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Abstract. There has been much effort invested in increasing the robust-
ness of human body tracking by incorporating motion models. Most ap-
proaches are probabilistic in nature and seek to avoid becoming trapped
into local minima by considering multiple hypotheses, which typically
requires exponentially large amounts of computation as the number of
degrees of freedom increases.

By contrast, in this paper, we use temporal motion models based on Prin-
cipal Component Analysis to formulate the tracking problem as one of
minimizing differentiable objective functions. The differential structure
of these functions is rich enough to yield good convergence properties
using a deterministic optimization scheme at a much reduced compu-
tational cost. Furthermore, by using a multi-activity database, we can
partially overcome one of the major limitations of approaches that rely
on motion models, namely the fact they are limited to one single type of
motion.

We will demonstrate the effectiveness of the proposed approach by using
it to fit full-body models to stereo data of people walking and running
and whose quality is too low to yield satisfactory results without motion
models.

1 Introduction

In recent years, much work has been devoted to increasing the robustness of
people tracking algorithms by introducing motion models. Most approaches rely
on probabilistic methods, such as the popular CONDENSATION algorithm [1,2],
to perform the tracking. While effective, such probabilistic approaches require
exponentially large amounts of computation as the number of degrees of freedom
in the model increases, and can easily become trapped into local minima unless
great care is taken to avoid them [3,4,5,6].
By contrast, in this paper, we use temporal motion models based on Prin-

cipal Component Analysis (PCA) and inspired by those proposed in [7,8,9] to
formulate the tracking problem as one of minimizing differentiable objective
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functions. Our experiments show that the differential structure of these objec-
tive functions is rich enough to take advantage of standard deterministic op-
timization methods [10], whose computational requirements are much smaller
than those of probabilistic ones and can nevertheless yield very good results even
in difficult situations. Furthermore, in practice, we could combine both kinds of
approaches [5].
We will further argue that we can partially overcome one of the major lim-

itations of approaches that rely on motion-models, namely that they limit the
algorithms to the particular class of motion from which the models have been
created. This is achieved by performing PCA on motion databases that contain
multiple classes of motions as opposed to a single one, which yields a decompo-
sition in which the first few components can be used to classify the motion and
can evolve during tracking to model the transition from one kind of motion to
another.
We will demonstrate the effectiveness of the proposed approach by using it

to fit full-body models to stereo data of people walking and running and whose
quality is too low to yield satisfactory results without models. This stereo data
simply provides us with a convenient way to show that this approach performs
well on real data. However, any motion tracking algorithm that relies on minimiz-
ing an objective function is amenable to the treatment we propose. We therefore
view the contribution of this paper as the proposed formulation that produces
results using a deterministic, as opposed to probabilistic optimization method,
which yields good performance at a reduced computational cost.
In the remainder of this paper, we first discuss related approaches and our

approach to body and motion modeling. We then introduce our deterministic
optimization scheme and show its effectiveness using real data.

2 Related Work

Modeling the human body and its motion is attracting enormous interest in the
Computer Vision community, as attested by recent and lengthy surveys [11,12].
However, existing techniques remain fairly brittle for many reasons: Humans
have a complex articulated geometry overlaid with deformable tissues, skin and
loosely-attached clothing. They move constantly, and their motion is often rapid,
complex and self-occluding. Furthermore, the 3–D body pose is only partially
recoverable from its projection in one single image. Reliable 3–D motion analysis
therefore requires reliable tracking across frames, which is difficult because of the
poor quality of image-data and frequent occlusions.
When a person is known a priori to be performing a given activity, such

as walking or running, an effective means to constrain the search and increase
robustness is to introduce a motion model. Of particular interest to us are models
that represent motion vectors as linear sums of principal components and have
become widely accepted in the Computer Animation community as providing
realistic results [13,14,15]. The PCA components are computed by capturing as
many people as possible performing a specific activity, for example by means
of an optical motion capture system, representing each motion as a temporally
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quantized vector of joint angles, and performing a Principal Component Analysis
on the resulting set of vectors.
In practice, the position of a person, or body pose, in a given image frame

can be defined by the position and orientation of a root node and a vector of
joint angles. A motion can then be represented by an angular motion vector,
that is a set of such joint angle vectors measured at regularly sampled intervals.
Given a large enough database of motion vectors for different motion classes and
the corresponding principal components Θj, 1 ≤ j ≤ m, at a given time t, the
joint angle vector Θ(µt) can then be written as

