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Abstract

Existing approaches to indoor scene understanding for-
mulate the problem as a structured prediction task focusing
on estimating the 3D bounding box which best describes
the scene layout. Unfortunately, these approaches utilize
high order potentials which are computationally intractable
and rely on ad-hoc approximations for both learning and
inference. In this paper we show that the potentials com-
monly used in the literature can be decomposed into pair-
wise potentials by extending the concept of integral images
to geometry. As a consequence no heuristic reduction of
the search space is required. In practice, this results in
large improvements in performance over the state-of-the-
art, while being orders of magnitude faster.

1. Introduction
Recovering the spatial layout of indoor scenes from a

single image is an important problem in applications such as
personal robotics. Existing approaches typically rely on the
Manhattan world assumption, which states that there exist
three dominant vanishing points (vp) which are orthogonal.
They typically formulate the problem as a structured pre-
diction task, which estimates the 3D box that best approxi-
mates the scene layout [8, 15, 26]. An example illustrating
this is shown in Fig. 1.

Two different parameterizations have been proposed for
this problem, both assuming that the three dominant vanish-
ing points can be reliably detected. In [8, 15], candidate 3D
boxes are generated, and inference is formulated in terms of
a single high dimensional discrete random variable. Hence,
one state of such a variable denotes one candidate 3D lay-
out. This limits significantly the amount of candidate boxes,
e.g., only≈ 1000 candidates are employed in [8]. Contrast-
ing this formulation, Wang et al. [26] parameterize the lay-
out with four discrete random variables, that relate to the
four degrees of freedom of the problem. In this paper, we
adopt the latter parameterization, and model the problem in
terms of four random variables that correspond to the angles
encoding the rays that originate from the respective vanish-

(a) (b)
Figure 1. Inference result with 3.61% error (colored red), and best
discretized solution (labeled blue) is illustrated in (a), while (b)
shows a newly synthesized view.

ing points. As illustrated in Fig. 2(a), these rays fully de-
scribe the 3D cuboid, defining the layout.

Existing approaches employ potentials based on differ-
ent image information. Geometric context [11], orientation
maps [16] as well as lines in accordance with vanishing
points [26] are amongst the most successful cues. While
in the single random variable parameterization [8, 15], the
complexity is determined directly by the number of candi-
date boxes, in the parameterization of [26] the complexity
is determined by the order of the potentials - the number of
variables involved and their size - that encode the image fea-
tures. These potentials are typically unary, pairwise as well
as higher-order (i.e., order four). The order is even higher
when reasoning about clutter in the form of hidden vari-
ables [26] (i.e., order five) or objects present in the scene
that restrict the hypothesis space [15]. While the afore-
mentioned approaches perform well in practice, to tractably
handle learning and inference with both parameterizations,
reductions on the search space were proposed and/or a lim-
ited amount of labelings was considered.

In contrast, in this paper we propose a novel and effi-
cient approach to discriminatively predict the 3D layout of
indoor scenes. In particular, we generalize the concept of
integral images to “integral geometry,” by constructing ac-
cumulators in accordance with the vanishing points. We
show that utilizing this concept, the potentials and the loss
functions frequently used in the literature decompose from
order four to order two (i.e., pairwise). As a result, learning
and inference is possible without further reduction of the
search space. For learning, we exploit the family of struc-
tured prediction problems of [7], which encompass struc-
tured support vector machines (structured SVMs) and con-
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(b) Integral geometry for the left-wall. (c) Using accumulators for faces.
Figure 2. Our problem formulation in terms of four random variables yi is illustrated in (a). Decomposing the third order potential for
α = left-wall into two shaded second order potentials is shown in (b). A schematic on how “integral geometry” uses accumulators A is
given in (c).

ditional random fields (CRFs) as special cases. Inference is
done via message-passing.

We evaluate our approach on the main two bench-
marks [8, 9] that exist for this task. As shown in our experi-
ments our approach results in significantly better prediction
than the state-of-the-art, while being orders of magnitude
faster. We are able to perform learning using 504 possible
labelings in only a few minutes. Moreover, given the po-
tentials, inference over the same hypothesis space (i.e., 504

labels) takes 0.15 seconds on average. Although we demon-
strate our approach in the problem of predicting the layout
of indoor scenes, our integral geometry decomposition is
general, and can be applied to other geometric problems
such as 3D outdoor scene understanding.

