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Current Status of your Field?
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Roadmap

1 Part I: Deep learning

2 Part II: Deep Structured Models
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Part I: Deep Learning
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Deep Learning

Supervised models

Unsupervised learning (will not talk about this today)

Generative models (will not talk about this today)
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Binary Classification

Given inputs x, and outputs t ∈ {−1, 1}

We want to fit a hyperplane that divides the space into half

y∗ = sign(wTx∗ + w0)
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Binary Classification

Given inputs x, and outputs t ∈ {−1, 1}
We want to fit a hyperplane that divides the space into half

y∗ = sign(wTx∗ + w0)

SVMs try to maximize the margin
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Non-linear Predictors

How can we make our classifier more powerful?

Compute non-linear functions of the input

y∗ = F (x∗,w)

Two types of approaches:

Kernel Trick: Fixed functions and optimize linear parameters on non-linear
mapping

y∗ = sign(wTφ(x∗) + w0)

Deep Learning: Learn parametric non-linear functions

y∗ = F (x∗,w)
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Why ”Deep”?

3

Supervised Learning: Examples

Ranzato

Denoising

“dog”

Classification

OCR

“2 3 4 5”

classific
ation

regression

stru
ctured 

prediction
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Why ”Deep”?

4

Supervised Deep Learning

Ranzato

Denoising

“dog”

Classification

OCR

“2 3 4 5”
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Neural Networks

Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max

Note: a composite of linear functions is linear!

Example: 2 layer NNet

x max(0,W T
1 x)

h1

max(0,W T
2 h1)

h2

W T
3 h2 y

x is the input
y is the output (what we want to predict)
hi is the i-th hidden layer
W i are the parameters of the i-th layer
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Evaluating the Function

Forward Propagation: compute the output given the input

x max(0,W T
1 x)

h1

max(0,W T
2 h1)

h2

W T
3 h2 y

Fully connected layer: Each hidden unit takes as input all the units from
the previous layer

The non-linearity is called a ReLU (rectified linear unit), with x ∈ <D ,
bi ∈ <Ni the biases and W i ∈ <Ni×Ni−1 the weights

Do it in a compositional way,

h1 = max(0,W 1x + b1)
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Evaluating the Function

Forward Propagation: compute the output given the input

x max(0,W T
1 x)

h1

max(0,W T
2 h1)

h2

W T
3 h2 y

Fully connected layer: Each hidden unit takes as input all the units from
the previous layer

The non-linearity is called a ReLU (rectified linear unit), with x ∈ <D ,
bi ∈ <Ni the biases and W i ∈ <Ni×Ni−1 the weights

Do it in a compositional way

h1 = max(0,W 1x + b1)

h2 = max(0,W 2h1 + b2)

y = max(0,W 3h2 + b3)
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12

Alternative Graphical Representation

Ranzato

hk1hk
max 0,W k1hk

hk1hk
W k1

h1
k

h2
k

h3
k

h4
k

h1
k1

h2
k1

h3
k1

w1,1
k1

w3,4
k1

hk hk1

W k1
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Relu Interpretation

Piece-wise linear tiling: mapping is locally linear.

Figure : by M. Ranzato
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Why Hierarchical?

15

Interpretation

Ranzato

[0  0  1  0  0  0  0  1  0  0  1  1  0  0  1  0 … ]

[1  1  0  0  0  1  0  1  0  0  0  0  1  1  0  1… ] motorbike

truck
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Why Hierarchical?

16

Interpretation

Ranzato

Input image

low level 
parts

prediction of class

mid-level 
parts

high-level 
parts

 distributed representations
 feature sharing
 compositionality

...

Lee et al. “Convolutional DBN's ...” ICML 2009 
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Learning

x max(0,W T
1 x)

h1

max(0,W T
2 h1)

h2

W T
3 h2 y

We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

Collect a training set of input-output pairs {x, t}

Encode the output with 1-K encoding t = [0, · · · , 1, · · · , 0]

Define a loss per training example and minimize the empirical risk

L(w) =
1

N

N∑
i=1

`(w, x(i), t(i)) +R(w)

with N number of examples, R a regularizer, and w contains all parameters

What do we want to use as `?

The task loss: how we are going to evaluate at test time
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Loss Functions

L(w) =
1

N

∑
i

`(w, x(i), t(i)) +R(w)

The task loss is too difficult to compute, so one uses a surrogate that its
typically convex

Probability of class k given input (softmax):

p(ck = 1|x) =
exp(yk)∑C
j=1 exp(yj)

Cross entropy is the most used loss function for classification

`(x, t,w) = −
∑
i

t(i) log p(ci |x)

Use gradient descent to train the network

min
w

1

N

∑
i

`(w, x(i), t(i)) +R(w)
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Backpropagation

Efficient computation of the gradients by applying the chain rule

x max(0,W T
1 x)

h1

max(0,W T
2 h1)

h2

W T
3 h2 y

∂`
∂y

p(ck = 1|x) =
exp(yk)∑C
j=1 exp(yj)

`(x, t,w) = −
∑
i

t(i) log p(ci |x)