Θ(µt) = Θ0(µt) +

m∑

j=1

αjΘj(µt) with 0 ≤ µt ≤ 1 , (1)

where µt is a normalized temporal variable that indicates to what stage of the
motion the pose corresponds, Θ0 represents an average motion, and the αj are
scalar coefficients. In short, the vector (µt, α1, ..., αm), where m is much smaller
than the number of joint angles, can be used as the state vector that completely
describes the body pose. Recovering this pose then amounts to minimizing an
image-based objective function F with respect to this more compact represen-
tation, and can be expected to be much more robust than minimizing it with
respect to the full set of joint angles.
This representation has already been successfully used in our community,

but almost always in a statistical context [7,8,9] and without exploiting the
fact that F is easily differentiable with respect to µt and the αj coefficients of
Eq. 1. Here, we propose to use this fact to formulate the fitting problem as a
traditional optimization problem with respect to the (µt, α1, ..., αN ) state vector.
Instead of generating many “particles” by randomly choosing values for the αj ,
we will compute the Jacobian of F and use it in conjunction with standard
least-squares techniques [16]. Our deterministic approach to motion tracking is
therefore related to an earlier technique [17] that also uses PCA to model the
set of 2–D flow vectors that can be seen in video-sequences of a walking subject
and to recognize specific 2–D poses without requiring a probabilistic framework.
However, this approach relies on an initial segmentation of the body parts and is
viewpoint dependent. By contrast, we fit a global 3–D model to the whole body,
which lets us fit over a whole sequence and recover accurate 3-D poses.

3 Models

In this section, we introduce the models we use to describe both body pose and
shape at a given time as well as its motion over time.

3.1 Body Model

In earlier work [18], we have developed a body-modeling framework that relies on
attaching implicit surfaces, also known as soft objects, to an articulated skeleton.
Each primitive defines a field function and the skin is taken to be a level set of the
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sum of these fields, as shown in Fig. 1a. Defining surfaces in this manner lets us
define a distance function of data points to the model that is differentiable. We
will take advantage of this to implement our minimization scheme, as discussed
in Section 4.

Walking

Running

0 20 40 60 80 100 120 140 160 180 200
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number pca components

% of the database

Fig. 1. Shape and motion models. a) Volumetric primitives attached to an articulated
skeleton. b) First two PCA components for 4 different captures of 4 subjects walking
at speeds varying from 3 to 7km/h, and running at speeds ranging from 6 to 12km/h.
The data corresponding to different subjects is shown in different styles. c) Percentage
of the database that can be generated with a given number of eigenvectors.

As in Section 2, let us assume that, at a given time, the pose of the skeleton
is entirely characterized by the global position and orientation G of a root node
and a set of joint angles Θ. To avoid undue blending of primitives, the body is
divided into several body parts. Each body part b includes nb ellipsoidal prim-
itives attached to the skeleton. To each primitive is associated a field function
fi of the form fi(G,Θ,X) = bi exp(−aidi(G,Θ,X)), where X is a 3–D point,
ai, bi are constant values, and di is the algebraic distance to this ellipsoid. The
complete field function for body part b is taken to be

f b(G,Θ,X) =

nb∑

i=1

fi(X,G,Θ) , (2)

and the skin is the set S(G,Θ) =
⋃
b {X ∈ <3|f b(G,Θ,X) = C}, where C is a

constant. A point X is said attached to body part b if

f b(G,Θ,X) = min
1≤i≤B

|f i(G,Θ,X)− C| (3)

Fitting the model to stereo-data acquired at time t then amounts to minimizing

Ft(Gt, Θt) =

B∑

b=1

∑

Xt∈b

(f b(Gt, Θt, Xt)− C)2 , (4)

where the Xt are the 3–D points derived from the data, each one being attached
to one of the B body parts. Note that Ft is a differentiable function of the global
position Gt and of the joint angles in Θt and that its derivatives can be computed
fast [18].
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3.2 Motion Models

To create a motion database, we used a Vicontm optical motion capture system
and a treadmill to capture 4 people, 2 men and 2 women,

– walking at 9 different speeds ranging from 3 to 7 km/h, by increments of 0.5
km/h;

– running at 7 different speeds ranging from 6 to 12 km/h, by increments of
1.0 km/h.