2. Related Work
Over the past few years many approaches have been

developed to tackle the problem of semantic scene under-
standing. The mathematical tools as well as the image fea-
tures employed by these approaches vary in terms of the
particular problem they address. In this section we provide
a brief description of the methods employed in the litera-
ture.

Most approaches to semantic scene understanding from
a single image in outdoor scenarios are qualitative, produc-
ing rough 3D in the form of pop-ups [12, 19] as well as 3D
image parses that represent the world in terms of blocks [5].
Tretyak et al. [23] model the scene as a composition of ge-
ometric primitives spanning different layers from low level
(edges) over mid-level (line segments, lines and vanishing
points) to high level (zenith and horizon). When multiple
images in the form of monocular and stereo video sequences
are available, quantitative parsings of the road layout and
the visible 3D dynamical objects can be constructed by em-
ploying generative models of the scene and making use of
static and dynamic information [3, 4]. In [1] uncalibrated
images where employed to detect objects and to recover the
geometry of the scene.

The indoor scenario is more constraint and existing ap-
proaches typically rely on vanishing point detection and the

Manhattan world properties of man-made indoor scenes.
One of the most popular problems in the indoor setting is
prediction of the room layout given a single image. The
layout is commonly represented in terms of the spatial con-
figuration of the faces of a rectangular 3D cuboid, (i.e., left,
front and right wall as well as floor and ceiling). This prob-
lem is complex, as typical scenes contain objects that partly
occlude the walls. The first approach to this problem was
developed by [27], where the task is addressed via group-
ing, i.e., edges are grouped into lines, quadrilaterals, and
finally depth-ordered planes.

Most recent approaches [8, 15, 26], however, model the
problem as inference in a conditional random field (CRF)
and learn the parameters using structured SVMs [24]. How-
ever, they either only consider a small set of candidate lay-
out boxes, or employ high order potentials which require a
very coarse discretization of the space to be computation-
ally tractable. In contrast, in this paper we show that the
potentials frequently employed in the literature can be de-
composed into sums of pairwise potentials by utilizing the
new concept of integral geometry. As a consequence learn-
ing and inference is orders of magnitude faster and higher
number of states are possible, resulting in more accurate
prediction.

Del Pero et al. [18] proposed a generative model for
the layout. As this model is fairly high dimensional and
does not exploit recently developed discriminative image
features [11, 16], it results in poor performance when com-
pared to structured prediction approaches.

In [2, 16] a model dealing with more general lay-
outs is considered. [2] addresses scene understanding in
the context of a moving camera by combining geomet-
ric and photometric cues, i.e., stereo photo-consistency,
depth cues from structure-from-motion and monocular fea-
tures. [17] develops order-preserving moves that outper-
form α-expansion when encoding prior knowledge about
the problem, e.g., the ceiling should be above the floor.
Similar to [10], they train a support vector machine using
a large set of features (statistics on location, color, geome-
try, texture and edges) and demonstrate their optimization
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technique on the indoor labeling problem. This was fur-
ther extended in [21]. The concept of integral geometry we
develop here can be used in this more general setting. How-
ever, in this paper we focus on the more standard setting of
estimating the room layout as a 3D cuboid.

3. Integral Geometry for Structured Prediction
In this paper we tackle the problem of predicting the

room layout of indoor scenes from a single image, and for-
mulate it in terms of the spatial configuration of the faces
of a rectangular 3D cuboid, (i.e., left, front and right wall
as well as floor and ceiling). In particular, we employ the
parameterization of [26] in terms of four random variables.

More formally, let y be the parameterization of the scene
layout. We are interested in learning a linear predictor w,
such that, given a new image x, it accurately estimates the
room layout by solving the following inference task

(inference) ŷ = argmax
y

wTφ(x,y) (1)

with φ(x,y) denoting a multidimensional feature vector
which depends on the image x and the random variable(s)
y. The elements φr of the feature vector are generally ex-
pressed as a sum of non-separable functions, each depend-
ing on an arbitrary subset of random variables in y, i.e., po-
tentials involving those variables. The cardinality of those
variable subsets for each potential is commonly referred to
as its dimensionality of the domain or its order. Conse-
quently, the relations expressed by the features can be visu-
alized as a graphical model. The model structure illustrates
that it is generally not possible to accurately predict the state
of each random variable independently (without consider-
ing the states of other, neighboring random variables). We
thus refer to the above inference task as structured predic-
tion.

