Factorization and Optical Flow

Raquel Urtasun

TTI Chicago

March 14, 2013

Let's talk about Factorization

Factorization from Video Sequences

- When we have video sequences, we can get feature tracks
- Often, we can reconstruct structure and motion from those tracks using factorization

Figure: 3D reconstruction of a rotating ping pong ball using factorization [Tomasi and Kanade, 92]

Orthographic and Weak perspective

- In orthographic and weak perspective, the last row is always $[0,0,0,1]$, there is no division by the last row and thus we can write

$$
\mathbf{x}_{j i}=\tilde{\mathbf{P}}_{j} \overline{\mathbf{p}}_{i}
$$

with $\mathbf{x}_{j i}$ the location of the projection of the i-th point in the j-th frame, and $\tilde{\mathbf{P}}_{j}$ a 2×4 projection matrix, and $\overline{\mathbf{p}}_{i}=\left(X_{i}, Y_{i}, Z_{i}, 1\right)$.

- We can compute the centroid of the points

$$
\overline{\mathbf{x}}_{j}=\frac{1}{N} \sum_{i} \mathbf{x}_{j i}=\tilde{\mathbf{p}}_{j} \frac{1}{N} \sum_{i} \overline{\mathbf{p}}_{i}=\tilde{\mathbf{p}}_{j} \overline{\mathbf{c}}
$$

with $\overline{\mathbf{c}}=(\bar{X}, \bar{Y}, \bar{Z}, 1)$ the augmented 3D centroid of the point cloud

Orthographic and Weak perspective

- In orthographic and weak perspective, the last row is always $[0,0,0,1]$, there is no division by the last row and thus we can write

$$
\mathbf{x}_{j i}=\tilde{\mathbf{P}}_{j} \overline{\mathbf{p}}_{i}
$$

with $\mathbf{x}_{j i}$ the location of the projection of the i-th point in the j-th frame, and $\tilde{\mathbf{P}}_{j}$ a 2×4 projection matrix, and $\overline{\mathbf{p}}_{i}=\left(X_{i}, Y_{i}, Z_{i}, 1\right)$.

- We can compute the centroid of the points

$$
\overline{\mathbf{x}}_{j}=\frac{1}{N} \sum_{i} \mathbf{x}_{j i}=\tilde{\mathbf{P}}_{j} \frac{1}{N} \sum_{i} \overline{\mathbf{p}}_{i}=\tilde{\mathbf{P}}_{j} \overline{\mathbf{c}}
$$

with $\overline{\mathbf{c}}=(\bar{X}, \bar{Y}, \bar{Z}, 1)$ the augmented 3D centroid of the point cloud

- We place the origin of the coordinates at $(\bar{X}, \bar{Y}, \bar{Z})=(0,0,0)$

Orthographic and Weak perspective

- In orthographic and weak perspective, the last row is always $[0,0,0,1]$, there is no division by the last row and thus we can write

$$
\mathbf{x}_{j i}=\tilde{\mathbf{P}}_{j} \overline{\mathbf{p}}_{i}
$$

with $\mathbf{x}_{j i}$ the location of the projection of the i-th point in the j-th frame, and $\tilde{\mathbf{P}}_{j}$ a 2×4 projection matrix, and $\overline{\mathbf{p}}_{i}=\left(X_{i}, Y_{i}, Z_{i}, 1\right)$.

- We can compute the centroid of the points

$$
\overline{\mathbf{x}}_{j}=\frac{1}{N} \sum_{i} \mathbf{x}_{j i}=\tilde{\mathbf{P}}_{j} \frac{1}{N} \sum_{i} \overline{\mathbf{p}}_{i}=\tilde{\mathbf{P}}_{j} \overline{\mathbf{c}}
$$

with $\overline{\mathbf{c}}=(\bar{X}, \bar{Y}, \bar{Z}, 1)$ the augmented 3D centroid of the point cloud

- We place the origin of the coordinates at $(\bar{X}, \bar{Y}, \bar{Z})=(0,0,0)$

Factorization

- Let $\tilde{\mathbf{x}}_{j i}=\mathbf{x}_{j i}-\overline{\mathbf{x}}_{j}$ be the 2D point locations after their image centroid has been substracted. We have

$$
\tilde{\mathbf{x}}_{j i}=\mathbf{M}_{j} \mathbf{p}_{i}
$$

where \mathbf{M}_{j} is the upper 2×3 portion of the projection matrix \mathbf{P}_{j}, and $\mathbf{p}_{i}=\left(X_{i}, Y_{i}, Z_{i}\right)$.

