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Current Status of your Field?
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© Part I: Deep learning
@ Part Il: Deep Structured Models
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Part I: Deep Learning
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Deep Learning

@ Supervised models
@ Unsupervised learning (will not talk about this today)

@ Generative models (will not talk about this today)
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Binary Classification

@ Given inputs x, and outputs t € {—1,1}
@ We want to fit a hyperplane that divides the space into half

v, = sign(w”x, + wo)
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Binary Classification

@ Given inputs x, and outputs t € {—1,1}

@ We want to fit a hyperplane that divides the space into half

Ve = sign(w " x, + wp)
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SVMs try to maximize the margin
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Non-linear Predictors

How can we make our classifier more powerful?
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Non-linear Predictors

How can we make our classifier more powerful?

@ Compute non-linear functions of the input

Vi = F(xs,w)
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Non-linear Predictors

How can we make our classifier more powerful?

@ Compute non-linear functions of the input
Ve = F(x*7w)

Two types of approaches:
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Non-linear Predictors

How can we make our classifier more powerful?

@ Compute non-linear functions of the input
Ve = F(x*7w)

Two types of approaches:

@ Kernel Trick: Fixed functions and optimize linear parameters on non-linear
mapping
Y. = sign(w " ¢(x..) + wo)
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Non-linear Predictors

How can we make our classifier more powerful?

@ Compute non-linear functions of the input
Ve = F(x*7w)

Two types of approaches:

@ Kernel Trick: Fixed functions and optimize linear parameters on non-linear
mapping
. = sign(w é(x.) + wo)
@ Deep Learning: Learn parametric non-linear functions

Ve = F (X4, W)
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Supervised Learning: Examples

Classification

o

dog” _(\oa“

s
o
Denoising
e‘i’é\o
(09(

OCR

0
\)
Ranzaton

R. Urtasun (UofT) Deep Structured Models August 21, 2015 8 /128



Supervised Deep Learning

Classification

“dog”

Denoising

OCR

2345 — “2345”

4
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max

@ Note: a composite of linear functions is linear!
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max

@ Note: a composite of linear functions is linear!

@ Example: 2 layer NNet

1

h h?
x—>[ max(0, W, x) ]—»[ max(0, W, h!) ]—»[ Wy h? ]—»y

R. Urtasun (UofT) Deep Structured Models August 21, 2015 9 /128



Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max

@ Note: a composite of linear functions is linear!

@ Example: 2 layer NNet

h? h?
x—>[ max(0, W, x) ]—»[ max(0, W, h!) ]—»[ Wy h? ]—»y

e X is the input
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max

@ Note: a composite of linear functions is linear!

@ Example: 2 layer NNet

h? h?
x—>[ max(0, W, x) ]—»[ max(0, W, h!) ]—»[ Wy h? ]—»y

e X is the input
e y is the output (what we want to predict)
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max

@ Note: a composite of linear functions is linear!

@ Example: 2 layer NNet

h? h?
x—>[ max(0, W, x) ]—»[ max(0, W, h!) ]—»[ Wy h? ]—»y

e X is the input
o y is the output (what we want to predict)
e h' is the i-th hidden layer
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max

@ Note: a composite of linear functions is linear!

@ Example: 2 layer NNet

h? h?
x—>[ max(0, W, x) ]—»[ max(0, W, h!) ]—»[ Wy h? ]—»y

x is the input

y is the output (what we want to predict)
h' is the i-th hidden layer

W' are the parameters of the i-th layer
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Evaluating the Function

@ Forward Propagation: compute the output given the input
2

h
x—»[ max(0, W, x) H max(0, W, h!) ]—v[ W5 h? ]—>y
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Evaluating the Function

@ Forward Propagation: compute the output given the input

h2
x—»[ max(0, W, x) H max(0, W, h!) ]—v[ W5 h? ]—>y

@ Fully connected layer: Each hidden unit takes as input all the units from
the previous layer
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Evaluating the Function

@ Forward Propagation: compute the output given the input

h2
x—»[ max(0, W, x) H max(0, W, h!) ]—v[ W5 h? ]—>y

@ Fully connected layer: Each hidden unit takes as input all the units from
the previous layer

@ The non-linearity is called a ReLU (rectified linear unit), with x € RP,
b’ € RNi the biases and W' € RVi*Ni-1 the weights
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Evaluating the Function

@ Forward Propagation: compute the output given the input

h2
x—»[ max(0, W, x) H max(0, W, h!) ]—v[ W5 h? ]—>y

@ Fully connected layer: Each hidden unit takes as input all the units from
the previous layer

@ The non-linearity is called a ReLU (rectified linear unit), with x € RP,
b’ € RNi the biases and W' € RVi*Ni-1 the weights

@ Do it in a compositional way,

h! = max(0, W'x + b')
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Evaluating the Function

@ Forward Propagation: compute the output given the input

hl
x—»[ max(0, W;"x) ]—v[ max(0, W, h!) [ W5 h? ]—»Y

@ Fully connected layer: Each hidden unit takes as input all the units from
the previous layer

@ The non-linearity is called a ReLU (rectified linear unit), with x € RP,
b’ € RNi the biases and W' € RNi*Ni—1 the weights

@ Do it in a compositional way

h! = max(0, Wx + b*)
h? = max(0, W?h! + b?)
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Evaluating the Function

@ Forward Propagation: compute the output given the input

h? h?
x—»[ max(0, W;"x) ]—»[ max(0, W, h!) ]—v[ W5 h? ]—».

@ Fully connected layer: Each hidden unit takes as input all the units from
the previous layer

@ The non-linearity is called a ReLU (rectified linear unit), with x € RP,
b" € RN the biases and W' € RN*Ni-1 the weights

@ Do it in a compositional way
h! = max(0, Wx + b*)
h? max(0, W?h! + b?)
y max(0, W3h? + b*)
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Alternative Graphical Representation
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Relu Interpretation

@ Piece-wise linear tiling: mapping is locally linear.

Figure : by M. Ranzato
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Why Hierarchical?

Interpretation

1100010100001 101...] motorbike

0010000100110010...] tuek

15
Ranzaton
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Why Hierarchical?

Interpretation

prediction Aof class

high-level | 2
parts |68 cec (0

= distributed representations
= feature sharing
= compositionality

mid-level
parts

low level
parts

Input image

e 16
Lee et al. “Convolutional DBN's ...” ICML 2009 Ranzaton
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2

h! h
x—»[ max(0, W;"x) ]—»[ max(0, W, h?) ]—»[ Wy h? ]—>y
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h! h?
x—»[ max(0, W;"x) ]—»[ max(0, W, h?) ]—»[ Wy h? ]—>y

@ We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions
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h! h?
x—»[ max(0, W;"x) ]—»[ max(0, W, h?) ]—»[ Wy h? ]—>y

@ We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

@ Collect a training set of input-output pairs {x, t}
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h! h?
x—»[ max(0, W;"x) ]—»[ max(0, W, h?) ]—»[ Wy h? ]—>y

@ We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

@ Collect a training set of input-output pairs {x, t}

@ Encode the output with 1-K encoding t = [0,--- ,1,---,0]
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h! h?
x—»[ max(0, W;"x) ]—»[ max(0, W, h?) ]—»[ Wy h? ]—>y

We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

Collect a training set of input-output pairs {x, t}
Encode the output with 1-K encoding t = [0,--- ,1,---,0]
Define a loss per training example and minimize the empirical risk

N
L(w) = % Zﬁ(w, x4 R(w)

i=1

with N number of examples, R a regularizer, and w contains all parameters
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2

h! h
x—»[ max(0, W;"x) ]—v[ max(0, W, h?) ]—»[ Wy h? ]—>y

@ We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

Collect a training set of input-output pairs {x, t}

Encode the output with 1-K encoding t = [0,--- ,1,---,0]

@ Define a loss per training example and minimize the empirical risk

N
1 o
_ (i) (1)
L(w) = N El w,x', t) + R(w)
i—
with N number of examples, R a regularizer, and w contains all parameters

@ What do we want to use as ¢?