During learning, the goal is to find weights w that (i)
predict y as accurately as possible and (ii) generalize well
to unseen x. In recent years, many research efforts have
been devoted to learning in the structured prediction set-
ting. Two notable frameworks are structured SVMs [22, 24]
and CRFs [13]. Existing methods to estimate the room lay-
out [8, 15, 26] typically rely on one of these two approaches.

It remains to answer how to construct the potentials
φ(x,y) for accurate and efficient prediction. The complex-
ity of the structured prediction problem depends on the or-
der of the potentials involved, and its size, i.e., the number
of states. Without objects, the methods presented in [8, 15]
have only a single unary potential with inevitably many
states. When not considering the clutter denoted by hidden
variables, [26] employ potentials of order up to four.

Considering Fig. 2(a), a reasonably dense grid of pos-
sible intersections of rays ri,rj , i ∈ {1, 2}, j ∈ {3, 4}
requires about N = 50 angles, i.e., states for each discrete

random variable. With the cardinality of the variables being
50, the size of those forth order potentials amounts to 504.
Similarly, for [8, 15], unary potentials of sizeN4 should be
considered to define the same hypothesis space. Both meth-
ods are computationally demanding and do not scale well
in N . The problem is even more severe when considering
clutter or when reasoning about objects [15, 26]. In [15] all
m objects are ideally connected to each other, i.e., the for-
mer unary potential of size n = 504 is now augmented by
as many binary variables as object hypotheses are present
in a scene. Hence the potential consists of n · 2m values.
To tractably deal with this space, existing approaches use
either fewer states [8], and hence suffer from discretization
artifacts, or introduce ad-hoc approximations for learning
and inference [15, 26].

In the remainder of the section, we first show how the po-
tentials employed in the literature can be decomposed into
pairwise potentials by extending the concept of integral im-
ages to integral geometry. We then provide details about the
algorithm used to learn the predictor w.

3.1. Integral Geometry

Integral images perform partial computations in accumu-
lators such that the generation of image features at different
locations and scales can be performed efficiently by a few
accesses to these accumulators. As these accumulators have
usually the same size as the image, one commonly refers to
them as integral images. They were first introduced by Vi-
ola and Jones in their seminal work on real-time face detec-
tion [25] to compute Haar-like features, and are nowadays
widely used, e.g., in object detection approaches [14].

The potentials employed in the literature to address the
problem of indoor scene understanding are typically addi-
tive. They count for each face in the cuboid (given a partic-
ular configuration of the layout) the number of pixels with
a certain label or the probability that such a label appears
in the face. Thus, potentials natively depend on three vari-
ables for the left-wall, right-wall, ceiling and the floor and
on four variables for the front-wall, as this is the number of
variables necessary to define each face.

In this paper, we make the following important observa-
tion. In the spirit of integral images, we construct 2D accu-
mulators, each counting features (probabilities) in regions
of the space defined by two rays originating from two differ-
ent vanishing points (e.g., the shaded regions in Fig. 2(b)).
We then compute the additive potentials by accessing these
accumulators. As each accumulator depends only on two
rays, the potentials are constructed as a sum of pairwise fac-
tors. We call this decomposition integral geometry.

Following Lee et al. [15], we employ geometric con-
text (GC) [11] and orientation maps (OMs) [16] as im-
age information from which we construct the poten-
tials φ(x,y). Orientation maps associate a label cor-
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responding to each of the five faces of the 3D cuboid
that are potentially visible in an image, i.e., F =
{left-wall, right-wall, ceiling, floor, front-wall}. Geometric
context provides for every pixel the probability of each sur-
face label which includes objects in addition to the five la-
bels in F . Therefore we define φ(x,y) as

wTφ(x,y)=
∑
α∈F

wT
o,αφo,α(x,yα)+

∑
α∈F

wT
g,αφg,α(x,yα).

where y = {yi}4i=1 ∈ Y = {1, . . . , N}4 is the parame-
terization of the layout in terms of a set of angles, and the
subscripts o and g denote OM and GC features respectively.
The facets α ∈ F are defined in terms of three variables
(yi, yj , yk) with i, j, k ∈ {1, . . . , 4}, and i 6= j 6= k 6= i,
with the exception of the front-wall which requires all four
variables. Thus in principle these potentials are of order
three and four.