The data was then segmented into cycles and normalized so that each one is
represented by the same number of samples. To this end, spherical interpolation
in quaternion space was used because it is the space in which a distance mea-
suring the proximity of two orientations can be naturally defined. It therefore
lets us interpolate with a meaningful angular velocity measure on an optimal
path splining among orientation key frames [19]. Since people never perform the
same motion twice in exactly the same fashion, we included in the database four
walking or running cycles for each person and speed. The mean motion of the set
of examples was subtracted and the M eigenvectors of Eq. 1 were obtained by
SVD. Retaining only m ≤ M eigenvectors, gave us a reduced base of the most
significant subspace of the motion space, that is the one that contains σ % of
the database, where λi is the i-th bigger eigenvalue.

σ =

∑m
i=1

λi∑M
i=1

λi
(5)

In our experiments, we chose σ = 0.9, which means that for the multi-activity
database we need only 5 out of 256 coefficients, which corresponds to the total
number of examples in the database. In Fig. 1c we display σ as a function of the
number of eigenvectors. The same method was used for the walking and running
databases independently. The estimation problem is thus reduced from the ' 80
degrees of freedom for the 28 joints in our body model at each time step, to 5
coefficients plus the time.
Fig. 1b shows the first two PCA components of the original examples used

to create the joint walking and running database. The two activities produce
separate clusters. The walking components appear on the left of the plot and
form a relatively dense set. By contrast, running components are sparser because
inter-subject variation is larger, indicating that more examples are required for
a complete database.
Note that varying only the first two components along the curve correspond-

ing to the path from one subset to another, yields very natural transitions be-
tween walking and running motions.

4 Deterministic Approach to Tracking

In this section we introduce our deterministic approach to tracking that relies
on describing motion as a linear combination of the motion eigenvectors of Sec-
tion 3.2 and choosing optimal weights for these vectors. As before, we represent
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the angular component of motion Θ as Θ = Θ0 +
∑m

i=1
αiΘi, where Θ0 is the

average motion and the Θi are the eigenvectors of Section 3.2. Evaluating Θ at
a particular time µt yields the pose

Θ(µt) = Θ0(µt) +

m∑

i=1

αiΘi(µt) = [θ
1(µt), · · · , θ

ndof (µt)]
T , (6)

where the θj are the actual joint angles at time µt for the ndof degrees of freedom
of the body model we use.
Note that the complete motion is described not only by the angular motion

discussed above, but also by the motion Gt of the root body model node with
respect to which the angles are expressed. This adds six degrees of freedom to
our model, which are not represented at all in our motion database since the
data was acquired on a treadmill on which the subjects were forced to walk
straight. Furthermore, even if the global motion had been acquired, it would
make no sense to include it in the database because similar motions would then
have been considered as different just because of the orientation or position of
the body.

Fig. 2. Input stereo data. Top row: First image of a synchronized trinocular video
sequence at three different times. The 3–D points computed by the Digiclops tm system
are reprojected onto the images. Bottom row: Side views of these 3–D points. Note that
they are very noisy and lack depth because of the low quality of the video sequence.

Let us assume that we have acquired image data, which here is the stereo
data depicted by Fig. 2, but could just as well be anything else, in T consecutive
frames. Our goal is to recover the motion by minimizing an objective function
F over all frames and, therefore, fitting the model to the image data. Tracking
is achieved in two main steps. First the global motion Gt is recovered in a
recursive way. Results from frame t are used as initialization for frame t+1. We
initialize using the average motion Θ0, positioning the global motion for the first
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frame by hand, where the time µt, 1 ≤ t ≤ T , is a linear interpolation between
initial values µ1 and µT for the first and last frames. For each frame we minimize
Ft(Gt, Θ0(µt, αi)) with respect to G = G(tx, ty, tz, θx, θy, θz), where Ft is defined
in equation 4. Given this global motion estimate, we then fit the data over all
frames simultaneously by minimizing F with respect to the µt, αi and Gt:

F =
∑

1≤t≤T

Ft(Gt, Θ(µt, αi)) , (7)

Fig. 3. Tracking without a motion model. Given the low framerate, motion between
frames is large enough to provoke erroneous attachments of data points to body parts
and, as a consequence, very poor fitting behavior. The whole sequence is shown.

In the remainder of this Section, for comparison purposes, we first show
the result of fitting the stereo data we use without using motion models. We
then introduce in more detail our approach to enforcing the motion models,
with or without assuming that the style remains constant. Finally, we discuss
the computational requirements of our scheme and contrast them with those of
more traditional probabilistic approaches.