R. Urtasun (UofT) Deep Structured Models August 21, 2015 17 / 128



h! h?
x—»[ max(0, W;"x) ]—v[ max(0, W, h?) ]—»[ Wy h? ]—>y

@ We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

Collect a training set of input-output pairs {x, t}

Encode the output with 1-K encoding t = [0,--- ,1,---,0]
@ Define a loss per training example and minimize the empirical risk
L
L(w) = N Zlﬁ(w, xt0)) 4 R(w)
=
with N number of examples, R a regularizer, and w contains all parameters

@ What do we want to use as ¢?

The task loss: how we are going to evaluate at test time
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Loss Functions

L(w) = % 3 bl x, 1) + R(w)
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Loss Functions

L(w) = % 3 bl x, 1) + R(w)

@ The task loss is too difficult to compute, so one uses a surrogate that its
typically convex
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Loss Functions

L(w) = % 3 bl x, 1) + R(w)

@ The task loss is too difficult to compute, so one uses a surrogate that its
typically convex

@ Probability of class k given input (softmax):

plec = 11x) = )

Zj:l exp(y))
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Loss Functions

L(w) = % 3 bl x, 1) + R(w)

@ The task loss is too difficult to compute, so one uses a surrogate that its
typically convex

@ Probability of class k given input (softmax):

p(ch = 1x) = ?XP(Yk)

Zj:l exp(y))
@ Cross entropy is the most used loss function for classification

f(x, t, W) = - Z t(i) |0g p(C,'|X)

i
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Loss Functions

L(w) = % 3 bl x, 1) + R(w)

@ The task loss is too difficult to compute, so one uses a surrogate that its
typically convex

@ Probability of class k given input (softmax):

p(ch = 1x) = ?XP(Yk)

Zj:1 exp(y))
@ Cross entropy is the most used loss function for classification

f(x, t, W) = - Z t(i) |0g p(C,'|X)

@ Use gradient descent to train the network

.1 G
min Zf(w,x( ), ) + R(w)
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule
2

; g™
x—»[ max(0, W;"x) ]—v[ max(0, W, h!) ]—v[ W5 h? ]<—y

R. Urtasun (UofT) Deep Structured Models August 21, 2015 19 / 128



Backpropagation

@ Efficient computation of the gradients by applying the chain rule

: ™
x—»[ max(0, W;"x) ]—v[ max(0, W, h!) ]—v[ W5 h? ]<—y
ex
plo—1x) = —° P(y«)

> j—1exp(y))
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

; g™
x—»[ max(0, W;"x) ]—v[ max(0, W, h!) ]—v[ W5 h? ]<—y

exp(y«)
C
> j—1exp(y))
(x, t,w) = —> tWlog p(cilx)

plac=1) =
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule
2

: e
x—»[ max(0, W;"x) ]—v[ max(0, W, h!) ]—v[ W5 h? ]<—y

exp(y«)
C
> j—1exp(y))
(x, t,w) = —> tWlog p(cilx)

plac=1) =

@ Compute the derivative of loss w.r.t. the output

ov
g, Pl -t
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule
2

: e
x—»[ max(0, W;"x) ]—v[ max(0, W, h!) ]—v[ W5 h? ]<—y

exp(y«)
C
> j—1exp(y))
(x, t,w) = —> tWlog p(cilx)

plac=1) =

@ Compute the derivative of loss w.r.t. the output

ov
g, Pl -t

@ Note that the forward pass is necessary to compute %
y
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

ov

ows
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

ar 9 dy
W3 ~ Dy ow3
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

or ol oy

57 = 5y i = (Pleb) — )T
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

or ol Oy

57 = 5y i = (Pleb) — )T
or

oh2
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

or ot Oy

57 = 5y i = (Pleb) — )T
o _ oty _

ohz ~ 9y oh?
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

or ol Jdy
57 = 5y i = (Pleb) — )T
o Aty

o0 = oy oz = W) (p(eb) — 1
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ W5 h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

or ol Oy
57 = 5y i = (Pleb) — )T

o ot dy

o0 = oy oz = W) (p(eb) — 1

@ Need to compute gradient w.r.t. inputs and parameters in each layer
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

ol o
oh? Oy

max(0, W, h') J Wih? |«—y

X —>[ max(0, W, x) ]

o oty

30 = oy oz = W) (p(ebo) — 1

@ Given % if we can compute the Jacobian of each module
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

ol o
oh? Oy

max(0, W, h') J Wih? |«—y

X —>[ max(0, W, x) ]

ot ol o
o0t = oy b = W (pleb) — 1)

@ Given % if we can compute the Jacobian of each module

or

ow?2
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

ol o
oh? Oy

max(0, W, h') J Wih? |«—y

X —>[ max(0, W, x) ]

ot ol dy T
ohe = 5y e = (W) (e(eh) — )
@ Given % if we can compute the Jacobian of each module

ot ot on?
OW?2 ~ 9h2 W2

R. Urtasun (UofT) Deep Structured Models August 21, 2015 21/



Backpropagation

@ Efficient computation of the gradients by applying the chain rule

ol o
oh? Oy

max(0, W, h') J Wih? |«—y

X —>[ max(0, W, x) ]

ot ol o
o0t = oy b = W (pleb) — 1)

@ Given % if we can compute the Jacobian of each module

ot ot on?
OW?2 ~ 9h2 W2

ov

ohl
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

ol o
oh? Oy

max(0, W, h') J Wih? |«—y

X —>[ max(0, W, x) ]

ot ol o
o0t = oy b = W (pleb) — 1)

@ Given % if we can compute the Jacobian of each module

ot ot on?
OW?2 ~ 9h2 W2

ov ol Oh?

Ohl ~ Oh2 ohl
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Gradient Descent

@ Gradient descent is a first order method, where one takes steps proportional
to the negative of the gradient of the function at the current point

Xpt1 = Xp — YnV F(Xp)

@ Example: f(x) = x* —3x3+2
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Learning via Gradient Descent

@ Use gradient descent to train the network

N
Z O(w, x| t0) 4 R(w)
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Learning via Gradient Descent

@ Use gradient descent to train the network

N
Z O(w, x| tD) 4 R(w)

@ We need to compute at each iteration

Wpi1 = Wy — ’anL(Wn)
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Learning via Gradient Descent

@ Use gradient descent to train the network

N
Z O(w, x| tD) 4 R(w)

@ We need to compute at each iteration

Wpi1 = Wy — ’anL(Wn)

@ Use the backward pass to compute VL(w,) efficiently
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Learning via Gradient Descent

@ Use gradient descent to train the network

N
Z O(w, x| tD) 4 R(w)

@ We need to compute at each iteration

Wpi1 = Wy — ’anL(Wn)

@ Use the backward pass to compute VL(w,) efficiently

@ Recall that the backward pass requires the forward pass first
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Toy Code (Matlab): Neural Net Trainer

% F-PROP
for i =1 : nr_layers -1
[h{i} Jac{i}] = nonlinearity(W{i} * h{i-1} + b{i});
end
h{nr_layers-1} = W{nr_layers-1} * h{nr_layers-2} + b{nr_layers-1};
prediction = softmax(h{l-1});

% CROSS ENTROPY LOSS

loss = - sum(sum(log(prediction) .* target)) / batch_size;
% B—-PROP
dh{l-1} = prediction - target;
for i = nr_layers - 1 : -1 : 1
Wgrad{i} dh{i} * h{i-1}"';

bgrad{i} sum(dh{i}, 2);
dh{i-1} = (W{i}' * dh{i}) .* Jjac{i-1};
end
% UPDATE
for i =1 : nr_layers - 1
W{i} = W{i} - (lr / batch_size) * Wgrad{i};
b{i} = b{i} - (lr / batch_size) * bgrad{i};
end

28
Ranzaton

R. Urtasun (UofT) Deep Structured Models August 21, 2015 24 /128



Dealing with Big Data

@ We need to compute at each iteration

Whi1 =W, — v, VL(w,)
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Z Dty 4 YR(w)

@ Too expensive when having millions of examples
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Dealing with Big Data

@ We need to compute at each iteration
Whi1 =W, — v, VL(w,)

with

N
Z Dty 4 YR(w)

2 \

@ Too expensive when having millions of examples

@ Instead approximate the gradient with a mini-batch (subset of examples)