Using the concept of integral geometry, we decompose
these factors into potentials of order two. This is illustrated
in Fig. 2(b) for the case of the left wall, where

φ·,α(x,yα) = φ·,{1,2,3}(x, y1, y2, y3) =

= A·,{1,3}(x, y1, y3)−A·,{2,3}(x, y2, y3),

with A the accumulators that count features. Speaking in
colors: for a chosen layout, the area highlighted with yel-
low in Fig. 2(a) is equal to the difference between the blue
and green shaded regions in Fig. 2(b). Computation of each
region is illustrated in Fig. 2(c). Similar decompositions in
terms of two accumulators are possible for all faces, with
the exception of the front-wall which requires a larger set
of accumulators, but still decomposes into sums of pairwise
potentials. In particular,

φ·,front-wall = φ(x)−φ·,left-wall−φ·,right-wall−φ·,ceiling−φ·,floor

where each of the φ·,α is decomposed into potentials of or-
der two. φ(x) denotes a global constant potential which is
independent of the variables. It counts all the features in
the image. The vector A measures a quantity within the
respective face. For orientation maps, Ao,· is a five dimen-
sional vector counting how many pixels are assumed to cor-
respond to each cuboid face. For geometric context, Ag,·
is a six dimensional vector that counts the probability that
each pixel belongs to the different faces as well as objects.
The weight vector w measuring the importance of each fea-
ture is hence 55-dimensional. While this is the particular
choice of potentials we make in this paper, similar accumu-
lators can be used to decompose the potentials employed in
other approaches, e.g., [26].

It is important to note that we compute the accumula-
tors efficiently by sorting every pixel into a bin of an image
grid spanned by any combination of two vanishing points.
Treating these histograms as N × N sized pictures, and

computing integral images on them, provides a method that
allows to obtain the accumulators A with a complexity of
O(M + N2), with M being the number of pixels of the
image and N indicating the quantization of the histograms.

3.2. Efficient Structured Prediction

CRFs [13] and structured SVMs [22, 24] are typically
employed to solve tasks with complex dependencies be-
tween the discrete random variables. Recently, Hazan and
Urtasun [7] unified these two methods into a single struc-
tured prediction framework using the soft-max function
which smoothly approximates the hinge loss function of
structured SVMs. Given a datasetD of training pairs (x,y),
learning in this framework is done by solving the following
optimization problem

min
w

∑
(x,y)∈D

lnZε(x,y)−wTd +
C

p
||w||pp (2)

where d =
∑

(x,y)∈D φ(x,y) is the vector of empirical
means, C and p are constants, and lnZε(x,y) is the one
parameter extension of the log-partition function

lnZε(x,y) = ε ln
∑
ŷ∈Y

exp

(
`(y, ŷ) +wTφ(x, ŷ)

ε

)
(3)

with `(y, ŷ) the loss of predicting ŷ instead of y.
Interpreting the log-partition function given in Eq. (3)

as a 1
ε -norm, we observe that the optimization problem in

Eq. (2) when setting ε = 0 is given by

min
w

∑
(x,y)∈D

max
ŷ∈Y

(
`(y, ŷ) +wTφ(x, ŷ)

)
−wTd +

C

p
||w||pp

(4)
This formulation is identical to the margin rescaling ap-
proach of [24]. Hence we recover the structured SVM for
ε = 0 and the CRF when ε = 1. However, the parameter ε
is not restricted to the interval [0, 1].

Dealing with the partition function (i.e., lnZε(x,y)) is
hard, as it involves a sum or a max operation over exponen-
tially many labels. We take advantage of the primal-dual
message-passing approach of [7] to approximate the prob-
lem and solve the approximated problem exactly.

Besides the interpretation of smoothly approximating the
non-smooth max function involved in the structured SVM
objective, ε can be seen as a parameter that adjusts the ratio
between loss and regularization.

