Energy, Plane-based Stereo and Tracking

Raquel Urtasun

TTI Chicago

March 5, 2013

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{I} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.
- The only difference between \mathcal{P} and \mathcal{P}^{\prime} is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}^{\prime}, and vice-versa.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.
- The only difference between \mathcal{P} and \mathcal{P}^{\prime} is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}^{\prime}, and vice-versa.
- Given a label I, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an α-expansion if $\mathcal{P}_{\alpha} \subset \mathcal{P}_{\alpha}^{\prime}$ and $\mathcal{P}_{l}^{\prime} \subset \mathcal{P}_{I}$.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.
- The only difference between \mathcal{P} and \mathcal{P}^{\prime} is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}^{\prime}, and vice-versa.
- Given a label I, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an α-expansion if $\mathcal{P}_{\alpha} \subset \mathcal{P}_{\alpha}^{\prime}$ and $\mathcal{P}_{I}^{\prime} \subset \mathcal{P}_{I}$.
- An α-expansion move allows any set of image pixels to change their labels to α.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.
- The only difference between \mathcal{P} and \mathcal{P}^{\prime} is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}^{\prime}, and vice-versa.
- Given a label I, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an α-expansion if $\mathcal{P}_{\alpha} \subset \mathcal{P}_{\alpha}^{\prime}$ and $\mathcal{P}_{I}^{\prime} \subset \mathcal{P}_{I}$.
- An α-expansion move allows any set of image pixels to change their labels to α.

Example

Figure: (a) Current partition (b) local move (c) $\alpha-\beta$-swap (d) α-expansion.

Algorithms

1. Start with an arbitrary labeling f
2. Set success $:=0$
3. For each pair of labels $\{\alpha, \beta\} \subset \mathcal{L}$
3.1. Find $\hat{f}=\arg \min E\left(f^{\prime}\right)$ among f^{\prime} within one $\alpha-\beta$ swap of f
3.2. If $E(\hat{f})<E(f)$, set $f:=\hat{f}$ and success $:=1$
4. If success $=1$ goto 2
5. Return f
6. Start with an arbitrary labeling f
7. Set success := 0
8. For each label $\alpha \in \mathcal{L}$
3.1. Find $\hat{f}=\arg \min E\left(f^{\prime}\right)$ among f^{\prime} within one α-expansion of f
3.2. If $E(\hat{f})<E(f)$, set $f:=\hat{f}$ and success $:=1$
9. If success $=1$ goto 2
10. Return f

Finding optimal Swap move

- Given an input labeling f (partition \mathcal{P}) and a pair of labels α, β we want to find a labeling \hat{f} that minimizes E over all labelings within one $\alpha-\beta$-swap of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha \beta}=\left(\mathcal{V}_{\alpha \beta}, \mathcal{E}_{\alpha \beta}\right)$.

Finding optimal Swap move

- Given an input labeling f (partition \mathcal{P}) and a pair of labels α, β we want to find a labeling \hat{f} that minimizes E over all labelings within one $\alpha-\beta$-swap of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha \beta}=\left(\mathcal{V}_{\alpha \beta}, \mathcal{E}_{\alpha \beta}\right)$.
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the labels α, β.

Finding optimal Swap move

- Given an input labeling f (partition \mathcal{P}) and a pair of labels α, β we want to find a labeling \hat{f} that minimizes E over all labelings within one $\alpha-\beta$-swap of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha \beta}=\left(\mathcal{V}_{\alpha \beta}, \mathcal{E}_{\alpha \beta}\right)$.
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the labels α, β.

Graph Construction

- The set of vertices includes the two terminals α and β, as well as image pixels p in the sets \mathcal{P}_{α} and \mathcal{P}_{β} (i.e., $f_{p} \in\{\alpha, \beta\}$).
- Each pixel $p \in \mathcal{P}_{\alpha \beta}$ is connected to the terminals α and β, called t-links.
- Each set of pixels $p, q \in \mathcal{P}_{\alpha \beta}$ which are neighbors is connected by an edge $e_{p, q}$

edge	weight	for
t_{p}^{α}	$D_{p}(\alpha)+\sum_{\substack{q \in \mathcal{N}_{p} \\ q \notin \mathcal{P}_{\alpha \beta}}} V\left(\alpha, f_{q}\right)$	$p \in \mathcal{P}_{\alpha \beta}$
t_{p}^{β}	$D_{p}(\beta)+\sum_{\substack{q \in \mathcal{N}_{p} \\ q \notin \mathcal{P}_{\alpha \beta}}} V\left(\beta, f_{q}\right)$	$p \in \mathcal{P}_{\alpha \beta}$
$e_{\{p, q\}}$	$V(\alpha, \beta)$	$\{p, q\} \in \mathcal{N}$ $p, q \in \mathcal{P}_{\alpha \beta}$