- Concatenating all measurements we have

Factorization

- Let $\tilde{\mathbf{x}}_{j i}=\mathbf{x}_{j i}-\overline{\mathbf{x}}_{j}$ be the 2D point locations after their image centroid has been substracted. We have

$$
\tilde{\mathbf{x}}_{j i}=\mathbf{M}_{j} \mathbf{p}_{i}
$$

where \mathbf{M}_{j} is the upper 2×3 portion of the projection matrix \mathbf{P}_{j}, and $\mathbf{p}_{i}=\left(X_{i}, Y_{i}, Z_{i}\right)$.

- Concatenating all measurements we have

$$
\hat{\mathbf{x}}=\left[\begin{array}{ccccc}
\tilde{\mathbf{x}}_{11} & \cdots & \tilde{\mathbf{x}}_{1 i} & \cdots & \tilde{\mathbf{x}}_{1 N} \\
\vdots & & \vdots & & \vdots \\
\tilde{\mathbf{x}}_{j 1} & \cdots & \tilde{\mathbf{x}}_{j i} & \cdots & \tilde{\mathbf{x}}_{j N} \\
\vdots & & \vdots & & \vdots \\
\tilde{\mathbf{x}}_{M 1} & \cdots & \tilde{\mathbf{x}}_{M i} & \cdots & \tilde{\mathbf{x}}_{M N}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{M}_{1} \\
\vdots \\
\mathbf{M}_{j} \\
\vdots \\
\mathbf{M}_{N}
\end{array}\right]\left[\begin{array}{lllll}
\mathbf{p}_{1} & \cdots & \mathbf{p}_{i} & \cdots & \mathbf{p}_{N}
\end{array}\right]=\hat{\mathbf{M}} \hat{\mathbf{S}}
$$

- \hat{X} is called the measurement matrix, and \hat{M} and \hat{S} are the motion and structure respectively.

Factorization

- Let $\tilde{\mathbf{x}}_{j i}=\mathbf{x}_{j i}-\overline{\mathbf{x}}_{j}$ be the 2D point locations after their image centroid has been substracted. We have

$$
\tilde{\mathbf{x}}_{j i}=\mathbf{M}_{j} \mathbf{p}_{i}
$$

where \mathbf{M}_{j} is the upper 2×3 portion of the projection matrix \mathbf{P}_{j}, and $\mathbf{p}_{i}=\left(X_{i}, Y_{i}, Z_{i}\right)$.

- Concatenating all measurements we have

$$
\hat{\mathbf{x}}=\left[\begin{array}{ccccc}
\tilde{\mathbf{x}}_{11} & \cdots & \tilde{\mathbf{x}}_{1 i} & \cdots & \tilde{\mathbf{x}}_{1 N} \\
\vdots & & \vdots & & \vdots \\
\tilde{\mathbf{x}}_{j 1} & \cdots & \tilde{\mathbf{x}}_{j i} & \cdots & \tilde{\mathbf{x}}_{j N} \\
\vdots & & \vdots & & \vdots \\
\tilde{\mathbf{x}}_{M 1} & \cdots & \tilde{\mathbf{x}}_{M i} & \cdots & \tilde{\mathbf{x}}_{M N}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{M}_{1} \\
\vdots \\
\mathbf{M}_{j} \\
\vdots \\
\mathbf{M}_{N}
\end{array}\right]\left[\begin{array}{lllll}
\mathbf{p}_{1} & \cdots & \mathbf{p}_{i} & \cdots & \mathbf{p}_{N}
\end{array}\right]=\hat{\mathbf{M}} \hat{\mathbf{S}}
$$

- $\hat{\mathbf{X}}$ is called the measurement matrix, and $\hat{\mathbf{M}}$ and $\hat{\mathbf{S}}$ are the motion and structure respectively.