We use the per-pixel classification error (i.e., the percent-
age of pixels that have been wrongly predicted as being part
of another face) as our loss `(y, ŷ). The concept of integral
geometry introduced above allows us to also decompose the
loss into at most pairwise potentials. This is important as the
complexity of the learning depends on the order of the loss
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potentials in the same manner as it depends on the order of
the image feature potentials.

We explore extensively the influence of parameters C
and ε in our experiments below. Importantly, the decompo-
sition of the loss and the potentials in conjunction with the
structured prediction framework of [7] allow us to perform
learning with 504 possible labels in only a few minutes.

We now derive our inference algorithm for solving
Eq. (1). Exploiting the previously mentioned graphical
model structure, each element r of our feature vector
φ(x,y) = [φ1(x,y), . . . , φF (x,y)]

T can be written as

φr(x,y) =
∑
i∈Vr,x

φr,i(x, yi) +
∑

γ∈Er,x

φr,γ(x,yγ),

with F the total number of features (F = 55 in our exper-
iments), Vr,x and Er,x denoting the nodes and cliques of
the graphical model corresponding to feature r of sample x.
Relating this general notation to the example of the left wall
illustrated in Fig. 2(b), we obtain Er,x = {{1, 3}, {2, 3}}
and Vr,x = {1, 2, 3} with φr,i = 0 ∀i ∈ Vr,x and φr,γ
corresponding to entries in the respective accumulators A.
When making use of the general graphical model structure,
we can rewrite the maximization of wTφ(x,y) in Eq. (1)
as the following program

max
y

∑
i∈Vx,β:i∈Vβ,x

wβφβ,i(x, yi) +
∑

γ∈Ex,β:γ∈Eβ,x

wβφβ,γ(x,yγ),

(5)
with Vx =

⋃
r Vr,x and Ex =

⋃
r Er,x denoting the nodes

and cliques of the union hypergraph, subsuming all features
of sample x. We employ convex max product belief propa-
gation [6, 20] to optimize this problem. The complexity of
the message passing depends on the size of the potentials
being O(N2) when applying the decomposition described
previously. This is extremely efficient as inference in our
model takes on average 0.15 seconds per image.

4. Experimental Evaluation
We evaluate our approach on the data sets of [8, 9]. The

layout data set [8] contains 314 images with ground truth
annotation of layout faces. We employed the vanishing
point detection of [8], which failed in 9 training images and
was successful for all test images, 105 in total. The bed-
room data set [9] contains 309 labeled images, split into
training and test sets of size 181 and 128 respectively. In
accordance with previous work on those data sets, we use a
pixel based error measure, counting the percentage of pixel
that disagree with the provided ground truth labeling. In the
following, we first compare our approach to the state-of-the-
art and evaluate the performance on a family of (approxi-
mated) structured prediction problems [7, 24]. We then in-
vestigate the dependency of the prediction accuracy on the
training time as well as on the size of the training set, and

OM GC OM + GC
[11] - 28.9 -

[8] (a) - 26.5 -
[8] (b) - 21.2 -
[26] 22.2 - -
[15] 24.7 22.7 18.6

Ours (SVMstruct) 18.7 15.4 14.0
Ours (median struct-pred) 18.9 15.6 14.0

Ours (best struct-pred) 18.6 15.4 13.6
Table 1. Comparison to state-of-the-art that uses the same image
information on the layout data set of [8]. Pixel classification error
is given in %.

[18] [11] [8](a) Ours (best/median)
w/o box 29.59 23.04 22.94 16.46/16.93
w/ box 26.79 - 22.94 15.19/15.59

Table 2. Comparison to state-of-the-art on the bedroom data
set [9]. Pixel classification error is given in %.

provide some experiments regarding a simple object rea-
soning before concluding by showing success and failure
cases. During learning, unless otherwise stated, we use a
relative duality gap

(
primal−dual

primal

)
of 1e−5 or at most 500

iterations as stopping criteria for the optimization. All ex-
periments were performed on an 8-core, 2.4GHz Intel Xeon
CPU. We initialize the predictor w to the all ones vector.
Note that ideally the parameters C and ε should be chosen
after cross-validation. As we directly employed the features
provided by [8], which are learned on the training set, we
use the training/test set split given in [8] and [9]. We note
that the median of all the results obtain with all ranges of pa-
rameters C and ε, has a small standard deviation and com-
pares favorably to the state-of-the-art. This demonstrates
that cross-validation (if possible) will also result in state-of-
the-art performance.