Computing the Cut

- Any cut must have a single t-link not cut.
- This defines a labeling

$$
f_{p}^{\mathcal{C}}= \begin{cases}\alpha & \text { if } t_{p}^{\alpha} \in \mathcal{C} \text { for } p \in \mathcal{P}_{\alpha \beta} \\ \beta & \text { if } t_{p}^{\beta} \in \mathcal{C} \text { for } p \in \mathcal{P}_{\alpha \beta} \\ f_{p} & \text { for } p \in \mathcal{P}, p \notin \mathcal{P}_{\alpha \beta}\end{cases}
$$

- There is a one-to-one correspondences between a cut and a labeling.
- The energy of the cut is the energy of the labeling.
- See Boykov et al, " fast approximate energy minimization via graph cuts" PAMI 2001.

Properties

- For any cut, then
(a) If $t_{p}^{\alpha}, t_{q}^{\alpha} \in \mathcal{C}$ then $e_{\{p, q\}} \notin \mathcal{C}$.
(b) If $t_{p}^{\beta}, t_{q}^{\beta} \in \mathcal{C}$ then $e_{\{p, q\}} \notin \mathcal{C}$.
(c) If $t_{p}^{\beta}, t_{q}^{\alpha} \in \mathcal{C}$ then $e_{\{p, q\}} \in \mathcal{C}$.
(d) If $t_{p}^{\alpha}, t_{q}^{\beta} \in \mathcal{C}$ then $e_{\{p, q\}} \in \mathcal{C}$.

Finding the optimal α expansion

- Given an input labeling f (partition \mathcal{P}) and a label α we want to find a labeling \hat{f} that minimizes E over all labelings within one α-expansion of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha}=\left(\mathcal{V}_{\alpha}, \mathcal{E}_{\alpha}\right)$.

Finding the optimal α expansion

- Given an input labeling f (partition \mathcal{P}) and a label α we want to find a labeling \hat{f} that minimizes E over all labelings within one α-expansion of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha}=\left(\mathcal{V}_{\alpha}, \mathcal{E}_{\alpha}\right)$.
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the label α.

Finding the optimal α expansion

- Given an input labeling f (partition \mathcal{P}) and a label α we want to find a labeling \hat{f} that minimizes E over all labelings within one α-expansion of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha}=\left(\mathcal{V}_{\alpha}, \mathcal{E}_{\alpha}\right)$.
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the label α.
- Different graph than the $\alpha-\beta$ swap.

Finding the optimal α expansion

- Given an input labeling f (partition \mathcal{P}) and a label α we want to find a labeling \hat{f} that minimizes E over all labelings within one α-expansion of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha}=\left(\mathcal{V}_{\alpha}, \mathcal{E}_{\alpha}\right)$.
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the label α.
- Different graph than the $\alpha-\beta$ swap.

Graph Construction

- The set of vertices includes the two terminals α and $\bar{\alpha}$, as well as all image pixels $p \in \mathcal{P}$.
- Additionally, for each pair of neighboring pixels p, q such that $f_{p} \neq f_{q}$ we create an auxiliary node $a_{p, q}$.

Graph Construction

- The set of vertices includes the two terminals α and $\bar{\alpha}$, as well as all image pixels $p \in \mathcal{P}$.
- Additionally, for each pair of neighboring pixels p, q such that $f_{p} \neq f_{q}$ we create an auxiliary node $a_{p, q}$.
- Each pixel p is connected to the terminals α and $\bar{\alpha}$, called t-links.