More on factorization

- Because $\hat{\mathbf{M}}$ is a $2 M \times 3$ matrix and $\hat{\mathbf{S}}$ a $3 \times N$ matrix, if we apply SVD to $\hat{\mathbf{X}}$, we will have only 3 non-zero singular values.
- Measurements are typically noisy, so return only the rank-3 factorization

More on factorization

- Because $\hat{\mathbf{M}}$ is a $2 M \times 3$ matrix and $\hat{\mathbf{S}}$ a $3 \times N$ matrix, if we apply SVD to $\hat{\mathbf{X}}$, we will have only 3 non-zero singular values.
- Measurements are typically noisy, so return only the rank-3 factorization
- We still have to obtain $\hat{\mathrm{M}}$ and $\hat{\mathrm{S}}$ as the SVD does not return this directly

$$
\hat{\mathbf{X}}=\mathbf{U} \Sigma \mathbf{V}^{T}=[\mathbf{U Q}]\left[\mathbf{Q}^{-1} \Sigma \mathbf{V}^{T}\right]
$$

More on factorization

- Because $\hat{\mathbf{M}}$ is a $2 M \times 3$ matrix and $\hat{\mathbf{S}}$ a $3 \times N$ matrix, if we apply SVD to $\hat{\mathbf{X}}$, we will have only 3 non-zero singular values.
- Measurements are typically noisy, so return only the rank-3 factorization
- We still have to obtain $\hat{\mathbf{M}}$ and $\hat{\mathbf{S}}$ as the SVD does not return this directly

$$
\hat{\mathbf{X}}=\mathbf{U} \Sigma \mathbf{V}^{T}=[\mathbf{U Q}]\left[\mathbf{Q}^{-1} \Sigma \mathbf{V}^{T}\right]
$$

- We can thus set $\hat{\mathbf{M}}=\mathbf{U Q}$, and $\mathbf{Q}^{-1} \Sigma \mathbf{V}^{\top}$

More on factorization

- Because $\hat{\mathbf{M}}$ is a $2 M \times 3$ matrix and $\hat{\mathbf{S}}$ a $3 \times N$ matrix, if we apply SVD to $\hat{\mathbf{X}}$, we will have only 3 non-zero singular values.
- Measurements are typically noisy, so return only the rank-3 factorization
- We still have to obtain $\hat{\mathbf{M}}$ and $\hat{\mathbf{S}}$ as the SVD does not return this directly

$$
\hat{\mathbf{X}}=\mathbf{U} \Sigma \mathbf{V}^{T}=[\mathbf{U Q}]\left[\mathbf{Q}^{-1} \Sigma \mathbf{V}^{T}\right]
$$

- We can thus set $\hat{\mathbf{M}}=\mathbf{U Q}$, and $\mathbf{Q}^{-1} \Sigma \mathbf{V}^{\top}$
- How can we recover the 3×3 matrix \mathbf{Q} ?

More on factorization

- Because $\hat{\mathbf{M}}$ is a $2 M \times 3$ matrix and $\hat{\mathbf{S}}$ a $3 \times N$ matrix, if we apply SVD to $\hat{\mathbf{X}}$, we will have only 3 non-zero singular values.
- Measurements are typically noisy, so return only the rank-3 factorization
- We still have to obtain $\hat{\mathbf{M}}$ and $\hat{\mathbf{S}}$ as the SVD does not return this directly

$$
\hat{\mathbf{X}}=\mathbf{U} \Sigma \mathbf{V}^{T}=[\mathbf{U Q}]\left[\mathbf{Q}^{-1} \Sigma \mathbf{V}^{T}\right]
$$

- We can thus set $\hat{\mathbf{M}}=\mathbf{U Q}$, and $\mathbf{Q}^{-1} \Sigma \mathbf{V}^{T}$
- How can we recover the 3×3 matrix \mathbf{Q} ?
- This depends on the motion model used (weak-perspective, orthographic)