Compute the derivative of loss w.r.t. the output

∂`

∂y
= p(c |x)− t

Note that the forward pass is necessary to compute ∂`
∂y
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Backpropagation

Efficient computation of the gradients by applying the chain rule

x max(0,W T
1 x)

h1

max(0,W T
2 h1)

∂`
∂h2

W T
3 h2 y

∂`
∂y

Compute the derivative of loss w.r.t the output

∂`

∂y
= p(c |x)− t

Given ∂`
∂y if we can compute the Jacobian of each module

∂`

∂W 3
=
∂`

∂y

∂y

∂W 3
= (p(c |x)− t)(h2)T

∂`

∂h2
=
∂`

∂y

∂y

∂h2
= (W 3)T (p(c|x)− t)

Need to compute gradient w.r.t. inputs and parameters in each layer
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∂h2
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Need to compute gradient w.r.t. inputs and parameters in each layer
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Gradient Descent

Gradient descent is a first order method, where one takes steps proportional
to the negative of the gradient of the function at the current point

xn+1 = xn − γn∇F (xn)

Example: f (x) = x4 − 3x3 + 2
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Learning via Gradient Descent

Use gradient descent to train the network

min
w

1

N

N∑
i=1

`(w, x(i), t(i)) +R(w)

We need to compute at each iteration

wn+1 = wn − γn∇L(wn)

Use the backward pass to compute ∇L(wn) efficiently

Recall that the backward pass requires the forward pass first
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28

Toy Code (Matlab): Neural Net Trainer
% F-PROP
for i = 1 : nr_layers - 1
  [h{i}  jac{i}]  =  nonlinearity(W{i} * h{i-1} +  b{i});
end
h{nr_layers-1}  =  W{nr_layers-1} * h{nr_layers-2}  +   b{nr_layers-1};
prediction  =  softmax(h{l-1});

% CROSS ENTROPY LOSS
loss  =  -  sum(sum(log(prediction)  .*  target)) / batch_size;

% B-PROP
dh{l-1}  =  prediction  -  target;
for i = nr_layers – 1 : -1 : 1
  Wgrad{i}  =  dh{i} * h{i-1}';
  bgrad{i}  =  sum(dh{i}, 2);        
  dh{i-1}  =  (W{i}' * dh{i})  .*  jac{i-1};        
end

% UPDATE
for i = 1 : nr_layers - 1
  W{i}  =  W{i}  –  (lr / batch_size)  *  Wgrad{i}; 
  b{i}  =  b{i}  –  (lr / batch_size)  *  bgrad{i}; 
end

Ranzato
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Dealing with Big Data

min
w

1

N

N∑
i=1

`(w, x(i), t(i)) +R(w)

We need to compute at each iteration

wn+1 = wn − γn∇L(wn)

with

∇L(wn) =
1

N

N∑
i=1

∇`(w, x(i), t(i)) +∇R(w)

Too expensive when having millions of examples

Instead approximate the gradient with a mini-batch (subset of examples)

1

N

N∑
i=1

∇`(w, x(i), t(i)) ≈
∑
i∈S

1

|S|
∇`(w, x(i), t(i))

This is called stochastic gradient descent
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Stochastic Gradient Descent with Momentum

Stochastic Gradient Descent update

wn+1 = wn − γn∇L(wn)

with

∇L(wn) =
∑
i∈S

1

|S|
∇`(w, x(i), t(i)) +∇R(w)

We can also use momentum

w ← w − γ∆

∆ ← κ∆ +∇L

Many other variants exist
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How to deal with large Input Spaces

Images can have millions of pixels, i.e., x is very high dimensional

Prohibitive to have fully-connected layer

We can use a locally connected layer

This is good when the input is registered
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34

Locally Connected Layer

Example: 200x200 image
                40K hidden units
                Filter size: 10x10

      4M parameters

Ranzato

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).
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35

STATIONARITY? Statistics is similar at 
different locations

Ranzato

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).

Locally Connected Layer

Example: 200x200 image
                40K hidden units
                Filter size: 10x10

      4M parameters
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Convolutional Neural Net

Idea: statistics are similar at different locations (Lecun 1998)

Connect each hidden unit to a small input patch and share the weight across
space

This is called a convolution layer and the network is a convolutional
network
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Convolutional Layer

Ranzato

hnj = max(0,
K∑

k=1

hn−1k ∗ wn
jk)
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato

hnj = max(0,
K∑

k=1

hn−1k ∗ wn
jk)
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54

Learn multiple filters.

E.g.: 200x200 image
        100 Filters
        Filter size: 10x10

   10K parameters

Ranzato

Convolutional Layer
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61

By “pooling” (e.g., taking max) filter
responses at different locations we gain
robustness to the exact spatial location
of features.