NZVEWX A )~Z|5|V€(w x( ¢y

i=1 €S
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Dealing with Big Data

@ We need to compute at each iteration
Whi1 =W, — v, VL(w,)

with

N
Z Dty 4 YR(w)

2 \

@ Too expensive when having millions of examples

@ Instead approximate the gradient with a mini-batch (subset of examples)

NZVEWX A )~Z|5|V€(wx ,t1)

i=1 €S

@ This is called stochastic gradient descent
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Stochastic Gradient Descent with Momentum

@ Stochastic Gradient Descent update
Wpt1 = Wp — ’YnVL(Wn)

with
Z —V(w,xD t0)) 4 VR(w)
IES
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Stochastic Gradient Descent with Momentum

@ Stochastic Gradient Descent update

Wpi1 =W, — 7, VL(w,)

with

Z —V(w,xD t0)) 4 VR(w)
IES

@ We can also use momentum

w — w-—~A
A +— KA+VL
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Stochastic Gradient Descent with Momentum

@ Stochastic Gradient Descent update

Wpi1 =W, — 7, VL(w,)

with

Z —V(w,xD t0)) 4 VR(w)
IES

@ We can also use momentum

w — w-—~A
A +— KA+VL

@ Many other variants exist
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How to deal with large Input Spaces

@ Images can have millions of pixels, i.e., x is very high dimensional

R. Urtasun (UofT) Deep Structured Models August 21, 2015 27 /128



How to deal with large Input Spaces

@ Images can have millions of pixels, i.e., x is very high dimensional

@ Prohibitive to have fully-connected layer

R. Urtasun (UofT) Deep Structured Models August 21, 2015 27 /128



How to deal with large Input Spaces

@ Images can have millions of pixels, i.e., x is very high dimensional
@ Prohibitive to have fully-connected layer

@ We can use a locally connected layer

R. Urtasun (UofT) Deep Structured Models August 21, 2015 27 /128



How to deal with large Input Spaces

@ Images can have millions of pixels, i.e., x is very high dimensional
@ Prohibitive to have fully-connected layer
@ We can use a locally connected layer

@ This is good when the input is registered
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Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., “
face recognition). Ranzatolld
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Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., 35
face recognition). Ranzatolld
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Convolutional Neural Net

@ lIdea: statistics are similar at different locations (Lecun 1998)

@ Connect each hidden unit to a small input patch and share the weight across
space

@ This is called a convolution layer and the network is a convolutional
network

Share the same parameters across
different locations (assuming input is
stationary):
Convolutlons with learned kernels

38
Ra nzato“
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Convolutional Layer

Ranzaton
K
n __ n—1 n
h} = max(0, g he™ " * wi)
k=1
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Convolutional Layer
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Convolutional Layer

Ranzaton
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h} = max(0, g he™ " * wi)
k=1
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Convolutional Layer
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R. Urtasun (UofT)

Convolutional Layer

Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
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Pooling Layer

By “pooling” (e.g., taking max) filter
responses at different locations we gain
robustness to the exact spatial location
of features.

61
Ranzaton
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Pooling Options

@ Max Pooling: return the maximal argument
@ Average Pooling: return the average of the arguments

@ Other types of pooling exist: L, pooling
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Pooling Layer: Receptive Field Size

hn hn+l
Conv. Pool.
layer layer

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

hn—l

67
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Now let's make this very deep
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Convolutional Neural Networks (CNN)

@ Remember from your image processing / computer vision course about
filtering?
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Convolutional Neural Networks (CNN)

@ If our filter was [—1, 1], we got a vertical edge detector
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Convolutional Neural Networks (CNN)

@ Now imagine we want to have many filters (e.g., vertical, horizontal, corners,
one for dots). We will use a filterbank.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]

R. Urtasun (UofT) Deep Structured Models August 21, 2015 42 /128



Convolutional Neural Networks (CNN)

@ So applying a filterbank to an image yields a cube-like output, a 3D matrix
in which each slice is an output of convolution with one filter.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this?

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this? To get invariance to small shifts in position.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ Now add another “layer” of filters. For each filter again do convolution, but
this time with the output cube of the previous layer.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ Keep adding a few layers. Any idea what's the purpose of more layers? Why
can't we just have a full bunch of filters in one layer?

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ In the end add one or two fully (or densely) connected layers. In this layer,
we don't do convolution we just do a dot-product between the “filter” and
the output of the previous layer.

A _Krizhevsk
Deep Structured Models August 21, 2015 42 /128
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Convolutional Neural Networks (CNN)

@ Add one final layer: a classification layer. Each dimension of this vector
tells us the probability of the input image being of a certain class.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ The trick is to not hand-fix the weights, but to train them. Train them such
that when the network sees a picture of a dog, the last layer will say “dog”.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ Or when the network sees a picture of a cat, the last layer will say “cat”.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ Or when the network sees a picture of a boat, the last layer will say
“boat”... The more pictures the network sees, the better.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Classification

@ Once trained we feed in an image or a crop, run through the network, and
read out the class with the highest probability in the last (classif) layer.

[Slide Credit: Sanja Fidler]
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Classification Performance

@ Imagenet, main challenge for object classification: http://image-net.org/

@ 1000 classes, 1.2M training images, 150K for test
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http://image-net.org/

Architecture for Classification

input
Krizhevsky et al. “ImageNet Classification wlltlﬂpéjeep CNNs” NIPS 2012
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Architecture for Classification
Total nr. flops: 832M

Total nr. params: 60M
4M

16M
37M

442K

1.3M
884K

307K

35K

input
Krizhevsky et al. “ImageNet Classification wlltlﬂpéjeep CNNs” NIPS 2012
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The 2012 Computer Vision Crisis
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Neural Networks as Descriptors

@ What vision people like to do is take the already trained network (avoid one
week of training), and remove the last classification layer. Then take the top
remaining layer (the 4096 dimensional vector here) and use it as a descriptor
(feature vector).

[Slide Credit: Sanja Fidler]
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@ Now train your own classifier on top of these features for arbitrary classes.
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@ Now train your own classifier on top of these features for arbitrary classes.

@ This is quite hacky, but works miraculously well.
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Neural Networks as Descriptors

@ What vision people like to do is take the already trained network, and
remove the last classification layer. Then take the top remaining layer (the
4096 dimensional vector here) and use it as a descriptor (feature vector).

@ Now train your own classifier on top of these features for arbitrary classes.
@ This is quite hacky, but works miraculously well.

@ Everywhere where we were using SIFT (or anything else), you can use NNs.
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Caltech Results

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013
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Caltech Results

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013
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@ For classification we feed in the full image to the network. But how can we
perform detection?
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The Era Post-Alex Net: PASCAL VOC detection

R-CNN: Regions with CNN features
—m3 ] warped region

N

,| :
_______________ CNN™y :

1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

@ Extract object proposals with bottom up grouping

@ and then classify them using your big net
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Detection Performance

(] PASCAL VOC Cha"enge: http://pascallin.ecs.soton.ac.uk/challenges/VOC/.

Figure : PASCAL has 20 object classes, 10K images for training, 10K for test
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Detection Performance a Year Ago: 40.4%

A year ago, no networks:

@ Results on the main recognition benchmark, the PASCAL VOC challenge.

Figure : Leading method segDPM (ours). Those were the good times...

S. Fidler, R. Mottaghi, A. Yuille, R. Urtasun, Bottom-up Segmentation for Top-down Detection, CVPR'13
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The Era Post-Alex Net: PASCAL VOC detection
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http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=6&compid=4

So Neural Networks are Great

@ So networks turn out to be great.

Everything is deep, even if it's shallow!

@ Companies leading the competitions: ImageNet, KITTI, but not yet PASCAL

At this point Google, Facebook, Microsoft, Baidu “steal” most neural
network professors from academia.