More on factorization

- Because $\hat{\mathbf{M}}$ is a $2 M \times 3$ matrix and $\hat{\mathbf{S}}$ a $3 \times N$ matrix, if we apply SVD to $\hat{\mathbf{X}}$, we will have only 3 non-zero singular values.
- Measurements are typically noisy, so return only the rank-3 factorization
- We still have to obtain $\hat{\mathbf{M}}$ and $\hat{\mathbf{S}}$ as the SVD does not return this directly

$$
\hat{\mathbf{X}}=\mathbf{U} \Sigma \mathbf{V}^{T}=[\mathbf{U Q}]\left[\mathbf{Q}^{-1} \Sigma \mathbf{V}^{T}\right]
$$

- We can thus set $\hat{\mathbf{M}}=\mathbf{U Q}$, and $\mathbf{Q}^{-1} \Sigma \mathbf{V}^{\top}$
- How can we recover the 3×3 matrix \mathbf{Q} ?
- This depends on the motion model used (weak-perspective, orthographic)
- See Szelisky 7.3 for an explanation

More on factorization

- Because $\hat{\mathbf{M}}$ is a $2 M \times 3$ matrix and $\hat{\mathbf{S}}$ a $3 \times N$ matrix, if we apply SVD to $\hat{\mathbf{X}}$, we will have only 3 non-zero singular values.
- Measurements are typically noisy, so return only the rank-3 factorization
- We still have to obtain $\hat{\mathbf{M}}$ and $\hat{\mathbf{S}}$ as the SVD does not return this directly

$$
\hat{\mathbf{X}}=\mathbf{U} \Sigma \mathbf{V}^{T}=[\mathbf{U Q}]\left[\mathbf{Q}^{-1} \Sigma \mathbf{V}^{T}\right]
$$

- We can thus set $\hat{\mathbf{M}}=\mathbf{U Q}$, and $\mathbf{Q}^{-1} \Sigma \mathbf{V}^{T}$
- How can we recover the 3×3 matrix \mathbf{Q} ?
- This depends on the motion model used (weak-perspective, orthographic)
- See Szelisky 7.3 for an explanation
- Rotation left to right or right to left of the depth reverse version, Necker cube illusion

More on factorization

- Because $\hat{\mathbf{M}}$ is a $2 M \times 3$ matrix and $\hat{\mathbf{S}}$ a $3 \times N$ matrix, if we apply SVD to $\hat{\mathbf{X}}$, we will have only 3 non-zero singular values.
- Measurements are typically noisy, so return only the rank-3 factorization
- We still have to obtain $\hat{\mathbf{M}}$ and $\hat{\mathbf{S}}$ as the SVD does not return this directly

$$
\hat{\mathbf{X}}=\mathbf{U} \Sigma \mathbf{V}^{T}=[\mathbf{U Q}]\left[\mathbf{Q}^{-1} \Sigma \mathbf{V}^{T}\right]
$$

- We can thus set $\hat{\mathbf{M}}=\mathbf{U Q}$, and $\mathbf{Q}^{-1} \Sigma \mathbf{V}^{T}$
- How can we recover the 3×3 matrix \mathbf{Q} ?
- This depends on the motion model used (weak-perspective, orthographic)
- See Szelisky 7.3 for an explanation
- Rotation left to right or right to left of the depth reverse version, Necker cube illusion
- What if perspective? Assume orthographic, solve for it and iterate to be perspective.

More on factorization

- Because $\hat{\mathbf{M}}$ is a $2 M \times 3$ matrix and $\hat{\mathbf{S}}$ a $3 \times N$ matrix, if we apply SVD to $\hat{\mathbf{X}}$, we will have only 3 non-zero singular values.
- Measurements are typically noisy, so return only the rank-3 factorization
- We still have to obtain $\hat{\mathbf{M}}$ and $\hat{\mathbf{S}}$ as the SVD does not return this directly

$$
\hat{\mathbf{X}}=\mathbf{U} \Sigma \mathbf{V}^{T}=[\mathbf{U Q}]\left[\mathbf{Q}^{-1} \Sigma \mathbf{V}^{T}\right]
$$

- We can thus set $\hat{\mathbf{M}}=\mathbf{U Q}$, and $\mathbf{Q}^{-1} \Sigma \mathbf{V}^{T}$
- How can we recover the 3×3 matrix \mathbf{Q} ?
- This depends on the motion model used (weak-perspective, orthographic)
- See Szelisky 7.3 for an explanation
- Rotation left to right or right to left of the depth reverse version, Necker cube illusion
- What if perspective? Assume orthographic, solve for it and iterate to be perspective.

