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More formally

Any labeling can be uniquely represented by a partition of image pixels
P = {Pl |l ∈ L}, where Pl = {p ∈ P|fp = l} is a subset of pixels assigned
label l .

There is a one to one correspondence between labelings f and partitions P.

Given a pair of labels α, β, a move from a partition P (labeling f ) to a new
partition P’ (labeling f ′) is called an α− β swap if Pl = P ′ for any label
l 6= α, β.

The only difference between P and P ′ is that some pixels that were labeled
in P are now labeled in P ′, and vice-versa.

Given a label l , a move from a partition P (labeling f ) to a new partition P ′
(labeling f ′) is called an α-expansion if Pα ⊂ P ′α and P ′l ⊂ Pl .

An α-expansion move allows any set of image pixels to change their labels
to α.
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Example

Figure: (a) Current partition (b) local move (c) α− β-swap (d) α-expansion.
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Algorithms
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Finding optimal Swap move

Given an input labeling f (partition P) and a pair of labels α, β we want to
find a labeling f̂ that minimizes E over all labelings within one α− β-swap
of f .

This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gαβ = (Vαβ , Eαβ).

The structure of this graph is dynamically determined by the current
partition P and by the labels α, β.
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Graph Construction

The set of vertices includes the two terminals α and β, as well as image
pixels p in the sets Pα and Pβ (i.e., fp ∈ {α, β}).

Each pixel p ∈ Pαβ is connected to the terminals α and β, called t-links.

Each set of pixels p, q ∈ Pαβ which are neighbors is connected by an edge
ep,q
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Computing the Cut

Any cut must have a single t-link not cut.

This defines a labeling

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, ”fast approximate energy minimization via graph cuts”
PAMI 2001.

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 7 / 66



Properties

For any cut, then
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Finding the optimal α expansion

Given an input labeling f (partition P) and a label α we want to find a
labeling f̂ that minimizes E over all labelings within one α-expansion of f .

This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gα = (Vα, Eα).

The structure of this graph is dynamically determined by the current
partition P and by the label α.

Different graph than the α− β swap.
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Graph Construction

The set of vertices includes the two terminals α and ᾱ, as well as all image
pixels p ∈ P.

Additionally, for each pair of neighboring pixels p, q such that fp 6= fq we
create an auxiliary node ap,q.

Each pixel p is connected to the terminals α and ᾱ, called t-links.

Each set of pixels p, q which are neighbors and fp = fq, we connect with and
n-link.

For each pair of neighboring pixels such that fp 6= fq, we create a triplet
{ep,a, ea,q, tᾱa }.

The set of edges is then
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The set of edges is then

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 10 / 66



Graph Construction

The set of vertices includes the two terminals α and ᾱ, as well as all image
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Graph Construction
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Properties

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, ”fast approximate energy minimization via graph cuts”
PAMI 2001.
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Global Minimization Techniques

Ways to get an approximate solution typically

Dynamic programming approximations

Sampling

Simulated annealing

Graph-cuts: imposes restrictions on the type of pairwise cost functions

Message passing: iterative algorithms that pass messages between nodes in
the graph.

Now we can solve for the MAP (approximately) in general energies. We can solve

for other problems than stereo
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Let’s look at data/bechmarks
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Benchmarks

Two benchmarks with very different characteristics

(Middlebury) (KITTI)
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Middlebury Dataset

Middlebury Stereo Evaluation – Version 2

Laboratory

Lambertian

Rich in texture

Medium-size label set

Largely fronto-parallel
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Benchmarks for Stereo and metrics

Middlebury Stereo Evaluation – Version 2

Best methods < 3% errors (for all non-occluded regions)

http://vision.middlebury.edu/stereo/data/
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Benchmarks: KITTI Data Collection

Two stereo rigs (1392× 512 px, 54 cm base, 90◦ opening)

Velodyne laser scanner, GPS+IMU localization

6 hours at 10 frames per second!
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The KITTI Vision Benchmark Suite
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Novel Challenges

Fast guided cost-volume filtering (Rhemann et al., CVPR 2011)

Middlebury, Errors: 2.7%

Error threshold: 1 px (Middlebury) / 3 px (KITTI)
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Fast guided cost-volume filtering (Rhemann et al., CVPR 2011)

Middlebury, Errors: 2.7% KITTI, Errors: 46.3%

Error threshold: 1 px (Middlebury) / 3 px (KITTI)
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Novel Challenges

So what is the difference?

Middlebury

Laboratory

Lambertian

Rich in texture

Medium-size label set

Largely fronto-parallel

KITTI

Moving vehicle

Specularities

Sensor saturation

Large label set

Strong slants
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Novel Challenges

So what is the difference?