Comparison to state-of-the-art: We first compare our
approach to the state-of-the-art on the layout dataset [8].
Similar to [15], we report results when using different sets
of image features, i.e., orientation maps (OM), geometric
context (GC), and both (OM+GC). We denote by [8] (a),
when the GC features are used to estimate the layout, and
by [8] (b), when the layout is used to re-estimate the GC
features, and these new features are used to improve the
layout. As shown in Tab. 1, our approach is able to sig-
nificantly outperform the state-of-the-art in all scenarios,
with our smallest error rate when using all features being
13.59%. We improve the state-of-the-art by 3.6% for the
OM features, by 5.8% for the GC features and by 5.0%
when combining both feature cues.

On the bedroom data set [9] we observe a similar effect
which is summarized in the row of Tab. 2 denoted by ‘w/o
box.’ As in this data set there are no results that distinguish
different image cues, we simply provide results using both
cues. Our approach improves state-of-the-art by 6.48%.
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HHH
HHε
C

1e2 1 1e-2 1e-4 1e-6

10.0000 30.92 17.53 13.81 14.24 14.46
1.0000 23.95 16.26 14.46 14.86 14.86
0.1000 17.64 13.69 14.83 14.80 14.80
0.0100 15.83 13.59 14.20 14.25 14.25
0.0010 15.46 13.82 14.00 13.85 13.85
0.0001 16.04 14.09 13.95 13.96 13.97
0 15.72 13.70 13.82 13.91 13.98

Table 3. Test set percentage pixel error on the layout data set [8]
when using both feature types.

H
HHHHε

C
1e2 1 1e-2 1e-4 1e-6

10.0000 27.28 19.54 17.43 16.46 16.49
1.0000 22.66 17.87 16.55 16.83 16.83
0.1000 19.41 17.43 16.74 16.91 16.96
0.0100 17.98 16.48 17.04 16.86 16.86
0.0010 17.92 17.18 16.95 16.83 16.87
0.0001 17.95 17.06 17.07 16.80 16.71
0 18.01 16.97 17.25 17.04 17.01

Table 4. Test set pixel classification error in % with both (OM)
features and (GC) on the bedroom data set of [9].

CRFs vs. structured SVMs: We next investigate the
trade-off between regularization parameter C and the
weight of the loss ε. Note that ε = 0 recovers the structured
SVM, and ε = 1 results in the CRF. The per pixel clas-
sification errors are shown in Tab. 3 for OM+GC features
on the layout dataset. For the bedroom data set results are
provided in Tab. 4. In our experiments we note an approx-
imately equal performance of CRFs and structured SVMs.
Considering ε as a weight for the loss, it is not astonish-
ing that neither CRFs nor structured SVMs achieve the best
performance. An appropriate ratio between loss and regu-
larization in the primal domain corresponds to a ratio be-
tween uncertainty+prior and moment matching in the dual
formulation. Investigating the dual therefore reveals that
an increasing weight for the moment matching (C → 0)
can reduce generalization performance. Nevertheless, large
parts of the C − ε domain show about the same accuracy.

Another learning approach: If we restrict ourselves to
ε = 0, SVMstruct [24] is a common learning alternative.
Hence, we compare our implementation of a structured
prediction algorithm to this publicly available framework,
where we applied the margin rescaling approach on the lay-
out data set. When using both OM and GC features, [24]
results in a pixel wise error of 14.0% as denoted by “Ours
(SVMstruct)” in Tab. 1. This error is consistent with the re-
sults of our implementation for ε = 0, given in Tab. 3. As
for the results presented in Tab. 3, a relative duality gap of
1e−5 was the provided stopping criterion. The implemen-
tation of [24] is not parallelized. To speed up learning, we
employ our efficient convex belief propagation implemen-
tation with integral geometry in the inner loop.