What if the motion is non-rigid?

Non-rigid Structure from Motion

[C. Bregler, A. Hertzmann and H. Biermann, CVPR00]

- Observed shapes can be represented as a linear combination of a compact set of basis shapes
- Each instantaneous structure is expressed as a point in the linear space of shapes spanned by the shape basis

$$
\mathbf{S}=\sum_{l=1}^{K} l_{i} \mathbf{S}_{i}
$$

with $\mathbf{S}, \mathbf{S}_{i} \in \Re^{3 \times P}, I_{i} \in \Re$

- Since the space of spatial deformations is highly object specic, the shape basis need to be estimated anew for each video sequence
- The shape basis of a mouth smiling, for instance, cannot be recycled to compactly represent a person walking

More details

- Under the scale orthographic projection

$$
\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{P} \\
v_{1} & v_{2} & \cdots & v_{P}
\end{array}\right]=\mathbf{R}\left(\sum_{i=1}^{K} \iota_{i} \mathbf{S}_{i}\right)+\mathbf{T}
$$

with

$$
\mathbf{R}=\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3} \\
r_{4} & r_{5} & r_{6}
\end{array}\right]
$$

containing the first 2 rows of the full $3 d$ camera rotation matrix, and \mathbf{T} is the camera translation

- As in Tomasi-Kanade, we eliminate \mathbf{T} by substracting the mean of all 2D points, and assuming that \mathbf{S} is centered at the origin
- Thus

$$
\left[\begin{array}{lll}
u_{1} & \cdots & u_{P} \\
v_{1} & \cdots & v_{P}
\end{array}\right]=\left[\begin{array}{ll}
l_{1} \mathbf{R} & \cdots I_{K} \mathbf{R}
\end{array}\right]\left[\begin{array}{c}
\mathbf{S}_{1} \\
\vdots \\
\mathbf{S}_{K}
\end{array}\right]
$$

More details

$$
\left[\begin{array}{ccc}
u_{1} & \cdots & u_{P} \\
v_{1} & \cdots & v_{P}
\end{array}\right]=\left[\begin{array}{ll}
l_{1} \mathbf{R} & \cdots I_{K} \mathbf{R}
\end{array}\right]\left[\begin{array}{c}
\mathbf{S}_{1} \\
\vdots \\
\mathbf{S}_{K}
\end{array}\right]
$$

- Adding a temporal index to each 2D point, and denoting the tracked points in frame t as $\left(u_{i}^{t}, v_{i}^{t}\right)$, we have

$$
\mathbf{W}=\left[\begin{array}{ccc}
u_{1}^{1} & \cdots & u_{P}^{1} \\
v_{1}^{1} & \cdots & v_{P}^{1} \\
\vdots & & \vdots \\
u_{1}^{N} & \cdots & u_{P}^{N} \\
v_{1}^{N} & \cdots & u_{P}^{N}
\end{array}\right]=\left[\begin{array}{ccc}
I_{1}^{1} \mathbf{R}^{1} & \cdots & I_{K}^{1} \mathbf{R}^{1} \\
\vdots & & \vdots \\
I_{1}^{N} \mathbf{R}^{N} & \cdots & I_{K}^{N} \mathbf{R}^{N}
\end{array}\right]\left[\begin{array}{c}
\mathbf{S}_{1} \\
\vdots \\
\mathbf{S}_{K}
\end{array}\right]=\mathbf{Q B}
$$

- Performing SVD, and taking the first $3 K$ singular vectors / values

$$
\mathbf{W}^{2 N \times P}=\mathbf{U} \Sigma \mathbf{V}^{T}=\mathbf{Q}^{2 N \times 3 K} \mathbf{B}^{3 K \times P}
$$

Factorizing Pose from Configuration

- Performing SVD, and taking the first $3 K$ singular vectors / values

$$
\mathbf{W}^{2 N \times P}=\mathbf{U} \Sigma \mathbf{V}^{T}=\mathbf{Q}^{2 N \times 3 K} \mathbf{B}^{3 K \times P}
$$