Graph Construction

- The set of vertices includes the two terminals α and $\bar{\alpha}$, as well as all image pixels $p \in \mathcal{P}$.
- Additionally, for each pair of neighboring pixels p, q such that $f_{p} \neq f_{q}$ we create an auxiliary node $a_{p, q}$.
- Each pixel p is connected to the terminals α and $\bar{\alpha}$, called t-links.
- Each set of pixels p, q which are neighbors and $f_{p}=f_{q}$, we connect with and n-link.

Graph Construction

- The set of vertices includes the two terminals α and $\bar{\alpha}$, as well as all image pixels $p \in \mathcal{P}$.
- Additionally, for each pair of neighboring pixels p, q such that $f_{p} \neq f_{q}$ we create an auxiliary node $a_{p, q}$.
- Each pixel p is connected to the terminals α and $\bar{\alpha}$, called t-links.
- Each set of pixels p, q which are neighbors and $f_{p}=f_{q}$, we connect with and n-link.
- For each pair of neighboring pixels such that $f_{p} \neq f_{q}$, we create a triplet $\left\{e_{p, a}, e_{a, q}, t_{a}^{\bar{\alpha}}\right\}$.

Graph Construction

- The set of vertices includes the two terminals α and $\bar{\alpha}$, as well as all image pixels $p \in \mathcal{P}$.
- Additionally, for each pair of neighboring pixels p, q such that $f_{p} \neq f_{q}$ we create an auxiliary node $a_{p, q}$.
- Each pixel p is connected to the terminals α and $\bar{\alpha}$, called t-links.
- Each set of pixels p, q which are neighbors and $f_{p}=f_{q}$, we connect with and n-link.
- For each pair of neighboring pixels such that $f_{p} \neq f_{q}$, we create a triplet $\left\{e_{p, a}, e_{a, q}, t_{a}^{\bar{\alpha}}\right\}$.
- The set of edges is then

$$
\mathcal{E}_{\alpha}=\left\{\bigcup_{p \in \mathcal{P}}\left\{t_{p}^{\alpha}, t_{p}^{\bar{\alpha}}\right\}, \bigcup_{\substack{\left(p, q \in \mathcal{E} \\ p, f_{p}\right.}} \mathcal{E}_{\{p, q\}}, \bigcup_{\substack{(p, q) \in \mathcal{V} \\ p, p, q}} e_{\{p, q\}}\right\}
$$

Graph Construction

- The set of vertices includes the two terminals α and $\bar{\alpha}$, as well as all image pixels $p \in \mathcal{P}$.
- Additionally, for each pair of neighboring pixels p, q such that $f_{p} \neq f_{q}$ we create an auxiliary node $a_{p, q}$.
- Each pixel p is connected to the terminals α and $\bar{\alpha}$, called t-links.
- Each set of pixels p, q which are neighbors and $f_{p}=f_{q}$, we connect with and n-link.
- For each pair of neighboring pixels such that $f_{p} \neq f_{q}$, we create a triplet $\left\{e_{p, a}, e_{a, q}, t_{a}^{\bar{\alpha}}\right\}$.
- The set of edges is then

$$
\mathcal{E}_{\alpha}=\left\{\bigcup_{p \in \mathcal{P}}\left\{t_{p}^{\alpha}, t_{p}^{\bar{\alpha}}\right\}, \bigcup_{\substack{\left(p, p \in \in \mathbb{N} \\ p, F_{q}\right.}} \mathcal{E}_{\{p, q\}}, \bigcup_{\substack{\left\{p, p \in \in \mathcal{N} \\ p, p_{q}\right.}} e_{\{p, q\}}\right\}
$$

Graph Construction

Properties

- There is a one-to-one correspondences between a cut and a labeling.

$$
f_{p}^{\mathcal{C}}=\left\{\begin{array}{lll}
\alpha & \text { if } & t_{p}^{\alpha} \in \mathcal{C} \\
f_{p} & \text { if } & t_{p}^{\bar{\alpha}} \in \mathcal{C}
\end{array} \quad \forall p \in \mathcal{P}\right.
$$

- The energy of the cut is the energy of the labeling.
- See Boykov et al, "fast approximate energy minimization via graph cuts" PAMI 2001.