@ --- and a lot of our good students :(
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So Neural Networks are Great

@ But to train the networks you need quite a bit of computational power. So
what do you do?
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So Neural Networks are Great

@ Buy even more.
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So Neural Networks are Great

@ And train more layers. 16 instead of 7 before. 144 million parameters.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]

Figure : K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition. arXiv 2014
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The Era Post-Alex

Net: PASCAL VOC detection

R. Urtasun (UofT)

Fast R-CNN + YOLO 17
Fast R-CNN VGG16 extra data 7
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R-CNN (bbox reg)
R-CNN 7]

poselets [7]
Head-Detect-Segment (7]
BERKELEY POSELETS !l

** |JC|_LSVM-MDPM-10X ** [7]
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What if we Want Semantic Segmentation?
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What if we Want Semantic Segmentation?

@ Every layer, even fully connected can be treated as a convolutional layer, and
then we can deal with arbitrary dimensions of the input

R. Urtasun (UofT) Deep Structured Models August 21, 2015 58 / 128



What if we Want Semantic Segmentation?

@ Every layer, even fully connected can be treated as a convolutional layer, and
then we can deal with arbitrary dimensions of the input

@ The network can work on super pixels, or can directly operate in pixels

R. Urtasun (UofT) Deep Structured Models August 21, 2015 58 / 128



What if we Want Semantic Segmentation?

@ Every layer, even fully connected can be treated as a convolutional layer, and
then we can deal with arbitrary dimensions of the input

@ The network can work on super pixels, or can directly operate in pixels

@ Due to pooling, the output is typically lower dimensional than the input, use
interpolation.

R. Urtasun (UofT) Deep Structured Models August 21, 2015 58 / 128



What if we Want Semantic Segmentation?

@ Every layer, even fully connected can be treated as a convolutional layer, and
then we can deal with arbitrary dimensions of the input

@ The network can work on super pixels, or can directly operate in pixels

@ Due to pooling, the output is typically lower dimensional than the input, use
interpolation.

@ PASCAL VOC, 65% IOU

R. Urtasun (UofT) Deep Structured Models August 21, 2015 58 / 128



What if we Want Semantic Segmentation?

@ Every layer, even fully connected can be treated as a convolutional layer, and
then we can deal with arbitrary dimensions of the input

@ The network can work on super pixels, or can directly operate in pixels

@ Due to pooling, the output is typically lower dimensional than the input, use
interpolation.

@ PASCAL VOC, 65% IOU

@ More to come in Part Il
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Practical Tips
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How to choose Hyperparameters?

@ Hyperparameters: architecture, learning rate, num layers, num features, etc
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How to choose Hyperparameters?

@ Hyperparameters: architecture, learning rate, num layers, num features, etc
@ How to choose them?

@ Cross-validation
@ Grid search (need lots of GPUs)
© Random [Bergstra & Bengio JMLR 2012]
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How to choose Hyperparameters?

@ Hyperparameters: architecture, learning rate, num layers, num features, etc
@ How to choose them?

@ Cross-validation

@ Grid search (need lots of GPUs)

© Random [Bergstra & Bengio JMLR 2012]
@ Bayesian optimization [Whetlab Toronto]
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@ ALWAYS check gradients numerically by finite differences!
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@ ALWAYS check gradients numerically by finite differences!
@ Measure error on both training and validation set, NEVER TEST
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@ ALWAYS check gradients numerically by finite differences!
@ Measure error on both training and validation set, NEVER TEST

@ Test on a small subset of the data and check that you can over fit (i.e., error
— 0)
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@ ALWAYS check gradients numerically by finite differences!
@ Measure error on both training and validation set, NEVER TEST

@ Test on a small subset of the data and check that you can over fit (i.e., error
— 0)

@ Visualize features (feature maps need to be uncorrelated) and have high
variance.

(good) e (bad)

Figure : from M. Ranzato
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@ ALWAYS check gradients numerically by finite differences!
@ Measure error on both training and validation set, NEVER TEST

@ Test on a small subset of the data and check that you can over fit (i.e., error
— 0)

@ Visualize features (feature maps need to be uncorrelated) and have high
variance.

@ Visualize parameters

too noisy too correlated lack structure

Figure : from M. Ranzato
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What if it doesn't work?

@ Training diverges
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What if it doesn't work?

@ Training diverges

e Decrease learning rate
o Check gradients

@ Parameters collapse / loss is minimized but accuracy is low

o Appropriate loss function?
e Does loss-function have degenerate solutions?
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What if it doesn't work?

@ Training diverges

e Decrease learning rate
o Check gradients

@ Parameters collapse / loss is minimized but accuracy is low

o Appropriate loss function?
e Does loss-function have degenerate solutions?

@ Network is underperforming

o Make it bigger
e Visualize hidden units/params and fix optimization

@ Network is too slow

o GPU distrib. framework, make net smaller

[Slide credit: M. Ranzato]
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Improving Generalization

o Weight sharing (Reduce the number of parameters)
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Improving Generalization

o Weight sharing (Reduce the number of parameters)

e Data augmentation (e.g., jittering, noise injection, tranformations)

@ Dropout [Hinton et al.]: randomly drop units (along with their
connections) from the neural network during training. Use for the
fully connected layers only

@ Regularization: Weight decay (L2, L1)

@ Sparsity in the hidden units

o Multi-task learning

[Slide credit: M. Ranzato]
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@ Torch7: learning library that supports neural net training
http://www.torch.ch

http://code.cogbits.com/wiki/doku.php (tutorial with demos by C.
Farabet)
https://github.com/sermanet/OverFeat

@ Python-based learning library (U. Montreal)
http://deeplearning.net/software/theano/ (does automatic
differentiation

o Efficient CUDA kernels for ConvNets (Krizhevsky)
code.google.com/p/cuda-convnet

o Caffe (Yangging Jia)
http://caffe.berkeleyvision.org

@ Deep Structured Models
http://www.alexander-schwing.de/ (soon available)

[Slide Credit: M. Ranzato]
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Part Il: Deep Structured Learning
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Your current Status?
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What's next?
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What's next?

@ Theoretical Understanding
@ Unsupervised Learning
© Structured models
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ructure!

@ Many Vision Problems are complex and involve predicting many random
variables that are statistically related

Scene understanding Tag prediction Segmentation

X = image X = image X = image

y : room layout y : tag "combo” y : segmentation
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Deep Learning

@ Complex mapping F(x,y,w) to predict output y given input x through a
series of matrix multiplications, non-linearities and pooling operations

Figure : Imagenet CNN [Krizhevsky et al. 13]
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Deep Learning

@ Complex mapping F(x,y,w) to predict output y given input x through a
series of matrix multiplications, non-linearities and pooling operations

Figure : Imagenet CNN [Krizhevsky et al. 13]

@ We typically train the network to predict one random variable (e.g.,
ImageNet) by minimizing cross-entropy

@ Multi-task extensions: sum the loss of each task, and share part of the
features (e.g., segmentation)

@ Use an MRF as a post processing step
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PROBLEM: How can we take into account complex dependencies when
predicting multiple variables?
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PROBLEM: How can we take into account complex dependencies when
predicting multiple variables?

SOLUTION: Graphical models
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Graphical Models

@ Convenient tool to illustrate dependencies among random variables

E(y) = =2 fiv) = D> fUiy) = > falya)

ijeE @
—_—

unaries pairwise high—order

OO
OO
oo o,

@ Widespread usage among different fields: vision, NLP, comp. bio, - --

Pairwise
Potential
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Compact Notation

@ In Computer Vision we usually express

Ely) = = 2_fil) = > Fliy) = D falya)

ijeE
—_—
unaries pairwise high—order
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—_—
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Compact Notation

@ In Computer Vision we usually express

Ely) = = 2_fil) = > Fliy) = D falya)

ijeE
—_—
unaries pairwise high—order

For the purpose of this talk we are going to use a more compact notation

E(y,w) == filyr,w)

rerR

@ ris a region and R is the set of all regions

y, is of any order

The functions f, are a function of parameters w
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Continuous vs Discrete MRFs

E(y,W) = Z fr(th)

reR

@ Discrete MRFs: @ Continuous MRFs:
yi€{l,---, G} YieYCR

@ Hybrid MRFs with continuous and discrete variables
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Continuous vs Discrete MRFs

E(y,W) = Z fr(th)

reR

@ Discrete MRFs: @ Continuous MRFs:
yi€{l,---, G} YieYCR

@ Hybrid MRFs with continuous and discrete variables

@ Today's talk: only discrete MRFs
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Probabilistic Interpretation