Ranzato

Pooling Layer
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Pooling Options

Max Pooling: return the maximal argument

Average Pooling: return the average of the arguments

Other types of pooling exist: L2 pooling
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67

Ranzato

Pooling Layer: Receptive Field Size

Conv.
layer

hn−1 hn

Pool.
layer

hn1

If convolutional filters have size KxK and stride 1, and pooling layer 
has pools of size PxP, then each unit in the pooling layer depends 
upon a patch (at the input of the preceding conv. layer) of size: 
(P+K-1)x(P+K-1)
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Now let’s make this very deep
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Convolutional Neural Networks (CNN)

Remember from your image processing / computer vision course about
filtering?
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Convolutional Neural Networks (CNN)

If our filter was [−1, 1], we got a vertical edge detector
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Convolutional Neural Networks (CNN)

Now imagine we want to have many filters (e.g., vertical, horizontal, corners,
one for dots). We will use a filterbank.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

So applying a filterbank to an image yields a cube-like output, a 3D matrix
in which each slice is an output of convolution with one filter.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this?

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this? To get invariance to small shifts in position.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

Now add another “layer” of filters. For each filter again do convolution, but
this time with the output cube of the previous layer.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

Keep adding a few layers. Any idea what’s the purpose of more layers? Why
can’t we just have a full bunch of filters in one layer?

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

In the end add one or two fully (or densely) connected layers. In this layer,
we don’t do convolution we just do a dot-product between the “filter” and
the output of the previous layer.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

Add one final layer: a classification layer. Each dimension of this vector
tells us the probability of the input image being of a certain class.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

The trick is to not hand-fix the weights, but to train them. Train them such
that when the network sees a picture of a dog, the last layer will say “dog”.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

Or when the network sees a picture of a cat, the last layer will say “cat”.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

Or when the network sees a picture of a boat, the last layer will say
“boat”... The more pictures the network sees, the better.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Classification

Once trained we feed in an image or a crop, run through the network, and
read out the class with the highest probability in the last (classif) layer.

[Slide Credit: Sanja Fidler]
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Classification Performance

Imagenet, main challenge for object classification: http://image-net.org/

1000 classes, 1.2M training images, 150K for test
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Architecture for Classification
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Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012

category 
prediction

input Ranzato
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Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012
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Architecture for Classification
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The 2012 Computer Vision Crisis

(Classification) (Detection)
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Neural Networks as Descriptors

What vision people like to do is take the already trained network (avoid one
week of training), and remove the last classification layer. Then take the top
remaining layer (the 4096 dimensional vector here) and use it as a descriptor
(feature vector).

[Slide Credit: Sanja Fidler]
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Neural Networks as Descriptors

What vision people like to do is take the already trained network, and
remove the last classification layer. Then take the top remaining layer (the
4096 dimensional vector here) and use it as a descriptor (feature vector).

Now train your own classifier on top of these features for arbitrary classes.

This is quite hacky, but works miraculously well.

Everywhere where we were using SIFT (or anything else), you can use NNs.

[Slide Credit: Sanja Fidler]
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Caltech Results
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Caltech 256 
Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013 
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And Detection?

For classification we feed in the full image to the network. But how can we
perform detection?

[Slide Credit: Sanja Fidler]
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The Era Post-Alex Net: PASCAL VOC detection

Extract object proposals with bottom up grouping

and then classify them using your big net
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Detection Performance

PASCAL VOC challenge: http://pascallin.ecs.soton.ac.uk/challenges/VOC/.

Figure : PASCAL has 20 object classes, 10K images for training, 10K for test
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Detection Performance a Year Ago: 40.4%

A year ago, no networks:

Results on the main recognition benchmark, the PASCAL VOC challenge.

Figure : Leading method segDPM (ours). Those were the good times...
S. Fidler, R. Mottaghi, A. Yuille, R. Urtasun, Bottom-up Segmentation for Top-down Detection, CVPR’13
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The Era Post-Alex Net: PASCAL VOC detection
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So Neural Networks are Great

So networks turn out to be great.

Everything is deep, even if it’s shallow!

Companies leading the competitions: ImageNet, KITTI, but not yet PASCAL

At this point Google, Facebook, Microsoft, Baidu “steal” most neural
network professors from academia.

· · · and a lot of our good students :(
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So Neural Networks are Great

But to train the networks you need quite a bit of computational power. So
what do you do?
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So Neural Networks are Great

Buy even more.
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So Neural Networks are Great

And train more layers. 16 instead of 7 before. 144 million parameters.

Figure : K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition. arXiv 2014

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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The Era Post-Alex Net: PASCAL VOC detection
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What if we Want Semantic Segmentation?

Every layer, even fully connected can be treated as a convolutional layer, and
then we can deal with arbitrary dimensions of the input

The network can work on super pixels, or can directly operate in pixels

Due to pooling, the output is typically lower dimensional than the input, use
interpolation.

PASCAL VOC, 65% IOU

More to come in Part II
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Practical Tips
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How to choose Hyperparameters?

Hyperparameters: architecture, learning rate, num layers, num features, etc

How to choose them?

1 Cross-validation
2 Grid search (need lots of GPUs)
3 Random [Bergstra & Bengio JMLR 2012]
4 Bayesian optimization [Whetlab Toronto]
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Good to Know

ALWAYS check gradients numerically by finite differences!

Measure error on both training and validation set, NEVER TEST

Test on a small subset of the data and check that you can over fit (i.e., error
→ 0)

Visualize features (feature maps need to be uncorrelated) and have high
variance.