4.1 Tracking without Motion Models

In this paper we use stereo data acquired using a Digiclopstm operating at a
640 × 480 resolution and a 14Hz framerate, which is relatively slow when it
comes to capturing a running motion. The quality of the data is poor for several
reasons. First, to avoid motion blur, we had to use a high shutter speed that
reduces exposure too much. Second, because the camera is fixed and the subject
must remain within the capture volume, she appears to be very small at the
beginning of the sequence. As a result the data of Fig. 2 is very noisy and lacks
both resolution and depth.
To establish a baseline, in Fig. 3, we show the unsatisfactory result of fitting

our model to this data without using motion models, that is by minimizing the
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objective function of Eq. 4 in each frame separately. We simply use the recovered
pose in frame t− 1 as the starting point in frame t.
Careful analysis shows that tracking fails chiefly due to the low framerate,

as the interframe motion is too large. This prevents the process of “attaching”
data points to body parts discussed in Section 3.1 from functioning properly. In
the fifth image of Fig. 3, both legs end up being “attracted” to the same data
points.

4.2 Tracking a Steady Motion

To remedy the problems discussed above, we can first assume that the motion
is steady over T data frames and, therefore, that the αi coefficients of Eq. 6 are
invariant. The motion state vector is taken to be

φ = [−→µ ,−→α ] = [µ1, . . . , µT , α1, . . . , αm] (8)

To effectively minimize the objective function F of Eq. 7 using a standard least-
squares technique [16], we need to evaluate its Jacobian. Bearing in mind that
the derivatives of F with respect to the individual joints angles ∂F

∂θj
can be easily

computed [18], this can be readily done as follows:

∂F

∂αi
=

ndof∑

j=1

∂θj

∂αi
·
∂F

∂θj
,

∂F

∂µt
=

ndof∑

j=1

∂θj

∂µt
·
∂F

∂θj
. (9)

Because the θj are linear combinations of the Θi eigenvectors,
∂θj

∂αi
is simply the

Θij , the jth coordinate of Θi. Similarly, we can write

∂θj

∂µt
=

m∑

i=1

αi
∂Θij

∂µt
,

where the
∂Θij

∂µt
can be evaluated using finite differences and stored when building

the motion database, as shown in Fig. 4.

Fig. 4. Motion vector and its temporal derivatives. Left: First 5 eigenvectors for the
flexion-extension in the sagittal plane of the left knee. Right: Temporal derivatives
∂Θij

∂µt
.

Figure 5 depicts results on a walking sequence performed by a subject whose
motion was captured when building the database. Note that the legs are correctly
positioned. The errors in the upper-body are due to the noisyness of the stereo
cloud.
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Fig. 5. Using low resolution stereo data to track a woman whose motion was recorded in
the database. The recovered skeleton poses are overlaid in white. The legs are correctly
positioned.

Fig. 6. Tracking a walking motion assuming a constant style. The legs are correctly
positioned.

Fig. 6 displays the results on a walking sequence performed by a subject who
was not recorded when building the database. To validate our results, he is wear-
ing four gyroscopes on his legs, one for each sagittal rotation of the hip and knee
joints. The angular speeds they measure are used solely for comparison purposes
and we show their integrated values in Fig. 7. We overlay on the corresponding
plots the values recovered by our tracker. Note that they are very close, even
though the left leg is severely occluded.

Fig. 8 depicts results on the running sequence of Fig. 2 using the running
database of Section 3.2, which are much better than those of Fig. 3. The pose
of the legs is now correctly recovered, except the one of the left leg in the first
frame. This is due in part to the fact that the database was acquired using a
treadmill and is therefore too sparse to model a motion in which the leg is raised
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Fig. 7. Comparing recovered rotation angles using visual tracking (solid curve), and by
integrating gyroscopic data (smooth curve) for the walk of Fig. 6. Left column: Right
hip and knee sagittal rotations. Right Column: Same thing for the left leg. Note that
both curves are very close in all plots, even though the left leg is severely occluded.

that high, and in part to the fact that the motion is not truly steady. We address
these issues below.

Fig. 8. Tracking a running motion assuming a constant style. The legs are correctly
positioned except the left one in the first frame.