@ The energy is defined as

E(Y7w) = *F(y,W) = - Z fr(yraw)

reR
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Probabilistic Interpretation

@ The energy is defined as

E(Y7W) = *F(y,W) = - Z fr(yraw)

reR

@ We can construct a probability distribution over the outputs

ply;w) = %eXp (Z fr(yr,W)>

reR

with Z(w) = 37 exp (3=, cx fr(yr, w)) the partition function
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Probabilistic Interpretation

@ The energy is defined as

E(Y7W) = *F(y,W) = - Z fr(yraw)

reR

@ We can construct a probability distribution over the outputs
py;w) *eXP (Zf Yr,w )
reR

with Z(w) = 37 exp (3=, cx fr(yr, w)) the partition function
@ CRFs vs MRFs

plylx;w) =

j e (Zf X, Yr, W )

rer

with Z(x,w) =3 exp (3,er fr(x, yr,w)) the partition function
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Inference Tasks

@ MAP: maximum a posteriori estimate, or minimum energy configuration

= fr r
y' =argmaxy_ f(y,,w)
reR
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@ Probabilistic Inference: We might want to compute p(y,) for any possible
subset of variables r, or p(y,|y,) for any subset r and p
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Inference Tasks

@ MAP: maximum a posteriori estimate, or minimum energy configuration

= ﬂ' r
y' =argmaxy_ f(y,,w)
reR

@ Probabilistic Inference: We might want to compute p(y,) for any possible
subset of variables r, or p(y,|y,) for any subset r and p

@ M-best configurations (e.g., top-k)

Very difficult tasks in general (i.e., NP-hard). Some exceptions, e.g., low-tree
width models and binary MRFs with sub-modular energies
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Learning in CRF

@ Given a training set of N pairs (x,y) € D, we want to estimate the functions
fr(x,yr, W)

@ As these functions are parametric, this is equivalent to estimating w
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Learning in CRF

@ Given a training set of N pairs (x,y) € D, we want to estimate the functions
fr(x,yr, W)

@ As these functions are parametric, this is equivalent to estimating w

@ We would like to do this by minimizing the empirical loss

mm* Z gtaskxy, )

(7y )ED

where £;4 is the loss that we'll be evaluated on
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Learning in CRFs

@ Given a training set of N pairs (x,y) € D, we want to estimate the functions
fr(x,yr, W)

@ As these functions are parametric, this is equivalent to estimating w
@ We would like to do this by minimizing the empirical loss
mm N Z gtask X Y, W )
( x,y)€D

where £;4 is the loss that we'll be evaluated on

@ Very difficult, instead we minimize the sum of a surrogate (typically convex)
loss and a regularizer

m|n R(w) + Z (x,y,w

(xy )eED
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More on Learning in CRFs

@ Given a training set of N pairs (x,y) € D, we want to estimate the functions
fr(y, x, w)
@ Minimize a surrogate (typically convex) loss and a regularizer

m|n R(w —1—— Z I(x,y,w)
(7yeD
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More on Learning in CRFs

@ Given a training set of N pairs (x,y) € D, we want to estimate the functions
fr(y, x, w)
@ Minimize a surrogate (typically convex) loss and a regularizer

m|n R(w —|— — Z (x,y,w
( x,y)€D
@ The surrogate loss 7: hinge-loss, log-loss
ZIog(xv y, W) =—In Px,y(y; W)'
Chinge(x,y, w) = max {£(y,§) —w O(x,§) +w O(x,y)}
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More on Learning in CRFs

@ Given a training set of N pairs (x,y) € D, we want to estimate the functions
fr(y, x, w)
@ Minimize a surrogate (typically convex) loss and a regularizer

m|n R(w —1—— Zﬁxy,
(7yeD

@ The surrogate loss 7: hinge-loss, log-loss

ZIog(xv y, W) =—In px,y(y; W)
Zhinge(xa Y, W) = ?eaj)i( {E(ya 9) - WTCD(X, 9) + WTq)(xv y)}

@ The assumption is that the model is log-linear
E(X, y, W) = —F(X, y, W) = _WT(b(x? y)
and the features decompose in a graph

wio(x,y) =Y w/é(x.y)

rer
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PROBLEM: How can we remove the log-linear restriction?
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PROBLEM: How can we remove the log-linear restriction?

SOLUTION: Deep Structured Models
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With Pictures ;)
@ Standard CNN

CNN
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With Pictures ;)

CNN

@ Standard CNN

@ Deep Structured Models

CNN; CNN; CNN3
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Probability of a configuration y:
p(y | x;w) = _1 exp F(x,y,w)
y 1 Z( , ) ’y’

Z(x,w) = 3 exp F(x, §,w)
yey
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Probability of a configuration y:
p(y | x;w) = _1 exp F(x,y,w)
y ' Z( , ) ’y’

Z(x,w) = > exp F(x,9,w)
yey
Maximize the likelihood of training data via

*

w* = argmax H p(y|x; w)
(x,y)eD

= argmax Z F(x,y,w)—InZexp F(x,y,w)
¥ (yen jey
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Probability of a configuration y:

p(y | x;w) = exp F(x,y,w)

_t
Z(x,w)

Z(x,w) = 3 exp F(x, §,w)
yey

Maximize the likelihood of training data via

*

w* = argmax H p(y|x; w)
(x,y)eD

= argmax Z F(x,y,w)—InZexp F(x,y,w)
¥ (yen jey

Maximum likelihood is equivalent to maximizing cross-entropy when the target
distribution p(xy)tg(¥) = 6(y =y)
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Gradient Ascent on Cross Entropy

Program of interest:

max > Ply(§)Inp(d | xw)

(x,y)€D.§

Optimize via gradient ascent

a G A
ow Z Pixy),te(¥) Inp(Y | x; w)

- Z (P(x,y) wg(9) = p(Y [ x; W)) %F(y,x,w)

([ Fg.xw)| = B | g FOx )]

moment matching

@ Compute predicted distribution p(§ | x; w)

@ Use chain rule to pass back difference between prediction and observation
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Deep Structured Learning (algo 1)

[Peng et al. NIPS'09]

Repeat until stopping criteria

© Forward pass to compute F(y, x,w)
@ Compute p(y | x,w)

© Backward pass via chain rule to obtain gradient

@ Update parameters w
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[Peng et al. NIPS'09]

Repeat until stopping criteria

© Forward pass to compute F(y, x,w)
@ Compute p(y | x,w)

© Backward pass via chain rule to obtain gradient

@ Update parameters w

What is the PROBLEM?
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Deep Structured Learning (algo 1)

[Peng et al. NIPS'09]

Repeat until stopping criteria

© Forward pass to compute F(y, x,w)
@ Compute p(y | x,w)

© Backward pass via chain rule to obtain gradient

@ Update parameters w

What is the PROBLEM?

@ How do we even represent F(y,x,w) if ) is large?

@ How do we compute p(y | x,w)?
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Use the Graphical Model Structure

@ Use the graphical model F(y,x,w) =>", f(y, x,w)

6 G A
ow Z Px.y)te(¥) In p(¥ | x; w)
(x,y)€D.§
0 R 9 X
= Z (EP(X'Y)’r'tg |:8VV fr(yr, X, W):| - IEF‘(X,y),r |:6VV fr(y” X7 W):| )
(x,y)ED,r
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Use the Graphical Model Structure

@ Use the graphical model F(y,x,w) =>", f(y, x,w)
0

ow Z Px.y)te(¥) In p(¥ | x; w)
(x,y)€D.§
0 R 9 X
= Z (EP(X'Y)’r'tg |:8VV fr(yr, X, W):| B IEF‘(X,y),r |:6VV fr(y” X, W):| )
(x,y)ED,r

@ Approximate marginals p,(¥,|x,w) via beliefs b,(y,|x,w) computed by:

e Sampling methods
e Variational methods
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Deep Structured Learning (algo 2)

[Schwing & Urtasun Arxiv'15, Zheng et al. Arxiv'15]

Repeat until stopping criteria

@ Forward pass to compute the 7 (y,, x,w)