Middlebury

d = 50 px

d = 16 px

Laboratory

Lambertian

Rich in texture

Medium-size label set

Largely fronto-parallel

KITTI

d = 150 px

d = 0 px

Moving vehicle

Specularities

Sensor saturation

Large label set

Strong slants
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Stereo Evaluation
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MRFs for stereo

Global methods: define a Markov random field over

Pixel-level

Fronto-parallel planes

Slanted planes
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Plane MRFs

First segment an image into small regions, i.e., superpixels

Assume that the 3D world is compose of small frontal/slanted planes

Good representation if the superpixels are small and respect boundaries

E (x1, · · · , xn) =
∑
i

C (xi ) +
∑
i

∑
j∈Nj

C (xi , xj)

with xi ∈ < for the fronto-parallel planes, and xi ∈ <3 for the slanted planes

This are continuous variables. Is this a problem?

What can I do to solve this? Discretize the problem

The unitary are usually agreegation of cost over the local matching on the
pixels in that superpixel

Pairwise is typically smoothness
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Slanted-plane MRFs
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A more sophisticated occlusion model

MRF on continuous variables (slanted planes) and discrete var. (boundary)

Combines depth ordering (segmentation) and stereo
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Takes as input disparities computed by any local algorithm
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Energy of PCBP-Stereo

y the set of slanted 3D planes, o the set of discrete boundary variables

E (y, o) = Ecolor (o) + Ematch(y, o) + Ecompatibility (y, o) + Ejunction(o)
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Energy of PCBP-Stereo

y the set of slanted 3D planes, o the set of discrete boundary variables

E (y, o) = Ecolor (o) + Ematch(y, o) + Ecompatibility (y, o) + Ejunction(o)
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Energy of PCBP-Stereo

y the set of slanted 3D planes, o the set of discrete boundary variables

E (y, o) = Ecolor (o) + Ematch(y, o) + Ecompatibility (y, o) + Ejunction(o)
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Easy Scenarios:

Natural scenes, lots of texture, no objects

A couple of errors at thin structures (poles)

Errors: < 0.5% Errors: < 0.5%
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Easy Scenarios:

Shadows help the disambiguation process

Errors at thin structures and far away textureless regions

Errors: < 0.5% Errors: < 0.5%
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Hard Scenarios:

Textureless or saturated areas

Ambiguous reflections

Errors: 22.1% Errors: 17.4%
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Hard Scenarios:

Depth discontinuities / complicated geometries

Errors: 11.2% Errors: 10.5%
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A different view on tracking

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 35 / 66



Tracking as a graph minimization

Goal: Given a set of detections in video, link the detections into tracks

Discover which detections are of the same object, and how many objects
there are
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Tracking as a graph minimization

Problem: Given a set of detections in video, link the detections into tracks

Discover which detections are of the same object, and how many objects
there are

This can be solved optimally as a network flow problem, with non-overlaping
constraints in trajectories

The optimal data association is found by a min-cost flow algorithm in the
network

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 37 / 66



Tracking as a graph minimization

Problem: Given a set of detections in video, link the detections into tracks

Discover which detections are of the same object, and how many objects
there are

This can be solved optimally as a network flow problem, with non-overlaping
constraints in trajectories

The optimal data association is found by a min-cost flow algorithm in the
network

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 37 / 66



Tracking as a graph minimization

Problem: Given a set of detections in video, link the detections into tracks

Discover which detections are of the same object, and how many objects
there are

This can be solved optimally as a network flow problem, with non-overlaping
constraints in trajectories

The optimal data association is found by a min-cost flow algorithm in the
network

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 37 / 66



Notation and Problem Definition

Let X = {xi} be a set of object observations

Each xi is detection response xi = (xi , si , ai , ti ) , where xi is the position, si
is the scale, ai is the appearance and ti is the time step (frame index)

A single trajectory hypothesis is defined as an ordered list of object
observations, Tk = {xk1 , · · · , xklk }, with xki ∈ X
An association hypothesis T is defined as a set of single trajectory
hypotheses, T = {Tk}
The association is given by

T ∗ = arg max
T

P(T |X )

= arg max
T

P(X|T )P(T )

= arg max
T

∏
i

P(xi |T )P(T )

We have assumed that the likelihood prob. are conditionally independent
given T .
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Optimization problem

We want to solve the following optimization

T ∗ = arg max
T

∏
i

P(xi |T )P(T )

The space T is very large, so difficult to optimize

There is one more constraint: one object can only belong to one trajectory.