- In the second step, we extract the camera rotations \mathbf{R}_{t} and shape basis weights I_{t} from the matrix $\hat{\mathbf{Q}}$
- $\hat{\mathbf{Q}}$ only contains $N(K+6)$ free variables
- Consider two rows of $\hat{\mathbf{Q}}$ that correspond to one single time frame t, and drop the index on t

$$
\hat{\mathbf{q}}^{t}=\left[\begin{array}{lll}
I_{1}^{t} \mathbf{R}^{t} & \cdots & I_{K}^{t} \mathbf{R}^{t}
\end{array}\right]=\left[\begin{array}{llllll}
I_{1} r_{1} & I_{1} r_{2} & I_{1} r_{3} & \cdots I_{K} r_{1} & I_{K} r_{2} & I_{K} r_{3} \\
I_{1} r_{4} & I_{1} r_{5} & I_{1} r_{6} & \cdots I_{K} r_{4} & I_{K} r_{5} & I_{K} r_{6}
\end{array}\right]
$$

- Reordering,

$$
\hat{\mathbf{q}}=\left[\begin{array}{cccccc}
I_{1} r_{1} & I_{1} r_{2} & I_{1} r_{3} & I_{1} r_{4} & I_{1} r_{5} & I_{1} r_{6} \\
\vdots & & & & & \vdots \\
I_{K} r_{1} & I_{K} r_{2} & I_{K} r_{3} & I_{K} r_{4} & I_{K} r_{5} & I_{K} r_{6}
\end{array}\right]=\left[\begin{array}{c}
I_{1} \\
\vdots \\
I_{K}
\end{array}\right]\left[\begin{array}{llll}
r_{1} & r_{2} & \cdots & r_{6}
\end{array}\right]
$$

Factorizing Pose from Configuration

- Reordering,

$$
\hat{\mathbf{q}}=\left[\begin{array}{cccccc}
I_{1} r_{1} & I_{1} r_{2} & I_{1} r_{3} & I_{1} r_{4} & I_{1} r_{5} & I_{1} r_{6} \\
\vdots & & & & & \vdots \\
I_{K} r_{1} & I_{K} r_{2} & I_{K} r_{3} & I_{K} r_{4} & I_{K} r_{5} & I_{K} r_{6}
\end{array}\right]=\left[\begin{array}{c}
I_{1} \\
\vdots \\
I_{K}
\end{array}\right]\left[\begin{array}{llll}
r_{1} & r_{2} & \cdots & r_{6}
\end{array}\right]
$$

- This has rank 1, and can be obtained from SVD by applying successively reordering and factorization to all time blocks of $\hat{\mathbf{Q}}$
- In the final step, we need to enforce the orthonormality of the rotation matrices
- A linear transformation \mathbf{G} is found by solving a least squares problem, where \mathbf{G} maps $\hat{\mathbf{R}}^{t}$ into a rotation matrix $\mathbf{R}^{t}=\hat{\mathbf{R}}^{t} \mathbf{G}$
- The least squares problem imposes orthogonality by

$$
\begin{aligned}
& {\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3}
\end{array}\right] \mathbf{G G}^{T}\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3}
\end{array}\right]^{T}=1} \\
& {\left[\begin{array}{lll}
r_{3} & r_{4} & r_{5}
\end{array}\right] \mathbf{G G}^{T}\left[\begin{array}{lll}
r_{3} & r_{4} & r_{5}
\end{array}\right]^{T}=1} \\
& {\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3}
\end{array}\right] \mathbf{G G}^{T}\left[\begin{array}{lll}
r_{4} & r_{5} & r_{6}
\end{array}\right]^{T}=0}
\end{aligned}
$$

Trajectory basis

- Let's look again at the shape matrix

$$
\mathbf{S}^{*}=\left[\begin{array}{ccccccccc}
X_{11} & \cdots & X_{1 P} & Y_{11} & \cdots & Y_{1 P} & Z_{11} & \cdots & Z_{1 P} \\
\vdots & & \vdots & \vdots & & \vdots & \vdots & & \vdots \\
X_{F 1} & \cdots & X_{F P} & Y_{F 1} & \cdots & Y_{F P} & Z_{F 1} & \cdots & Z_{F P}
\end{array}\right]
$$

- In the previous case, we assume that this matrix has rank K, with K the number of shape basis. We took the row space
- Now let's take the column space, and we call this trajectory space
- If the time varying shape of an object can be expressed by a minimum of k shape basis, then there exist exactly k trajectory basis vectors that can represent the same time varying shape
- We consider the structure as a set of trajectories $T(i)=\left[T_{x}(i)^{T}, T_{y}(i)^{T}, T_{z}(i)^{T}\right]$, with $T_{x}(i)^{T}=\left[X_{1, i}, \cdots, X_{F, i}\right]$, etc.