@ Compute the b,(y, | x,w) by running
approximated inference

© Backward pass via chain rule to obtain gradient

© Update parameters w
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Deep Structured Learning (algo 2)

[Schwing & Urtasun Arxiv'15, Zheng et al. Arxiv'15]

Repeat until stopping criteria

@ Forward pass to compute the 7 (y,, x,w)

@ Compute the b,(y, | x,w) by running
approximated inference

© Backward pass via chain rule to obtain gradient

© Update parameters w

PROBLEM: We have to run inference in the graphical model every time we want
to update the weights
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How to deal with Big Data

Dealing with large number |D| of training examples:
@ Parallelized across samples (any number of machines and GPUs)

@ Usage of mini batches
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How to deal with Big Data

Dealing with large number |D| of training examples:
@ Parallelized across samples (any number of machines and GPUs)

@ Usage of mini batches

Dealing with large output spaces ):
@ Variational approximations

@ Blending of learning and inference
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Approximated Deep Structured Learning

[Schwing & Urtasun Arxiv'15]

Sample parallel implementation:

Partition data D onto compute nodes
Repeat until stopping criteria

© Each compute node uses GPU for CNN Forward pass to
compute f,(y,, X, w)

@ Each compute node estimates beliefs b,(y, | x,w) for assigned
samples

© Backpropagation of difference using GPU to obtain machine
local gradient

@ Synchronize gradient across all machines using MPI

© Update parameters w

R. Urtasun (UofT) Deep Structured Models August 21, 2015



Better Option: Interleaving Learning and Inference

@ Use LP relaxation instead

mvjn Z ( max {bey A (X, ¥ W )+ZGCrH(b(X,y),,)}—F(X,y;W))

(x,y)ED (X Y)EC(X )
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@ Use LP relaxation instead

mvjn Z ( max {bey A (X, ¥ W )+ZGCrH(b(X,y),,)}—F(X,y;W))

(x,y)ED (X Y)EC(X )

@ More efficient algorithm by blending min. w.r.t. w and max. of the beliefs b
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Better Option: Interleaving Learning and Inference

@ Use LP relaxation instead

min (( max {Zb(x,y),r(yr)ﬂ(xvyf;w)+Z6CVH(b(x,y),r)}_F(xvy;w))
5 :

(x y)ED

@ More efficient algorithm by blending min. w.r.t. w and max. of the beliefs b

@ After introducing Lagrange multipliers A, the dual becomes

fr(x,9riw) + > A(x,y),c%r(yc) > )‘ (x,y), rﬂp(yf)
min Z €c InZex cect) PEP() — F(w)
w, A " =~ P '
X,y

ecr

with F(w) = > (xy)ep F(x,y; w) the sum of empirical function observations
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Better Option: Interleaving Learning and Inference

@ Use LP relaxation instead

min (( max {Zb(x,y),r(yr)ﬂ(xvyf;w)+Z6CVH(b(x,y),r)}_F(xvy;w))
5 :

(x y)ED

@ More efficient algorithm by blending min. w.r.t. w and max. of the beliefs b
@ After introducing Lagrange multipliers A, the dual becomes

fr(x,9riw) + > A(x,y),c%r(yc) > )‘ (x,y), rﬂp(yf)
min Z €c InZex cect) PEP() — F(w)
w, A " =~ P '
)Y

ecr

with F(w) = > (xy)ep F(x,y; w) the sum of empirical function observations

@ We can then do block coordinate descent to solve the minimization problem,
and we get the following algorithm - - -
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Deep Structured Learning (algo 3)

[Chen & Schwing & Yuille & Urtasun ICML’15]

Repeat until stopping criteria

@ Forward pass to compute the f,(y,, x, w)
@ Update (some) messages A

© Backward pass via chain rule to obtain gradient

© Update parameters w
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Deep Structured Learning (algo 4)

[Chen & Schwing & Yuille & Urtasun ICML’15]

Sample parallel implementation:

Partition data D onto compute nodes
Repeat until stopping criteria

@ Each compute node uses GPU for CNN Forward pass to
compute f(y,, X, w)

@ Each compute node updates (some) messages A

© Backpropagation of difference using GPU to obtain machine
local gradient

@ Synchronize gradient across all machines using MPI

© Update parameters w
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Application 1: Character Recognition

@ Task: Word Recognition from a fixed vocabulary of 50 words, 28 x 28 sized
image patches

@ Characters have complex backgrounds and suffer many different distortions

@ Training, validation and test set sizes are 10k, 2k and 2k variations of words

banal julep resty

' i 5

gv € Yin i O«
drein yojan mothy
1 Ly |"
S @A 97 Az
snack feize porer
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Results

@ Graphical model has 5 nodes, MLP for each unary and non-parametric
pairwise potentials

@ Joint training, structured, deep and more capacity helps

[Grap [MLP | Method | H1=128 | Hi1=256 | Hi =512 | Hi =768 | Hi=1024 |
Unary only | 8.60 / 61.32 | 10.80 / 64.41 | 12.50 / 65.69 | 12.95 / 66.66 | 13.40 / 67.02
JointTrain__| 16.80 / 65.28 | 25.20 / 70.75 | 31.80 / 74.90 | 33.05 / 76.42 | 34.30 / 77.02

PwTrain__| 12.70 / 64.35 | 18.00 / 68.27 | 22.80 / 71.29 | 23.25 / 72.62 | 26.30 / 73.96

PreTrainJoint | 20.65 / 67.42 | 25.70 / 71.65 | 31.70 / 75.56 | 34.50 / 77.14 | 35.85 / 78.05
JointTrain | 25.50 / 67.13 | 34.60 / 73.19 | 45.55 / 79.60 | 51.55 / 82.37 | 54.05 / 83.57

2nd | llay | Pwlrain | 10.05 /58.90 | 14.10 / 63.44 | 18.10 / 67.31 | 20.40 / 70.14 | 22.20 / 71.25

PreTrainJoint | 28.15 / 69.07 | 36.85 / 75.21 | 45.75 / 80.09 | 50.10 / 82.30 | 52.25 / 83.39
Hy =512 Hp = 32 Hp = 64 H, = 128 Hy = 256 Hy = 512
Unary only | 15.25 / 69.04 | 18.15 / 70.66 | 19.00 / 71.43 | 19.20 / 72.06 | 20.40 / 72.51
JointTrain_| 35.95 / 76.92 | 43.80 / 81.64 | 44.75 / 82.22 | 46.00 / 82.96 | 47.70 / 83.64

PwTrain | 34.85 / 79.11 | 38.95 / 80.93 | 42.75 / 82.38 | 45.10 / 83.67 | 45.75 / 83.88

PreTrainJoint | 42.25 / 81.10 | 44.85 / 82.96 | 46.85 / 83.50 | 47.95 / 84.21 | 47.05 / 84.08
JointTrain_| 54.65 / 83.98 | 61.80 / 87.30 | 66.15 / 89.09 | 64.85 / 88.93 | 68.00 / 89.96

2nd | 2lay [ PwTrain | 39.95 / 81.14 | 48.25 / 84.45 | 52.65 / 86.24 | 57.10 / 87.61 | 62.90 / 89.49

PreTrainJoint | 62.60 / 88.03 | 65.80 / 89.32 | 68.75 / 90.47 | 68.60 / 90.42 | 60.35 / 90.75

1st llay

Ist 2lay
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Learned Weights

N<XE<C0~QTO33 _x__3Q_.0Q00TM

N<XE<E0~00033 _x__FQ_.0200D

abcdefghijkIimnopqrstuvwxyz

Unary weights distance-1 edges distance-2 edges

abcdefghijkImnopgrstuvwxyz

R. Urtasun (UofT) Deep Structured Models August 21, 2015 95 / 128



Example 2: Image Tagging

[Chen & Schwing & Yuille & Urtasun ICML’15]

@ Flickr dataset: 38 possible tags, || = 2%
@ 10k training, 10k test examples

’ Training method [ Prediction error [%] |
Unary only 9.36
Piecewise 7.70
Joint (with pre-training) 7.25
5
10X 10 10000
—w/o blend —w/o blend
B8 8 —w blend 8000 —w blend
o —
£ S
L6 @ 6000
- j=2}
& £
g4 £ 4000
. =
g2 2000
0 ‘ ‘ 0
0 5000 10000 0 5000 10000
Time [s] Time [s]
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Visual results

female/indoor/portrait  sky/plant life/tree  water/animals/sea
female/indoor/portrait  sky/plant life/tree  water/animals/sky

animals/dog/indoor  indoor/flower/plant life
animals/dog
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Learned class correlations

Only part of the correlations are shown for clarity
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Example 3: Semantic Segmentation

[Chen et al. ICLR'15; Krahenbiihl & Koltun NIPS'11,ICML’13; Zhen et al. Arxiv'15;
Schwing & Urtasun Arxiv'15 ]

@ |V| = 21350500 ~ 10k training, ~ 1500 test examples
@ Oxford-net pre trained on PASCAL, predicts 40 x 40 + upsampling
@ The graphical model is a fully connected CRF with Gaussian potentials

@ Inference using (algo2), with mean-field as approx. inference

!
Interpolation
i Layer

!
& >
X
T
C .
X
1
<)

Subsampling Connected CRF
=

[
[

> .