Tk ∩ Tl = ∅, ∀k 6= l

If we assume that the motion of each object is independent

T ∗ = arg max
T

∏
i

P(xi |T )
∏
Tk∈T

P(Tk)

s.t. Tk ∩ Tl = ∅, ∀k 6= l

When is this assumption not good?
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Problem Formulation

T ∗ = arg max
T

∏
i

P(xi |T )
∏
Tk∈T

P(Tk)

s.t. Tk ∩ Tl = ∅, ∀k 6= l

P(xi |T ) is the likelihood of observation xi . We can use a Bernoulli
distribution for example to represent being an inlier or outlier

P(xi |T ) =

{
1− βi if ∃Tk ∈ T , xi ∈ Tk

βi otherwise.

P(Tk) can be modeled as a Markov chain, with initialization probability
Pent , termination probability Pexit , and transition probability Plink(xki+1 |xki )

P(Tk) = P({xk0 , · · · , xklk })
= Pent(xk0 )plink(xk1 |xk0 ) · · · plink(xklk |xklk )pexit(xklk )

P(xi |T ) allows for selecting observations, rather than assume all the inputs
to be true detections, without additional processing to remove false
trajectories after association.
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Useful definitions

To couple the non-overlap constraints with the objective function we define
0-1 indicator variables

fen,i =

{
1 if ∃Tk ∈ T , Tk starts from xi

0 otherwise.

fex,i =

{
1 if ∃Tk ∈ T , Tk ends at xi

0 otherwise.

fi,j =

{
1 if ∃Tk ∈ T , xj is after xi in Tk
0 otherwise.

fi =

{
1 if ∃Tk ∈ T , xi ∈ Tk
0 otherwise.

T is non-overlap if and only if

fen,i +
∑
j

fj,i = fi = fex,i +
∑
j

fi,j ∀i
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Min-cost flow problem

We have the optimization problem

min
T
−
∑
Tk∈T

logP(Tk)−
∑
i

log p(xi |T )

This can be obtained as

min
T

∑
Tk∈T

(
Cen,k0 fen,k0 +

∑
j Ckj ,kj+1 fkj ,kj+1 + Cex,klk

fex,klk

)
+

+
∑

i (− log(1− βi )fi − logβi (1− fi ))

s.t. fen,i +
∑

j fj,i = fi = fex,i +
∑

j fi,j ∀i

Which can be reformulated as

min
T

∑
i Cen,i fen,i +

∑
i,j Ci,j fi,j +

∑
i Cex,i fex,i +

∑
i Ci fi

s.t. fen,i +
∑

j fj,i = fi = fex,i +
∑

j fi,j ∀i

What are the relationships between the costs and the probabilities we had
before?
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Mapping to Min cost-flow network

This can be mapped into a cost-flow network G (X ) with source s and sink t

min
T

∑
i Cen,i fen,i +

∑
i,j Ci,j fi,j +

∑
i Cex,i fex,i +

∑
i Ci fi

s.t. fen,i +
∑

j fj,i = fi = fex,i +
∑

j fi,j ∀i

For every observation xi ∈ X create two nodes ui , vi , and an arc with cost
c(ui , vj) = Ci and flow fi .

Add arcs c(s, ui ) = Cen,i and flow fen,i , as well as c(t, ui ) = Cex,i and flow
fex,i

For every transition plink(xj |xi ) 6= 0, create an arc with cost c(vi , uj) = Ci,j

and flow fi,j .

The constraint is equivalent to the flow conservation constraint

The objective is the cost of the flow in G .

Finding optimal association hypothesis T ∗, is equivalent to sending the flow
from source to sink that minimizes the cost.
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How is to optimize the objective

For a given f (G ), the minimal cost can be solved for in polynomial time by a
min-cost flow algorithm

The minimal cost is a convex function w.r.t f (G )

Hence the enumeration over all possible f (G ) can be replaced by a
Fibonacci search, which finds the global minimal cost by at most O(log n)
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Tracking Results

[L. Zhang, Y. Li and R. Nevatia, CVPR08]

What are the problems with this approach?
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Grouping
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When do we use grouping?

In the case of frontal/slanted plane methods, we assume that the image has
been over-segmented into a set of superpixels

This can be applied to the general problem of matching to do it in a more
robust way.

What is the model assumption then?

How are those superpixels computed?

We will see a few different approaches.

At first sight, the problem is very similar to clustering

We can draw inspiration from clustering algorithms
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Techniques we will see

K-means style clustering, e.g., SLIC superpixels

Normalized cuts

Graph-based superpixels

Wathershed transform

Mean-shift
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Simple K-means

Find three clusters in this data

Figure: From M. Tappen
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K-means style algorithms

We would like to encode

Super-pixels have regular shape

Pixels in super-pixels have similar appearance

Let S = {s1, · · · , sm) be the set of superpixel assignments

We define µ = {µ1, · · · , µm} as the mean location of each superpixel, and
c = {c1, · · · , cm} as the mean appearance descriptor.