Shape vs Trajectory basis

Trajectory basis

- We consider the structure as a set of trajectories
$T(i)=\left[T_{x}(i)^{T}, T_{y}(i)^{T}, T_{z}(i)^{T}\right]$, with $T_{x}(i)^{T}=\left[X_{1, i}, \cdots, X_{F, i}\right]$, etc.
- We can then say

$$
T_{x}(i)=\sum_{j=1}^{K} a_{x j}(i) \theta^{j} \quad T_{y}(i)=\sum_{j=1}^{K} a_{y j}(i) \theta^{j} \quad T_{z}(i)=\sum_{j=1}^{K} a_{z j}(i) \theta^{j}
$$

with θ^{j} the trajectory basis vector, and $a_{x j}(i), a_{y j}(i), a_{z j}(i)$ the coefficients corresponding to that basis vector.

- The time varying structure matrix can then be factorized into an inverse projection matrix and coefficient matrix

$$
\mathbf{S}_{3 F \times P}=\Theta_{3 F \times 3 k} \mathbf{A}_{3 k \times P}
$$

with $\mathbf{A}=\left[\mathbf{A}_{x}^{T}, \mathbf{A}_{y}^{T}, \mathbf{A}_{z}^{T}\right]$

More on Trajectory Basis

- The time varying structure matrix can then be factorized into an inverse projection matrix and coefficient matrix

$$
\mathbf{S}_{3 F \times P}=\Theta_{3 F \times 3 k} \mathbf{A}_{3 k \times P}
$$

with $\mathbf{A}=\left[\mathbf{A}_{x}^{T}, \mathbf{A}_{y}^{T}, \mathbf{A}_{z}^{T}\right]$

- With a particular form

$$
\mathbf{A}_{\times}=\left[\begin{array}{ccc}
a_{\times 1}(1) & \cdots & a_{\times 1}(P) \\
\vdots & & \vdots \\
a_{\times k}(1) & \cdots & a_{\times k}(P)
\end{array}\right] \quad \Theta=\left[\begin{array}{ccc}
\theta_{1}^{T} & & \\
& \theta_{1}^{T} & \\
& & \theta_{1}^{T} \\
\theta_{F}^{T} & \vdots & \\
& \theta_{F}^{T} & \\
& & \theta_{F}^{T}
\end{array}\right]
$$

Benefits

- Benefit of the trajectory space representation is that a basis can be pre-defined that can compactly approximate most real trajectories
- Before, PCA based on the data, so it could not represent all possible shapes
- Which basis to use?
- Discrete Fourier Transform basis, Discrete Wavelet Transform, etc
- They employed DCT

Non-Rigid structure from motion with Trajectory basis

- Before we had

$$
\mathbf{W}=\left[\begin{array}{ccc}
u_{1}^{1} & \cdots & u_{P}^{1} \\
v_{1}^{1} & \cdots & v_{P}^{1} \\
\vdots & & \vdots \\
u_{1}^{N} & \cdots & u_{P}^{N} \\
v_{1}^{N} & \cdots & u_{P}^{N}
\end{array}\right]=\left[\begin{array}{ccc}
I_{1}^{1} \mathbf{R}^{1} & \cdots & I_{K}^{1} \mathbf{R}^{1} \\
\vdots & & \vdots \\
I_{1}^{N} \mathbf{R}^{N} & \cdots & I_{K}^{N} \mathbf{R}^{N}
\end{array}\right]\left[\begin{array}{c}
\mathbf{S}_{1} \\
\vdots \\
\mathbf{S}_{K}
\end{array}\right]=\mathbf{Q B}
$$