Property 5.2. If $\{p, q\} \in \mathcal{N}$ and $f_{p} \neq f_{q}$, then a minimum cut \mathcal{C} on \mathcal{G}_{α} satisfies:
(a) If $t_{p}^{\alpha}, t_{q}^{\alpha} \in \mathcal{C}$ then $\mathcal{C} \cap \mathcal{E}_{\{p, q\}}=\emptyset$.
(b) If $t_{p}^{\bar{\alpha}}, t_{q}^{\bar{\alpha}} \in \mathcal{C}$ then $\mathcal{C} \cap \mathcal{E}_{\{p, q\}}=t_{a}^{\bar{\alpha}}$.
(c) If $t_{p}^{\bar{\alpha}}, t_{q}^{\alpha} \in \mathcal{C}$ then $\mathcal{C} \cap \mathcal{E}_{\{p, q\}}=e_{\{p, a\}}$.
(d) If $t_{p}^{\alpha}, t_{q}^{\bar{\alpha}} \in \mathcal{C} \quad$ then $\mathcal{C} \cap \mathcal{E}_{\{p, q\}}=e_{\{a, q\}}$.

Global Minimization Techniques

Ways to get an approximate solution typically

- Dynamic programming approximations
- Sampling
- Simulated annealing
- Graph-cuts: imposes restrictions on the type of pairwise cost functions
- Message passing: iterative algorithms that pass messages between nodes in the graph.

Now we can solve for the MAP (approximately) in general energies. We can solve for other problems than stereo

Let's look at data/bechmarks

Benchmarks

Two benchmarks with very different characteristics

(Middlebury)

(KITTI)

Middlebury Dataset

Middlebury Stereo Evaluation - Version 2

- Laboratory
- Lambertian

Middlebury Dataset

Middlebury Stereo Evaluation - Version 2

- Laboratory
- Lambertian
- Rich in texture

Middlebury Dataset

Middlebury Stereo Evaluation - Version 2

- Laboratory
- Lambertian
- Rich in texture
- Medium-size label set

Middlebury Dataset

Middlebury Stereo Evaluation - Version 2

- Laboratory
- Lambertian
- Rich in texture
- Medium-size label set
- Largely fronto-parallel

Middlebury Dataset

Middlebury Stereo Evaluation - Version 2

- Laboratory
- Lambertian
- Rich in texture
- Medium-size label set
- Largely fronto-parallel

Benchmarks for Stereo and metrics

Middlebury Stereo Evaluation - Version 2

Error Threshold =1		Tsukuba ground truth			Venus ground truth			Teddy ground truth			Cones ground truth		
Algorithm	Avg.												
CoopRegion [41]	8.8	$\underline{0.87} 4$	1.161	4.613	$\underline{0.114}$	0.213	1.547	5.1616	8.3111	13.013	$\underline{2.79} 17$	7.184	8.0123
AdaptingBP [17]	9.0	1.1119	1.377	5.7919	$\underline{0.103}$	0.214	1.445	4.228	7.066	11.89	$\underline{2.487}$	7.9211	7.3210
ADCensus [94]	7.3	1.0715	1.4813	5.7317	$\underline{0.092}$	0.257	1.153	4.106	6.223	10.96	2.425	7.255	6.956
SurfaceStereo [79]	18.2	1.2832	1.6521	6.7837	$\underline{0.19} 18$	0.2810	2.6132	3.122	5.101	8.651	$\underline{2.89} 21$	7.9513	8.2630
GC+SegmBorder [57]	27.1	1.4745	1.8232	7.8658	$\underline{0.19} 19$	0.3112	2.4426	$\underline{4.259}$	5.552	10.97	4.9977	5.781	8.6637
WarpMat [55]	20.8	1.1620	1.356	6.0424	$\underline{0.18} 17$	0.24 6	2.4426	$\underline{5.02} 13$	9.3017	13.015	$\underline{3.49} 39$	8.4722	9.0144
RDP [102]	12.5	$\underline{0.97} 10$	1.399	5.009	$\underline{0.2123}$	0.3819	1.8913	$\underline{4.84} 10$	9.9419	12.611	$\underline{\underline{2.53}} 8$	7.698	7.3811
RVbased [116]	11.6	$\underline{0.95} 9$	1.4211	4.988	$\underline{0.11} 6$	0.2911	1.071	$\underline{5.98} 21$	11.631	15.427	$\underline{2.35} 3$	7.616	6.815
OutlierConf [42]	12.9	$\underline{0.885}$	1.4312	4.745	$\underline{0.18} 16$	0.269	2.4022	5.0112	9.1216	12.812	2.7816	8.5723	6.997

- Best methods $<3 \%$ errors (for all non-occluded regions)
- http://vision.middlebury.edu/stereo/data/

Benchmarks: KITTI Data Collection

- Two stereo rigs ($1392 \times 512 \mathrm{px}, 54 \mathrm{~cm}$ base, 90° opening)
- Velodyne laser scanner, GPS+IMU localization
- 6 hours at 10 frames per second!

