (e.g.,
background, road) but poor performance in small classes
(e.g., pedestrian, animal).

We see that the 3D U-Net outperforms the 2D U-Net in
this experiment. This somewhat verifies our early predic-
tion that 3D models would equally benefit from enhance-
ments such as the U-Net architecture. However, its slow
runtime makes it inapplicable in real-time scenarios. On
the other hand, we see that 2D networks are still quite com-
petitive with their 3D counterparts while being much faster.

Our experiments show that by using an efficient 2D rep-
resentation, we can allocate compute resources on more
effective methods to increase performance, such as more
expressive network architectures, thereby allowing us to
achieve quality segmentation results on large-scale point
clouds in real-time.

5. Conclusion

In this work, we proposed a novel 2D voxel representa-
tion that allows for real-time semantic segmentation of 3D
point clouds. Our approach is simple, efficient, fast and
has great applications in many of today’s challenges, such
as autonomous driving. We developed an intuitive under-
standing of our model’s strengths and weaknesses, and em-
pirically compared our approach with alternative methods.
We demonstrated our representation’s efficiency and gener-
alizability, and showed state-of-the-art results with signif-
icant speed-ups on varying datasets. While we have only
experimented with two architectures in this work, further
experiments with state-of-the-art 2D semantic segmentation
architectures and applying them to 3D point cloud semantic
segmentation using our voxel representation is a potential
area for improvement. Applying our representation to other
3D tasks such as detection is another interesting avenue of
future research.
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