We can define the total energy of a pixel as

E (p) = Ecol(p, csp ) + λposEpos(p, µsp )

The problem becomes

min
S,µ,c

∑
p

E (p, sp, µsp , csp ).
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K-means style algorithms

We can define the total energy of a pixel as

E (p) = Ecol(p, csp ) + λposEpos(p, µsp )

The problem becomes

min
S,µ,c

∑
p

E (p, sp, µsp , csp ).

Simple iterative algorithm:

Solve for the assignments S
Solve in parallel for the positions µ and appearances c

Is this easy to do?
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Results

[R. Achanta and A. Shaji and K. Smith and A. Lucchi and P. Fua and S. Susstrunk, PAMI12]
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Joint Segmentation and Depth Estimation

Let S = {s1, · · · , sm) be the set of superpixel assignments

Let Θ = {θ1, · · · , θm} be the set of plane parameters

We define µ = {µ1, · · · , µm} as the mean location of each superpixel, and
c = {c1, · · · , cm} as the mean appearance descriptor.

We can define the total energy of a pixel as

E (p) = E l,r
col(p, csp , θsp ) + λposEpos(p, µsp ) + λdispE

l,r
disp(p, θsp ),

We can use:

Epos(p, µsp ) = ||p− µsp ||22/g Ecol(p, csp = (It(p)− csp )2

and

Edisp(p, θsp ) =

{
(d(p, θsp )− d̂(p))2 if p ∈ F
λ otherwise
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Joint Segmentation and Depth Estimation

We can define the total energy of a pixel as

E (p) = E l,r
col(p, csp , θsp ) + λposEpos(p, µsp ) + λdispE

l,r
disp(p, θsp ),

The problem of joint unsupervised segmentation and flow estimation
becomes

min
Θ,S,µ,c

∑
p

E (p, sp, θsp , µsp , csp ).

Simple iterative algorithm

Solve for the assignments S
Solve in parallel for the planes Θ, positions µ and appearances c

How do we do this?
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[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR13]
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[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR13]
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Techniques we will see

K-means style clustering, e.g., SLIC superpixels

Normalized cuts

Graph-based superpixels

Wathershed transform

Mean-shift
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Segmentation as a mincut problem

Examines the affinities (similarities) between nearby pixels and tries to
separate groups that are connected with weak affinities.

The cut separate the nodes into two groups
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Minimun Cuts

The cut between two groups A and B is defined as the sum of all the
weights being cut

cut(A,B) =
∑

i∈A,j∈B

wi,j

Problem: Results in small cuts that isolates single pixels

We need to normalize somehow
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Normalized Cuts
[J. Shi and J. Malik, PAMI00]

Better measure is the normalized cuts

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B,V )

with assoc(A,A) =
∑

i∈A,j∈A wij is the association term within a cluster and
Assoc(A,V ) = assoc(A,A) + cut(A,B) is the sum of all the weights
associated with nodes in A.

We want minimize the disassociation between the groups and maximize the
association within the groups
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Normalize Cuts

Computing the optimal normalized cut is NP-Complete.

Instead, relax by computing a real value assignment

Let x be an indicator vector, with xi = 1 if xi ∈ A, and xi = −1 otherwise.
Let d = W1 be the row sums of the symmetric matrix W, and D = diag(d)
be the corresponding diagonal matrix.

Shi and Malik, compute the cut by solving

min
y

yT (D−W)y

yTDy

with y = ((1 + x)− b(1− x))/2 is a vector with all 1’s and -b’s such that
y · d = 0, by relaxing y to be real value.

D−W is the Laplacian
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Let d = W1 be the row sums of the symmetric matrix W, and D = diag(d)
be the corresponding diagonal matrix.

Shi and Malik, compute the cut by solving

min
y

yT (D−W)y

yTDy

with y = ((1 + x)− b(1− x))/2 is a vector with all 1’s and -b’s such that
y · d = 0, by relaxing y to be real value.

D−W is the Laplacian
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Solving for the cut

Minimizing this Rayleigh quotient is equivalent to solving the generalized
eigenvalue system

(D−W)y = λDy

This is a normal eigenvalue problem

(I−N)z = λz

with N = D1/2WD1/2 is the normalized affinity matrix, and z = D1/2y.

This is an example of a spectral method for segmentation, solution is the
second smallest eigenvector/eigenvalue

This process can be applied in a hierarchical manner to have more clusters

Shi and Malik employ the following affinity

wi,j = exp

(
−||Fi − Fj ||22

σ2
f

− ||pi − pj ||22
σ2
s

)
for pixels within a radious ||pi − pj ||2 < r , and F is a feature vector with
color, intensities, histograms, gradients, etc.
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Algorithm

[J. Shi and J. Malik, PAMI00]
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Examples

Figure: Shi and Malik N-Cuts
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