The KITTI Vision Benchmark Suite

Novel Challenges

Fast guided cost-volume filtering (Rhemann et al., CVPR 2011)
Middlebury, Errors: 2.7\%

- Error threshold: 1 px (Middlebury) / 3 px (KITTI)

Novel Challenges

Fast guided cost-volume filtering (Rhemann et al., CVPR 2011)

Middlebury, Errors: 2.7\%

- Error threshold: 1 px (Middlebury) / 3 px (KITTI)

Novel Challenges

So what is the difference?

Middlebury

- Laboratory
- Lambertian

KITTI

- Moving vehicle
- Specularities

Novel Challenges

So what is the difference?

Middlebury

- Laboratory
- Lambertian
- Rich in texture

KITTI

- Moving vehicle
- Specularities
- Sensor saturation

Novel Challenges

So what is the difference?

Middlebury

- Laboratory
- Lambertian
- Rich in texture
- Medium-size label set

KITTI

- Moving vehicle
- Specularities
- Sensor saturation
- Large label set

Novel Challenges

So what is the difference?

Middlebury

- Laboratory
- Lambertian
- Rich in texture
- Medium-size label set
- Largely fronto-parallel

KITTI

- Moving vehicle
- Specularities
- Sensor saturation
- Large label set
- Strong slants

Novel Challenges

So what is the difference?

Middlebury

- Laboratory
- Lambertian
- Rich in texture
- Medium-size label set
- Largely fronto-parallel

KITTI

- Moving vehicle
- Specularities
- Sensor saturation
- Large label set
- Strong slants