(good) (bad)

Figure : from M. Ranzato
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Good to Know

ALWAYS check gradients numerically by finite differences!

Measure error on both training and validation set, NEVER TEST

Test on a small subset of the data and check that you can over fit (i.e., error
→ 0)

Visualize features (feature maps need to be uncorrelated) and have high
variance.

Visualize parameters

Figure : from M. Ranzato

[Slide credit: M. Ranzato]R. Urtasun (UofT) Deep Structured Models August 21, 2015 62 / 128



What if it doesn’t work?

Training diverges

Decrease learning rate
Check gradients

Parameters collapse / loss is minimized but accuracy is low

Appropriate loss function?
Does loss-function have degenerate solutions?

Network is underperforming

Make it bigger
Visualize hidden units/params and fix optimization

Network is too slow

GPU,distrib. framework, make net smaller

[Slide credit: M. Ranzato]
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Improving Generalization

Weight sharing (Reduce the number of parameters)

Data augmentation (e.g., jittering, noise injection, tranformations)

Dropout [Hinton et al.]: randomly drop units (along with their
connections) from the neural network during training. Use for the
fully connected layers only

Regularization: Weight decay (L2, L1)

Sparsity in the hidden units

Multi-task learning

[Slide credit: M. Ranzato]
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Software

Torch7: learning library that supports neural net training
http://www.torch.ch

http://code.cogbits.com/wiki/doku.php (tutorial with demos by C.
Farabet)
https://github.com/sermanet/OverFeat

Python-based learning library (U. Montreal)
http://deeplearning.net/software/theano/ (does automatic
differentiation

Efficient CUDA kernels for ConvNets (Krizhevsky)
code.google.com/p/cuda-convnet

Caffe (Yangqing Jia)
http://caffe.berkeleyvision.org

Deep Structured Models
http://www.alexander-schwing.de/ (soon available)

[Slide Credit: M. Ranzato]
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Part II: Deep Structured Learning
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Your current Status?
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What’s next?
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What’s next?

1 Theoretical Understanding

2 Unsupervised Learning

3 Structured models
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Structure!

Many Vision Problems are complex and involve predicting many random
variables that are statistically related

Scene understanding Tag prediction Segmentation

x = image x = image x = image

y : room layout y : tag ”combo” y : segmentation
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Deep Learning

Complex mapping F (x, y ,w) to predict output y given input x through a
series of matrix multiplications, non-linearities and pooling operations

Figure : Imagenet CNN [Krizhevsky et al. 13]

We typically train the network to predict one random variable (e.g.,
ImageNet) by minimizing cross-entropy

Multi-task extensions: sum the loss of each task, and share part of the
features (e.g., segmentation)

Use an MRF as a post processing step
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Multi-task extensions: sum the loss of each task, and share part of the
features (e.g., segmentation)

Use an MRF as a post processing step
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PROBLEM: How can we take into account complex dependencies when
predicting multiple variables?

SOLUTION: Graphical models
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Graphical Models

Convenient tool to illustrate dependencies among random variables

E (y) = −
∑
i

fi (yi )︸ ︷︷ ︸
unaries

−
∑
i,j∈E

f (yi , yj)︸ ︷︷ ︸
pairwise

−
∑
α

fα(yα)︸ ︷︷ ︸
high−order

Pairwise 
Potential

Unary 
Potential

High-order 
Potential

Widespread usage among different fields: vision, NLP, comp. bio, · · ·
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Compact Notation

In Computer Vision we usually express

E (y) = −
∑
i

fi (yi )︸ ︷︷ ︸
unaries

−
∑
i,j∈E

f (yi , yj)︸ ︷︷ ︸
pairwise

−
∑
α

fα(yα)︸ ︷︷ ︸
high−order

For the purpose of this talk we are going to use a more compact notation

E (y,w) = −
∑
r∈R

fr (yr ,w)

r is a region and R is the set of all regions

yr is of any order

The functions fr are a function of parameters w
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Continuous vs Discrete MRFs

E (y,w) = −
∑
r∈R

fr (yr ,w)

Discrete MRFs:
yi ∈ {1, · · · ,Ci}

Continuous MRFs:
yi ∈ Y ⊆ R

Hybrid MRFs with continuous and discrete variables

Today’s talk: only discrete MRFs
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Probabilistic Interpretation

The energy is defined as

E (y,w) = −F (y,w) = −
∑
r∈R

fr (yr ,w)

We can construct a probability distribution over the outputs

p(y; w) =
1

Z
exp

(∑
r∈R

fr (yr ,w)

)

with Z (w) =
∑

y exp
(∑

r∈R fr (yr ,w)
)

the partition function

CRFs vs MRFs

p(y|x; w) =
1

Z (x)
exp

(∑
r∈R

fr (x, yr ,w)

)

with Z (x,w) =
∑

y exp
(∑

r∈R fr (x, yr ,w)
)

the partition function
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Inference Tasks

MAP: maximum a posteriori estimate, or minimum energy configuration

y∗ = arg max
y

∑
r∈R

fr (yr ,w)