(a) (b)
Figure 3. The decrease of the error on the training and the test set
of [8] for different sizes of the training set is illustrated in (a). The
decrease of the relative duality gap is given in (b). The parameters
are ε = 0.01 and C = 1. Both, OM and GC features are used.

OM GC OM + GC
[26] 20.1 - -
[15] 19.5 20.2 16.2

Ours (SVMstruct) 17.3 14.6 13.8
Ours (best struct-pred) 17.1 14.2 12.8

Table 5. For different feature cues we compare to all state-of-the-
art using object reasoning on the layout data set [8].

Time for training and inference: We next investigate the
training time required to obtain accurate models. Fig. 3
shows the decrease of the test and training error (Fig. 3(a))
as well as the duality gap (Fig. 3(b)) as a function of time
for ε = 0.01 and C = 1. After less than 15 minutes of
training with both OM and GC features we obtain test set
errors below 14%. Less than five minutes of training are
required to outperform the state-of-the-art. If we run infer-
ence till convergence, i.e., a duality gap of less than 1e−5
or a maximum of 500 iterations, the average time to esti-
mate the 3D layout of one test set scene given the features
is 0.15 seconds. Among the 105 test images in the layout
data set, inference on eleven scenes did not converge within
500 iterations.

Training set size: Fig. 3 illustrates the behavior for dif-
ferent training set sizes. As expected, we observe that an
increasing training set size reduces the test error. The differ-
ence between 100 and 200 training instances is small. We
also note that training with less images is of course com-
putationally less expensive and lower relative duality gap
rates are obtained faster. We further show in Fig. 3(a) that
the difference between training error (dashed line) and test
error (solid line) decreases when increasing the set size.

Ground truth assignments: For learning, we need to ob-
tain ground truth states from the provided pixel labels. This
is achieved by exhaustively searching all possible state com-
binations for the best loss `(y, ŷ). Alternatively, human la-
beled ground truth could of course be leveraged. Ground
truth assignments being the best possible discretized solu-
tion are shown in blue color in Fig. 1,4,5.

Simple object reasoning: Lee et al. [15] show that rea-
soning about objects in the scene can improve performance
on the layout estimation. Therefore, we use the orientation
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(e) (f)

Figure 4. Ground truth and inference results with 16.87% and
23.17% error in (a) and (b). Our simple object reasoning improves
to the 7.80% and 10.72% error results shown in (c) and (d). The
object hypotheses are illustrated in (e) and (f).

maps to generate hypotheses of objects which are assumed
to be located on the ground plane. We create additional po-
tentials that linearly penalize the angles intersecting with
those hypothesized objects. This type of object reasoning
adds two unary and four pairwise potentials to the feature
vector, which is now 61-dimensional. Tab. 5 compares our
simple object reasoning to the more complex approaches
of [15, 26] for the layout data set. We obtain our best pre-
diction accuracy of 12.8% which improves the state-of-the-
art by 3.4%. For the bedroom data set we provide the best
result and the median in the row of Tab. 2 denoted ‘w/ box.’
Visual improvements are illustrated in Fig. 4.

Qualitative evaluation: We show qualitative results in
Fig. 5. For each scene we provide three images. The first
one shows our estimation (red) overlaying the original im-
age as well as the best ground truth labels given the de-
tected vanishing points (blue). The next two images show
color-coded OM and GC features respectively, with red,
green, blue, yellow and cyan indicating floor, front-wall,
right-wall, left-wall and ceiling. Fig. 5(k)-(l) depict failure
modes. On both data sets we identify two sources of errors,
problematic features and wrong vanishing points. A result
with a wrong vanishing point is illustrated in Fig. 5(l). Al-
though our prediction is close to ground truth, the error is
42.1%.

5. Conclusions

In this paper we have addressed the problem of recov-
ering the scene layout in the form of a 3D parametric box
given a single image. We have introduced the novel con-
cept of integral geometry and show that using this concept,
the potentials used in the literature can be decomposed into
pairwise potentials. This results in an efficient structured
prediction framework which allows to solve the problem
without any ad-hoc approximations. This is very impor-
tant in practice, as our approach significantly outperforms
the state-of-the-art in both accuracy and time. We plan to
investigate more sophisticated object models, which will
hopefully allow for navigation on indoor scenarios utilizing
only visual sensors.
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