- Performing SVD, and taking the first $3 K$ singular vectors / values

$$
\mathbf{W}^{2 N \times P}=\mathbf{U} \Sigma \mathbf{V}^{T}=\mathbf{Q}^{2 N \times 3 K} \mathbf{B}^{3 K \times P}
$$

- Now

$$
\mathbf{W}=\left[\begin{array}{ccc}
u_{1}^{1} & \cdots & u_{P}^{1} \\
v_{1}^{1} & \cdots & v_{P}^{1} \\
\vdots & & \vdots \\
u_{1}^{N} & \cdots & u_{P}^{N} \\
v_{1}^{N} & \cdots & u_{P}^{N}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{R}_{1} & & \\
& \ddots & \\
& & \mathbf{R}_{F}
\end{array}\right] \mathbf{S}=\mathbf{R} \Theta \mathbf{A}=\Lambda \mathbf{A}
$$

with $\Lambda=\mathbf{R} \Theta$ a $3 F \times 3 K$ matrix.

Factorization

- We can use SVD to factorize into

$$
\mathbf{W}=\hat{\Lambda} \hat{\mathbf{A}} \quad \text { with } \quad \Lambda=\hat{\Lambda} \mathbf{Q}, \quad \mathbf{A}=\mathbf{Q}^{-1} \hat{\mathbf{A}}
$$

- The problem of recovering the rotation and structure is reduced to estimating the rectification matrix \mathbf{Q} from \wedge

$$
\Lambda=\left[\begin{array}{ccc}
r_{1}^{1} \theta_{1}^{T} & r_{2}^{1} \theta_{2}^{T} & r_{3}^{1} \theta_{1}^{T} \\
r_{4}^{1} \theta_{1}^{T} & r_{5}^{1} \theta_{2}^{T} & r_{6}^{1} \theta_{1}^{T} \\
& \vdots & \\
r_{1}^{F} \theta_{F}^{T} & r_{2}^{F} \theta_{F}^{T} & r_{3}^{F} \theta_{F}^{T} \\
r_{4}^{F} \theta_{F}^{T} & r_{5}^{F} \theta_{F}^{T} & r_{6}^{F} \theta_{F}^{T}
\end{array}\right]
$$

- One can estimate \mathbf{Q} from $\hat{\wedge}$ by imposing orthogonality conditions
- Estimate \mathbf{R} from it using non-linear least squares
- Once \mathbf{R} is known, we can estimate $\Lambda=\mathbf{R} \Theta$
- Then the coefficients can be solved via least squares $\Lambda \hat{A}=\mathbf{W}$

Let's talk about Optical Flow

Optical Flow

- We saw how to estimate 2D motion, in the sense of a parametric transformation from one image to another
- The most general (and challenging) version of motion estimation is to compute an independent estimate of motion at each pixel
- This is called optical flow
- This typically involves minimizing the brightness or color difference between corresponding pixels summed over the image

$$
E_{S S D-O F}(\mathbf{u})=\sum_{i}\left|I_{1}\left(\mathbf{x}_{i}+\mathbf{u}\right)-I_{0}(\mathbf{x})\right|^{2}
$$

- The assumption that corresponding pixel values remain the same in the two images is often called the brightness constancy constraint
- The displacement u can be fractional, so a suitable interpolation function must be applied to image
- We can make $E_{S S D-O F}$ more robust by applying robust estimators

More on Optical Flow

- The energy

$$
E_{S S D-O F}(\mathbf{u})=\sum_{i}\left|I_{1}\left(\mathbf{x}_{i}+\mathbf{u}\right)-I_{0}(\mathbf{x})\right|^{2}
$$

- The number of variables u is twice the number of pixels, thus the problem is under-constraint
- What can we do?
- The two classic approaches to this problem are to perform the summation locally over overlapping regions
- Or to formulate a MRF and do energy minimization
- Think about how you will formulate this

Metrics and Benchmarks

- Same two datasets as for stereo: Middlebury and KITTI
- Have a look at their status
- What's a good metric?
- Mean-end point distance
- Percentage of pixels with distance bigger than some number of pixels
- What is the advantage of disadvantage of each?

Examples and Visualizations

Good luck with the exam!