Probabilistic Inference: We might want to compute p(yr ) for any possible
subset of variables r , or p(yr |yp) for any subset r and p

M-best configurations (e.g., top-k)

Very difficult tasks in general (i.e., NP-hard). Some exceptions, e.g., low-tree
width models and binary MRFs with sub-modular energies
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Learning in CRFs

Given a training set of N pairs (x, y) ∈ D, we want to estimate the functions
fr (x, yr ,w)

As these functions are parametric, this is equivalent to estimating w

We would like to do this by minimizing the empirical loss

min
w

1

N

∑
(x,y)∈D

`task(x, y,w)

where `task is the loss that we’ll be evaluated on

Very difficult, instead we minimize the sum of a surrogate (typically convex)
loss and a regularizer

min
w

R(w) +
C

N

∑
(x,y)∈D

¯̀(x, y,w)
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More on Learning in CRFs

Given a training set of N pairs (x, y) ∈ D, we want to estimate the functions
fr (y, x,w)

Minimize a surrogate (typically convex) loss and a regularizer

min
w

R(w) +
C

N

∑
(x,y)∈D

¯̀(x, y,w)

The surrogate loss ¯̀: hinge-loss, log-loss

¯̀
log (x, y,w) = − ln px,y (y; w).

¯̀
hinge(x, y,w) = max

ŷ∈Y

{
`(y, ŷ)−w>Φ(x, ŷ) + w>Φ(x, y)

}
The assumption is that the model is log-linear

E (x, y,w) = −F (x, y,w) = −wTφ(x, y)

and the features decompose in a graph

wTφ(x, y) =
∑
r∈R

wT
r φ(x, y)
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PROBLEM: How can we remove the log-linear restriction?

SOLUTION: Deep Structured Models
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With Pictures ;)

Standard CNN

CNN

y1

Deep Structured Models

CNN1

y1

CNN2

y2

CNN3

y3

CNN4

y1,2

CNN5

y2,3
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Learning

Probability of a configuration y:

p(y | x; w) =
1

Z (x,w)
expF (x, y,w)

Z (x,w) =
∑
ŷ∈Y

expF (x, ŷ,w)

Maximize the likelihood of training data via

w∗ = arg max
w

∏
(x,y)∈D

p(y|x; w)

= arg max
w

∑
(x,y)∈D

F (x, y,w)− ln
∑
ŷ∈Y

expF (x, y,w)


Maximum likelihood is equivalent to maximizing cross-entropy when the target
distribution p(x,y),tg(ŷ) = δ(ŷ = y)
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ŷ∈Y

expF (x, ŷ,w)
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Gradient Ascent on Cross Entropy

Program of interest:

max
w

∑
(x,y)∈D,ŷ

p(x,y),tg(ŷ) ln p(ŷ | x; w)

Optimize via gradient ascent

∂

∂w

∑
(x,y)∈D,ŷ

p(x,y),tg(ŷ) ln p(ŷ | x; w)

=
∑

(x,y)∈D,ŷ

(
p(x,y),tg(ŷ)− p(ŷ | x; w)

) ∂

∂w
F (ŷ, x,w)

=
∑

(x,y)∈D

(
Ep(x,y),tg

[
∂

∂w
F (ŷ, x,w)

]
− Ep(x,y)

[
∂

∂w
F (ŷ, x,w)

])
︸ ︷︷ ︸

moment matching

Compute predicted distribution p(ŷ | x; w)

Use chain rule to pass back difference between prediction and observation
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Deep Structured Learning (algo 1)
[Peng et al. NIPS’09]

Repeat until stopping criteria

1 Forward pass to compute F (y, x,w)

2 Compute p(y | x,w)

3 Backward pass via chain rule to obtain gradient

4 Update parameters w

What is the PROBLEM?

How do we even represent F (y, x,w) if Y is large?

How do we compute p(y | x,w)?
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Use the Graphical Model Structure

1 Use the graphical model F (y, x,w) =
∑

r fr (yr , x,w)

∂

∂w

∑
(x,y)∈D,ŷ

p(x,y),tg(ŷ) ln p(ŷ | x; w)

=
∑

(x,y)∈D,r

(
Ep(x,y),r,tg

[
∂

∂w
fr (ŷr , x,w)

]
− Ep(x,y),r

[
∂

∂w
fr (ŷr , x,w)

])

2 Approximate marginals pr (ŷr |x,w) via beliefs br (ŷr |x,w) computed by:

Sampling methods
Variational methods
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Deep Structured Learning (algo 2)

[Schwing & Urtasun Arxiv’15, Zheng et al. Arxiv’15]

Repeat until stopping criteria

1 Forward pass to compute the fr (yr , x,w)

2 Compute the br (yr | x,w) by running
approximated inference

3 Backward pass via chain rule to obtain gradient

4 Update parameters w

PROBLEM: We have to run inference in the graphical model every time we want
to update the weights
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How to deal with Big Data

Dealing with large number |D| of training examples:

Parallelized across samples (any number of machines and GPUs)

Usage of mini batches

Dealing with large output spaces Y:

Variational approximations

Blending of learning and inference
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Approximated Deep Structured Learning
[Schwing & Urtasun Arxiv’15]

Sample parallel implementation:

Partition data D onto compute nodes
Repeat until stopping criteria

1 Each compute node uses GPU for CNN Forward pass to
compute fr (yr , x,w)

2 Each compute node estimates beliefs br (yr | x,w) for assigned
samples

3 Backpropagation of difference using GPU to obtain machine
local gradient

4 Synchronize gradient across all machines using MPI

5 Update parameters w
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Better Option: Interleaving Learning and Inference

Use LP relaxation instead

min
w

∑
(x,y)∈D

 max
b(x,y)∈C(x,y)

∑
r,ŷr

b(x,y),r (ŷr )fr (x, ŷr ;w) +
∑
r

εcrH(b(x,y),r )

−F (x, y;w)



More efficient algorithm by blending min. w.r.t. w and max. of the beliefs b

After introducing Lagrange multipliers λ, the dual becomes

min
w,λ

∑
(x,y),r

εcr ln
∑

ŷr

exp

fr (x, ŷr ;w) +
∑

c∈C(r)

λ(x,y),c→r (ŷc )−
∑

p∈P(r)

λ(x,y),r→p(ŷr )

εcr
− F (w).

with F (w) =
∑

(x,y)∈D F (x, y; w) the sum of empirical function observations

We can then do block coordinate descent to solve the minimization problem,
and we get the following algorithm · · ·
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 max
b(x,y)∈C(x,y)
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r,ŷr

b(x,y),r (ŷr )fr (x, ŷr ;w) +
∑
r

εcrH(b(x,y),r )
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fr (x, ŷr ;w) +
∑

c∈C(r)

λ(x,y),c→r (ŷc )−
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∑
r

εcrH(b(x,y),r )

−F (x, y;w)



More efficient algorithm by blending min. w.r.t. w and max. of the beliefs b

After introducing Lagrange multipliers λ, the dual becomes

min
w,λ

∑
(x,y),r

εcr ln
∑

ŷr
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Deep Structured Learning (algo 3)

[Chen & Schwing & Yuille & Urtasun ICML’15]

Repeat until stopping criteria

1 Forward pass to compute the fr (yr , x,w)

2 Update (some) messages λ

3 Backward pass via chain rule to obtain gradient

4 Update parameters w
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Deep Structured Learning (algo 4)

[Chen & Schwing & Yuille & Urtasun ICML’15]

Sample parallel implementation:

Partition data D onto compute nodes
Repeat until stopping criteria

1 Each compute node uses GPU for CNN Forward pass to
compute fr (yr , x,w)

2 Each compute node updates (some) messages λ

3 Backpropagation of difference using GPU to obtain machine
local gradient

4 Synchronize gradient across all machines using MPI

5 Update parameters w
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Application 1: Character Recognition

Task: Word Recognition from a fixed vocabulary of 50 words, 28× 28 sized
image patches

Characters have complex backgrounds and suffer many different distortions

Training, validation and test set sizes are 10k, 2k and 2k variations of words

banal julep resty

drein yojan mothy

snack feize porer
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Results

Graphical model has 5 nodes, MLP for each unary and non-parametric
pairwise potentials

Joint training, structured, deep and more capacity helps

Grap MLP Method H1 = 128 H1 = 256 H1 = 512 H1 = 768 H1 = 1024

1st 1lay

Unary only 8.60 / 61.32 10.80 / 64.41 12.50 / 65.69 12.95 / 66.66 13.40 / 67.02
JointTrain 16.80 / 65.28 25.20 / 70.75 31.80 / 74.90 33.05 / 76.42 34.30 / 77.02
PwTrain 12.70 / 64.35 18.00 / 68.27 22.80 / 71.29 23.25 / 72.62 26.30 / 73.96

PreTrainJoint 20.65 / 67.42 25.70 / 71.65 31.70 / 75.56 34.50 / 77.14 35.85 / 78.05

2nd 1lay
JointTrain 25.50 / 67.13 34.60 / 73.19 45.55 / 79.60 51.55 / 82.37 54.05 / 83.57
PwTrain 10.05 / 58.90 14.10 / 63.44 18.10 / 67.31 20.40 / 70.14 22.20 / 71.25

PreTrainJoint 28.15 / 69.07 36.85 / 75.21 45.75 / 80.09 50.10 / 82.30 52.25 / 83.39

H1 = 512 H2 = 32 H2 = 64 H2 = 128 H2 = 256 H2 = 512

1st 2lay

Unary only 15.25 / 69.04 18.15 / 70.66 19.00 / 71.43 19.20 / 72.06 20.40 / 72.51
JointTrain 35.95 / 76.92 43.80 / 81.64 44.75 / 82.22 46.00 / 82.96 47.70 / 83.64
PwTrain 34.85 / 79.11 38.95 / 80.93 42.75 / 82.38 45.10 / 83.67 45.75 / 83.88

PreTrainJoint 42.25 / 81.10 44.85 / 82.96 46.85 / 83.50 47.95 / 84.21 47.05 / 84.08