4.3 Tracking a Variable Style and Speed Motion

In the sequences shown in this paper, speed and style are not truly constant.
Because of space constraints, the subject starts, accelerates and stops over a short
distance. This is true for walking and running, and even more so for transitions
from one to the other. Using a single set of αi parameters for the whole sequence
as in Section 4.2 therefore overconstrains the problem. We relax these constraints
by introducing a set of αi per frame or per set of frames and the state vector
then becomes:

φ = φ(−→µ ,
−→
α1, . . . ,

−→
αT ) where

−→
αi = (αi

1
, . . . , αim) . (10)
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Improved tracking results from the running sequence of Fig. 2 are shown in
Fig. 9. The system now has enough freedom to raise the leg in the first frame
while still positioning the legs correctly everywhere else. Upper body tracking
remains relatively imprecise because average errors in the stereo data are larger
than the distance between torso and arms. Improving this would require the use
of additional information, such as silhouette information, which could easily be
done within the proposed framework. Similar results for walking are shown in
Fig. 10. Small errors in foot positioning are due to the fact that ankle flexion
has not been recorded in the motion database.

Fig. 9. Tracking a running motion while allowing the style to vary. The legs are now
correctly positioned in the whole sequence.

Having a set of PCA parameters per frame gives the system the freedom
to automatically evolve from one activity to another. To demonstrate this, in
Fig. 11, we use our full motion database to track a transition from walking to
running. In the first few frames the subject is walking, then for a couple of frames
she performs the transition and runs for the rest of the sequence. The arms are
not tracked because we focus on estimating the motion parameters of the lower
body only. Here again, the legs are successfully tracked with small errors in foot
positioning that are due to the fact that ankle flexion is not part of the motion
database.

4.4 Computational Requirements

Probabilistic approaches such as the one of [8] rely on randomly generating “par-
ticles” and evaluating their fitness. Assuming the cost of creating the particles
to be negligible, the main cost of each iteration comes from evaluating an objec-
tive function, such as the function F of Eq. 7 for each particle. In the classical
implementation of the condensation, where the state vector has ndofs degrees
of freedom, the cost is therefore in the order of O(npart(ndofs)) times the cost
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Fig. 10. Tracking a walking motion while allowing the style to vary. The sequence has
a total of 18 frames, we show one in two.

of computing F , where npart is the number of particles, which tends to grow
very fast if good convergence properties are to be achieved. On the other hand,
if we use our motion models to perform the condensation, the cost is of the order
of O(npart(n)), which also grows fast with n, the state’s vector dimension.
By contrast, the main cost of each iteration of our optimization scheme comes

from evaluating F and its Jacobian, which is of course more expensive than
evaluating F alone. However, through careful implementation, we have found
that it can be done at a cost in the order of O(lg(ndof)) times the cost of
computing F alone, since evaluating F and its derivatives for the ndof degrees of
freedom in the body model involves many similar computations, and computing
∂F
∂θj
once per iteration is what is costly. It took less than 15 iterations to achieve

convergence. As a consequence, the cost of the methods of Section 4.2 and 4.3
are of the same order and smaller than the probabilistic approach.

5 Conclusion

We have presented an approach using motion models that allows us to formulate
the tracking problem as one of minimizing a differential objective function with
respect to relatively few parameters. We take them to be the first few coefficients
of the principal components of the joint angle space for motions captured using
an optical motion capture device.
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Fig. 11. Tracking the transition between walking and running. In the first four frames
the subject is running. The transition occurs in the following three frames and the
sequence ends with running. The whole sequence is shown.

Using walking and running as examples, we have shown that this repre-
sentation, while having a fairly low dimension, nevertheless has a rich enough
differential structure to yield good performance at a low computational cost. It
also has the ability to capture the transition from one motion to another.

We have demonstrated that our approach can simultaneously handle two dif-
ferent activities. Our method seems perfectly adapted to 3–D analysis of sport
activities such as a golf swing or a tennis serve. The same can be said of captur-
ing the motion of orthopedic patients when they are asked to perform a paticular
routine designed to evaluate their conditions. Applying our method to such ac-
tivities will be a subject for future research.

Currently, the major limitation comes from the small size of the database
we use, which we will endeavor to complete. This should allow us to precisely
track a wider range of styles, perhaps at the cost of adding some regularization
constraints that we presently do not need. We also plan to add additional motion
types, such as jumping, for which motion capture data is fairly easy to acquire.
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In the current database, the samples corresponding to different people tend to
cluster. If this remains true when the database is completed, this may become a
promising approach not only for tracking but also for recognition.
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