I 2
> il

) Pooling & Fully
D,
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Pascal VOC 2012 dataset

[Chen et al. ICLR'15; Krahenbiihl & Koltun NIPS'11,ICML’13; Zhen et al. Arxiv'l5;
Schwing & Urtasun Arxiv'15 ]

|V| = 21350500 ~ 10k training, ~ 1500 test examples

Oxford-net pre trained on PASCAL, predicts 40 x 40 + upsampling

The graphical model is a fully connected CRF with Gaussian potentials

Inference using (algo2), with mean-field as approx. inference

| Training method [| Mean loU [%] |

Unary only 61.476
Joint 64.060
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Pascal VOC 2012 dataset

[Chen et al. ICLR'15; Krahenbiihl & Koltun NIPS'11,ICML’13; Zhen et al. Arxiv'l5;
Schwing & Urtasun Arxiv'15 ]

|V| = 21350500 ~ 10k training, ~ 1500 test examples

Oxford-net pre trained on PASCAL, predicts 40 x 40 + upsampling

The graphical model is a fully connected CRF with Gaussian potentials

Inference using (algo2), with mean-field as approx. inference

| Training method [| Mean loU [%] |

Unary only 61.476
Joint 64.060

@ Disclaimer: Much better results now with a few tricks. Zheng et al. 15 is
now at 74.7%!
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Visual results
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Example 4: 3D Object Proposals for Detection

@ Use structured prediction to learn to propose object candidates (i.e.,

N

grouping)

(image) (stereo) (depth-feat) (prior)

@ Use deep learning to do final detection: OxfordNet

@ Only 1.2s to generate proposals
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KITTI Detection

[ X. Chen, K. Kundu and S. Fidler and R. Urtasun, On Arxiv soon]

Cars Pedestrians Cyclists
Easy | Moderate | Hard Easy | Moderate | Hard Easy | Moderate | Hard
LSVM-MDPM-sv || 68.02 56.48 44.18 || 47.74 39.36 35.95 || 35.04 27.50 26.21
Squares|CF - - - 57.33 44.42 40.08 - - -
DPM-C8B1 74.33 60.99 47.16 || 38.96 29.03 25.61 || 43.49 29.04 26.20
MDPM-un-BB 71.19 62.16 48.43 - - - - - -
DPM-VOC+VP 74.95 64.71 48.76 || 59.48 44.86 40.37 || 42.43 31.08 28.23
OC-DPM 74.94 65.95 53.86 - - - - - -
AOG 84.36 71.88 59.27 - - - - - -
SubCat 84.14 75.46 59.71 54.67 42.34 37.95 - - -
DA-DPM - - - 56.36 45.51 41.08 - - -
Fusion-DPM - - - 59.51 46.67 42.05 - - -
R-CNN - - - 61.61 50.13 44.79 - - -
FilteredICF - - - 61.14 53.98 49.29 - - -
pAUCEnsT - - - 65.26 54.49 48.60 || 51.62 38.03 33.38
MV-RGBD-RF - - - 70.21 54.56 51.25 || 54.02 39.72 34.82
3DVP 87.46 75.77 65.38 - - - - - -
Regionlets 84.75 76.45 59.70 || 73.14 61.15 55.21 || 70.41 58.72 51.83
Ours 88.33 87.14 76.11 [[ 70.16 59.35 52.76 || 77.94 67.35 59.49

Table : Average Precision (AP) (in %) on the test set of the KITTI Object
Detection Benchmark.
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KITTI Detection Results

[ X. Chen, K. Kundu and S. Fidler and R. Urtasun, On Arxiv soon]

Cars Pedestrians Cyclists
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
AOG 43.81 338.21 31.53 - - - - - -
DPM-C8B1 59.51 50.32 39.22 31.08 23.37 20.72 27.25 19.25 17.95
LSVM-MDPM-sv 67.27 55.77 43.59 43.58 35.49 32.42 27.54 22.07 21.45
DPM-VOC+VP 72.28 61.84 46.54 53.55 39.83 35.73 / 30.52 23.17 21.58
OC-DPM 73.50 64.42 52.40 - - - - - -
SubCat 83.41 74.42 58.83 44.32 34.18 30.76 - - -
3DVP 86.92 74.59 64.11 - - - - - -
Ours 83.03 | 80.21 69.60 48.58 | 40.56 36.08 57.72 48.21 42.72

Table : AOS scores on the KITTI Object Detection and Orientation Benchmark
(test set).
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Car Results

[ X. Chen, K. Kundu, Y. Zhu, S. Fidler and R. Urtasun, On Arxiv soon)
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Pedestrian Results

[ X. Chen, K. Kundu, Y. Zhu, S. Fidler and R. Urtasun, On Arxiv soon]
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Cyclist Results

[ X. Chen, K. Kundu, Y. Zhu, S. Fidler and R. Urtasun, On Arxiv soon]
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Example 5: re Precise Grouping

@ Given a single image, we want to infer Instance-level Segmentation and
Depth Ordering

patch-level
peediction

instance pred. &
depth ordering

Use deep convolutional nets to do both tasks simultaneously

Trick: Encode both tasks with a single parameterization

Run the conv. net at multiple resolutions

Use MRF to form a single coherent explanation across all the image
combining the conv nets at multiple resolutions

@ Important: we do not use a single pixel-wise training example!
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Results on KITTI

[Z. Zhang, A. Schwing, S. Fidler and R. Urtasun, ICCV "15]

R. Urtasun (UofT) Deep Structured Models August 21, 2015 111 / 128



More Results (including failures/difficulties)

[Z. Zhang, A. Schwing, S. Fidler and R. Urtasun, ICCV "15]
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Example 6: Enhancing freely-available maps

[G. Matthyus, S. Wang, S. Fidler and R. Urtasun, ICCV '15]

\;(

==

Kyoto: Kinkakuji Monte Carlo: Casino

Enhancing OpenStreetMaps
Can be trained on a single image and test on the whole world
Trick: Not to reason at the pixel level

Very efficient: 0.1s/km of road

Preserves topology and is state-of-the-art
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Example 7: Fashion

[E. Simo-Serra, S. Fidler, F. Moreno, R. Urtasun, CVPR15]

LOS ANGELES, CA NOVEMBER 10, 2014

466 FANS GARMENTS
288 VOTES White Cheap Monday Boots
62 FAVOURITES Chilli Beans Sunglasses
TAGS Missguided Romper
CHIC Daniel Wellington Watch
EVERDAY COMMENTS
FALL Nicel!
COLOURS Love the top!

o WHITE-BOOTS cute

Figure : An example of a post on http://www.chictopia.com. We crawled the
site for 180K posts.
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http://www.chictopia.com

How Fashionable Are ?

Post Density

Fashionability

Figure 3: Visualization of the density of posts and fashionability by country.
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How Fashionable Are You?

City Name Posts | Fashionability
Manila 4269 6.627
Los Angeles | 8275 6.265
Melbourne 1092 6.176
Montreal 1129 6.144
Paris 2118 6.070
Amsterdam 1111 6.059
Barcelona 1292 5.845
Toronto 1471 5.765
Bucharest 1385 5.667
New York 4984 5.514
London 3655 5.444
San Francisco | 2880 5.392
Madrid 1747 5.371
Vancouver 1468 5.266
Jakarta 1156 4.398

Table 2: Fashionability of cities with at least 1000 posts.
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How Fashionable Are You?