2nd 2lay
JointTrain 54.65 / 83.98 61.80 / 87.30 66.15 / 89.09 64.85 / 88.93 68.00 / 89.96
PwTrain 39.95 / 81.14 48.25 / 84.45 52.65 / 86.24 57.10 / 87.61 62.90 / 89.49

PreTrainJoint 62.60 / 88.03 65.80 / 89.32 68.75 / 90.47 68.60 / 90.42 69.35 / 90.75
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Learned Weights

a b c d e f g h i j k l mn o p q r s t u v w x y z

a
b
c
d
e
f

g
h
i
j

k
l

m
n
o
p
q
r
s
t

u
v
w
x
y
z

a b c d e f g h i j k l mn o p q r s t u v wx y z

a
b
c
d
e
f

g
h
i
j

k
l

m
n
o
p
q
r
s
t

u
v
w
x
y
z

Unary weights distance-1 edges distance-2 edges
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Example 2: Image Tagging

[Chen & Schwing & Yuille & Urtasun ICML’15]

Flickr dataset: 38 possible tags, |Y| = 238

10k training, 10k test examples

Training method Prediction error [%]

Unary only 9.36
Piecewise 7.70

Joint (with pre-training) 7.25
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Visual results

female/indoor/portrait sky/plant life/tree water/animals/sea
female/indoor/portrait sky/plant life/tree water/animals/sky

animals/dog/indoor indoor/flower/plant life
animals/dog ∅
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Learned class correlations

Only part of the correlations are shown for clarity
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Example 3: Semantic Segmentation
[Chen et al. ICLR’15; Krähenbühl & Koltun NIPS’11,ICML’13; Zhen et al. Arxiv’15;

Schwing & Urtasun Arxiv’15 ]

|Y| = 21350·500, ≈ 10k training, ≈ 1500 test examples

Oxford-net pre trained on PASCAL, predicts 40× 40 + upsampling

The graphical model is a fully connected CRF with Gaussian potentials

Inference using (algo2), with mean-field as approx. inference

Interpolation
Layer 

Fully 
Connected CRF 

Pooling & 
Subsampling 
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Pascal VOC 2012 dataset
[Chen et al. ICLR’15; Krähenbühl & Koltun NIPS’11,ICML’13; Zhen et al. Arxiv’15;

Schwing & Urtasun Arxiv’15 ]

|Y| = 21350·500, ≈ 10k training, ≈ 1500 test examples

Oxford-net pre trained on PASCAL, predicts 40× 40 + upsampling

The graphical model is a fully connected CRF with Gaussian potentials

Inference using (algo2), with mean-field as approx. inference

Training method Mean IoU [%]

Unary only 61.476
Joint 64.060

Disclaimer: Much better results now with a few tricks. Zheng et al. 15 is
now at 74.7%!

R. Urtasun (UofT) Deep Structured Models August 21, 2015 100 / 128



Pascal VOC 2012 dataset
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Visual results
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Example 4: 3D Object Proposals for Detection

Use structured prediction to learn to propose object candidates (i.e.,
grouping)

(image) (stereo) (depth-feat) (prior)

Use deep learning to do final detection: OxfordNet

Only 1.2s to generate proposals
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Figure : Proposal recall: 0.7 overlap threshold for Car, and 0.5 for rest.
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Figure : Recall vs IoU for 500 proposals. (Top) Cars, (Middle) Pedestrians,
(Bottom) Cyclists.
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KITTI Detection Results

[ X. Chen, K. Kundu and S. Fidler and R. Urtasun, On Arxiv soon]

Cars Pedestrians Cyclists
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

LSVM-MDPM-sv 68.02 56.48 44.18 47.74 39.36 35.95 35.04 27.50 26.21
SquaresICF - - - 57.33 44.42 40.08 - - -
DPM-C8B1 74.33 60.99 47.16 38.96 29.03 25.61 43.49 29.04 26.20

MDPM-un-BB 71.19 62.16 48.43 - - - - - -
DPM-VOC+VP 74.95 64.71 48.76 59.48 44.86 40.37 42.43 31.08 28.23

OC-DPM 74.94 65.95 53.86 - - - - - -
AOG 84.36 71.88 59.27 - - - - - -

SubCat 84.14 75.46 59.71 54.67 42.34 37.95 - - -
DA-DPM - - - 56.36 45.51 41.08 - - -

Fusion-DPM - - - 59.51 46.67 42.05 - - -
R-CNN - - - 61.61 50.13 44.79 - - -

FilteredICF - - - 61.14 53.98 49.29 - - -
pAUCEnsT - - - 65.26 54.49 48.60 51.62 38.03 33.38

MV-RGBD-RF - - - 70.21 54.56 51.25 54.02 39.72 34.82
3DVP 87.46 75.77 65.38 - - - - - -

Regionlets 84.75 76.45 59.70 73.14 61.15 55.21 70.41 58.72 51.83
Ours 88.33 87.14 76.11 70.16 59.35 52.76 77.94 67.35 59.49

Table : Average Precision (AP) (in %) on the test set of the KITTI Object
Detection Benchmark.
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KITTI Detection Results