Mean Bezu.ll)i

Figure : We ran a face detector that predicts also beauty of the face, age,

ethnicity, mood.
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How Fashionable Are You?

@ Face detector + attributes

http://www.rekognition.com
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http://www.rekognition.com

How Fashionable Are You?

@ Face detector + attributes

http://www.rekognition.com
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http://www.rekognition.com

How Fashionable Are You?

@ Face detector + attributes

http://www.rekognition.com
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http://www.rekognition.com

How Fashionable Are ?

Figure : Our model is a Conditional Random Field that uses many visual and
textual features, as well as meta-data features such as where the user is from.
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Figure : We predict what kind of outfit the person wears.
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How Fashionable Can You Become?

Current Qutfit: L Current Outfit:
Pink Qutfit (3) A

Recommendations:
Heels (8)

Pastel Shirts/Skirts (8) 3
Black/Gray Tights/Sweater (5) =

Recommendations:

Current Qutfit:

| | Recommendations:

- Recommendations: .
. Heels (8) ™ Black Casual (7)
Pastel Shirts/Skirts (8) Al Black Heavy (3)

Black Casual (8) Mavy and Bags (3)

Pink/Blue Shoes/Dress Shorts (3)

Black/Gray Tights/Sweater (5)

Blue with Scarf (3) b ,g Pink/Blue Shoes/Dress Shorts (3)

Current Outfit:
Pink/Black Misc. (5)

Recommendations:
Pastel Dress (8)
Elack/Blue Going out (8)
Black Casual (8)

Current Qutfit:
Farmal Blue/Brown (5)

' Recommendations:

~ ' Pastel Shirts/Skirts (9)

Black/Blue Going out (8)
Black Boots/Tights (8)

Figure : Examples of recommendations provided by our model. The parenthesis

we show the fashionability scores.
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Not a big deal... but

@ Appear all over the Tech and News

News and Tech websites

QUARTZ [ MIEER.co.uk

New Scientist Quartz Tech Times Wired, UK Mashable
s THE HUFFINGTON POST HUFFPOST STYLE ” msn Protein
AOL News (video) Huffington Post, UK (video)  Huffington Post, Canada MSN, Canada Protein
ScienceDally MWailOnline E3
Yahoo, Canada Science Daily Daily Mail, UK PSFK Toronto Star
gizmag L7~ iDigitalTimes
Gizmag TheRecord.com iDigitalTimes
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Not a big deal... but

@ Appear all over the Tech and News

@ All over the Fashion press

Fashion Magazines (Online)

R. Urtasun (UofT)

B \Z \ \ H marieclaire
Harper's Bazaar Marie Claire
GLAMOUR  YAHOO!
S Yahoo Style
The fhol  fashionols

Tha Pool (UK) FashionNotes

Deep Structured Models

L B2

Elle Red Magazine
(UK)
cosworoumny FXASHION
Cosmopolitan Fashion
Magazine
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Not a big deal... but

@ Appear all over the Tech and News

@ All over the Fashion press
@ International News and TV (Fox, BBC, SkypeNews, RTVE, etc)

R. Urtasun (UofT)

International News

VOGULE

Vogue (ES)

pan Naukaw Polsce

Mauka (PL)

.

Amsterdam
Fashion (NL)

T News (SK)

LabazzelageloSport

pepesr, vt/
La Gazzatta
dello Sport {IT)

Wired (DE)

STYLEBOOK
Stylebook (DE)

[ANS A«

Ansa {IT)

PopSugar (AL

woner

Woman (ES)

jetztde

T ————

Jatzt (DE}

marieclaire
Marie Claire
(FR)

Pluska

Pluska (3K}

CendrioMT (BR)

CsIC

csIC (ES)

Deep Structured Models

_SINembargQss
SinEmbango
(M)

FASHNON POLICEN:
Fashion Police
(NEG)

ELLE

Elle (NL}

s=spresselest

Pressatext (AT)

EFE (ES)
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Best Quote Award

Cosmopolitan (UK): The technology scores your facial
attributes (this just keeps getting better, doesn't it) from
your looks, to your age, and the emotion you're showing,
before combining all the information using an equation
S50 complex we won't begin to go into it.
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But the Most Important Impact
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@ Use the hinge loss to optimize the unaries only which are neural nets (Li and
Zemel 14). Correlations between variables are not used for learning
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@ Use the hinge loss to optimize the unaries only which are neural nets (Li and
Zemel 14). Correlations between variables are not used for learning

@ If inference is tractable, Conditional Neural Fields (Peng et al. 09) use
back-propagation on the log-loss
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@ Use the hinge loss to optimize the unaries only which are neural nets (Li and
Zemel 14). Correlations between variables are not used for learning

@ If inference is tractable, Conditional Neural Fields (Peng et al. 09) use
back-propagation on the log-loss

@ Decision Tree Fields (Nowozin et al. 11), use complex region potentials
(decision trees), but given the tree, it is still linear in the parameters.
Trained using pseudo likelihood.
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Use the hinge loss to optimize the unaries only which are neural nets (Li and
Zemel 14). Correlations between variables are not used for learning

If inference is tractable, Conditional Neural Fields (Peng et al. 09) use
back-propagation on the log-loss

Decision Tree Fields (Nowozin et al. 11), use complex region potentials
(decision trees), but given the tree, it is still linear in the parameters.
Trained using pseudo likelihood.

Restricted Bolzmann Machines (RBMs): Generative model that has a very
particular architecture so that inference is tractable via sampling
(Salakhutdinov 07). Problems with partition function.
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@ Use the hinge loss to optimize the unaries only which are neural nets (Li and
Zemel 14). Correlations between variables are not used for learning

If inference is tractable, Conditional Neural Fields (Peng et al. 09) use
back-propagation on the log-loss

@ Decision Tree Fields (Nowozin et al. 11), use complex region potentials
(decision trees), but given the tree, it is still linear in the parameters.
Trained using pseudo likelihood.

Restricted Bolzmann Machines (RBMs): Generative model that has a very
particular architecture so that inference is tractable via sampling
(Salakhutdinov 07). Problems with partition function.

(Domke 13) treat the problem as learning a set of logistic regressors
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@ Use the hinge loss to optimize the unaries only which are neural nets (Li and
Zemel 14). Correlations between variables are not used for learning

If inference is tractable, Conditional Neural Fields (Peng et al. 09) use
back-propagation on the log-loss

@ Decision Tree Fields (Nowozin et al. 11), use complex region potentials
(decision trees), but given the tree, it is still linear in the parameters.
Trained using pseudo likelihood.

Restricted Bolzmann Machines (RBMs): Generative model that has a very
particular architecture so that inference is tractable via sampling
(Salakhutdinov 07). Problems with partition function.

@ (Domke 13) treat the problem as learning a set of logistic regressors

@ Fields of experts (Roth et al. 05), not deep, use CD training
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@ Use the hinge loss to optimize the unaries only which are neural nets (Li and
Zemel 14). Correlations between variables are not used for learning

If inference is tractable, Conditional Neural Fields (Peng et al. 09) use
back-propagation on the log-loss

@ Decision Tree Fields (Nowozin et al. 11), use complex region potentials
(decision trees), but given the tree, it is still linear in the parameters.
Trained using pseudo likelihood.

Restricted Bolzmann Machines (RBMs): Generative model that has a very
particular architecture so that inference is tractable via sampling
(Salakhutdinov 07). Problems with partition function.

(Domke 13) treat the problem as learning a set of logistic regressors

Fields of experts (Roth et al. 05), not deep, use CD training

Many ideas go back to (Boutou 91)
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Conclusions and Future Work

Conclusions:

@ Modeling of correlations between variables

@ Non-linear dependence on parameters

@ Joint training of many convolutional neural networks

@ Parallel implementation

@ Wide range of applications: Word recognition, Tagging, Segmentation
Future work:

@ Latent Variables

@ More applications
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