[ X. Chen, K. Kundu and S. Fidler and R. Urtasun, On Arxiv soon]

Cars Pedestrians Cyclists
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

AOG 43.81 38.21 31.53 - - - - - -
DPM-C8B1 59.51 50.32 39.22 31.08 23.37 20.72 27.25 19.25 17.95

LSVM-MDPM-sv 67.27 55.77 43.59 43.58 35.49 32.42 27.54 22.07 21.45
DPM-VOC+VP 72.28 61.84 46.54 53.55 39.83 35.73 / 30.52 23.17 21.58

OC-DPM 73.50 64.42 52.40 - - - - - -
SubCat 83.41 74.42 58.83 44.32 34.18 30.76 - - -
3DVP 86.92 74.59 64.11 - - - - - -
Ours 83.03 80.21 69.60 48.58 40.56 36.08 57.72 48.21 42.72

Table : AOS scores on the KITTI Object Detection and Orientation Benchmark
(test set).
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Car Results

[ X. Chen, K. Kundu, Y. Zhu, S. Fidler and R. Urtasun, On Arxiv soon]
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Pedestrian Results

[ X. Chen, K. Kundu, Y. Zhu, S. Fidler and R. Urtasun, On Arxiv soon]
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Cyclist Results

[ X. Chen, K. Kundu, Y. Zhu, S. Fidler and R. Urtasun, On Arxiv soon]
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Example 5: More Precise Grouping

Given a single image, we want to infer Instance-level Segmentation and
Depth Ordering

Use deep convolutional nets to do both tasks simultaneously

Trick: Encode both tasks with a single parameterization

Run the conv. net at multiple resolutions

Use MRF to form a single coherent explanation across all the image
combining the conv nets at multiple resolutions

Important: we do not use a single pixel-wise training example!
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Results on KITTI
[Z. Zhang, A. Schwing, S. Fidler and R. Urtasun, ICCV ’15]
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More Results (including failures/difficulties)
[Z. Zhang, A. Schwing, S. Fidler and R. Urtasun, ICCV ’15]
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Example 6: Enhancing freely-available maps
[G. Matthyus, S. Wang, S. Fidler and R. Urtasun, ICCV ’15]

Toronto: Airport San Francisco: Russian Hill NYC: Times square

Kyoto: Kinkakuji Sydney: At Harbour bridge Monte Carlo: Casino

Enhancing OpenStreetMaps

Can be trained on a single image and test on the whole world

Trick: Not to reason at the pixel level

Very efficient: 0.1s/km of road

Preserves topology and is state-of-the-art

R. Urtasun (UofT) Deep Structured Models August 21, 2015 113 / 128



Example 7: Fashion

[E. Simo-Serra, S. Fidler, F. Moreno, R. Urtasun, CVPR15]

Figure : An example of a post on http://www.chictopia.com. We crawled the
site for 180K posts.
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How Fashionable Are You?
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How Fashionable Are You?
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How Fashionable Are You?

Figure : We ran a face detector that predicts also beauty of the face, age,
ethnicity, mood.
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How Fashionable Are You?

Face detector + attributes

http://www.rekognition.com
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How Fashionable Are You?

Figure : Our model is a Conditional Random Field that uses many visual and
textual features, as well as meta-data features such as where the user is from.
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How Fashionable Are You?

Figure : We predict fashionability of users.

Figure : We predict what kind of outfit the person wears.
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How Fashionable Can You Become?

Figure : Examples of recommendations provided by our model. The parenthesis
we show the fashionability scores.
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Not a big deal... but

Appear all over the Tech and News
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Not a big deal... but

Appear all over the Tech and News

All over the Fashion press
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Not a big deal... but

Appear all over the Tech and News

All over the Fashion press

International News and TV (Fox, BBC, SkypeNews, RTVE, etc)
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Best Quote Award

Cosmopolitan (UK): The technology scores your facial
attributes (this just keeps getting better, doesn’t it) from
your looks, to your age, and the emotion you’re showing,
before combining all the information using an equation
SO complex we won’t begin to go into it.
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But the Most Important Impact
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Previous Work

Use the hinge loss to optimize the unaries only which are neural nets (Li and
Zemel 14). Correlations between variables are not used for learning

If inference is tractable, Conditional Neural Fields (Peng et al. 09) use
back-propagation on the log-loss

Decision Tree Fields (Nowozin et al. 11), use complex region potentials
(decision trees), but given the tree, it is still linear in the parameters.
Trained using pseudo likelihood.

Restricted Bolzmann Machines (RBMs): Generative model that has a very
particular architecture so that inference is tractable via sampling
(Salakhutdinov 07). Problems with partition function.

(Domke 13) treat the problem as learning a set of logistic regressors

Fields of experts (Roth et al. 05), not deep, use CD training

Many ideas go back to (Boutou 91)
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Conclusions and Future Work

Conclusions:

Modeling of correlations between variables

Non-linear dependence on parameters

Joint training of many convolutional neural networks

Parallel implementation

Wide range of applications: Word recognition, Tagging, Segmentation

Future work:

Latent Variables

More applications
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