Stereo Evaluation

Rank	Method	Setting	Out-Noc	Out-All	Avg-Noc	Avg-All	Density	Runtime	Environment	Compare
1	PCBP		4.13 \%	5.45\%	0.9 px	1.2 px	100.00\%	5 min	4 cores @ 2.5 Ghz (Matlab + C/C++)	\square
Koichiro Yamaguchi, Tamir Hazan, David McAllester and Raquel Urtasun. Contimuous Markov Random Fields for Robust Stereo Estimation. ECCV 2012.										
2	iSGM		5.16\%	7.19\%	1.2 px	2.1 px	94.70\%	8 s	2 cores @ $2.5 \mathrm{Ghz}(\mathrm{C} / \mathrm{C}++$)	\square
Simon Hermann and Reinhard Klette. Iterative Semi-Global Matching for Robust Driver Assistance Svatems, ACCV 2012.										
3	SGM		5.83\%	7.08\%	1.2 px	1.3 px	85.80\%	3.7 s	1 core @ 3.0 Ghz (C/C++)	\square
Heiko Hirschmueller. Stereo Processing by Semi-Global Matching and Mutual Information, IEEE Tranactions on Pattern Analysis and Machine intelligence 2008.										
4	SNCC		6.27\%	7.33\%	1.4 px	1.5 px	100.00\%	0.27 s	1 core @ 3.0 Ghz (C/C++)	\square
N. Einecke and J. Eggert. A Two-Stage Correlation Method for Stereosccopic Depth Estimation. DICTA 2010.										
5	ITGV		6.31\%	7.40\%	1.3 px	1.5 px	100.00\%	7 s	1 core @ 3.0 Ghz (Matlab + C/C++)	\square
Rene Ranftl, Stefan Gehrig, Thomas Pock and Horst Bischof. Pushine the Limits of Stereo Using Variational Stereo Estimation, IEEE Intelligent Vehicles Symposium 2012.										
6	BSSM		7.50\%	8.89\%	1.4 px	1.6 px	94.87\%	20.7 s	1 core @ $3.5 \mathrm{Ghz}(\mathrm{C} / \mathrm{C}++$)	\square
Anamymous submission										
7	OCV-SGBM		7.64\%	9.13\%	1.8 px	2.0 px	86.50\%	1.1 s	1 core @ $2.5 \mathrm{Ghz}(\mathrm{C} / \mathrm{C}++$)	\square
Heiko Hirschmueller. Stereo processing by semiglobal matching and mutual information. PAMI 2008.										
8	ELAS		8.24\%	9.95\%	1.4 px	1.6 px	94.55\%	0.3 s	1 core @ $2.5 \mathrm{Ghz}(\mathrm{C} / \mathrm{C}++$)	\square
Andreas Geiger, Martin Roser and Raquel Urtasun. Efficient Large-Scale Stereo Matching. ACCV 2010.										
9	MS-DSI		10.68\%	12.11\%	1.9 px	2.2 px	100.00\%	10.3 s	>8 cores @ $2.5 \mathrm{Ghz}(\mathrm{C} / \mathrm{C}++)$	\square
Anorymous subumission										
10	SDM		10.98\%	12.19\%	2.0 px	2.3 px	63.58\%	1 min	1 core @ $2.5 \mathrm{Ghz}(\mathrm{C} / \mathrm{C}++$)	\square
Jana Kosthova. Stratified dense matching for sterecopsis in complex scenes. BMVC 2003.										
11	GCSF		12.06\%	13.26\%	1.9 px	2.1 px	60.77\%	2.45	1 core @ $2.5 \mathrm{Ghz}(\mathrm{C} / \mathrm{C}++$)	\square
Jan Cech, Jordi Sanchez-Riera and Radu P. Horaud. Scene Flow Estimation by Growine Correspandence Seeds. CVPR 2011.										
12	GCS		13.37\%	14.54\%	2.1 px	2.3 px	51.06\%	2.25	1 core @ $2.5 \mathrm{Ghz}(\mathrm{C} / \mathrm{C}++$)	\square
Jan Cech and Radim Sara. Efficient Sampling of Disparity Space for Fast And Accurate Matching, BenCos 2007.										
13	CostFilter		19.96\%	21.05\%	5.0 px	5.4 px	100.00\%	4 min	1 core @ 2.5 Ghz (Matlab)	\square
Christoph Rhemam, Asmaa Hosni, Michael Bleyer, Carsten Rother and Margrit Gelautz. Fast Cost-Volume Filtering for Visual Correspondence and Bevond. CVPR 2011.										
14	OCV-BM		25.39\%	26.72\%	7.6 px	7.9 px	55.84\%	0.1 s	1 core @ $2.5 \mathrm{Ghz}(\mathrm{C} / \mathrm{C}++$)	\square
G. Bradski. The OpencV Librank De Dobb's Journal of Software Tools 2000.										
15	GC+occ		33.50%	34.74\%	8.6 px	9.2 px	87.57\%	6 min	1 core @ $2.5 \mathrm{Ghz}(\mathrm{C} / \mathrm{C}++$)	\square

[^0]
MRFs for stereo

Global methods: define a Markov random field over

- Pixel-level
- Fronto-parallel planes
- Slanted planes

Plane MRFs

- First segment an image into small regions, i.e., superpixels
- Assume that the 3D world is compose of small frontal/slanted planes

Plane MRFs

- First segment an image into small regions, i.e., superpixels
- Assume that the 3D world is compose of small frontal/slanted planes
- Good representation if the superpixels are small and respect boundaries

with $\mathbf{x}_{i} \in \Re$ for the fronto-parallel planes, and $\mathbf{x}_{i} \in \Re^{3}$ for the slanted planes

Plane MRFs

- First segment an image into small regions, i.e., superpixels
- Assume that the 3D world is compose of small frontal/slanted planes
- Good representation if the superpixels are small and respect boundaries

$$
E\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)=\sum_{i} C\left(\mathbf{x}_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}_{j}} C\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

with $\mathbf{x}_{i} \in \Re$ for the fronto-parallel planes, and $\mathbf{x}_{i} \in \Re^{3}$ for the slanted planes

- This are continuous variables. Is this a problem?

Plane MRFs

- First segment an image into small regions, i.e., superpixels
- Assume that the 3D world is compose of small frontal/slanted planes
- Good representation if the superpixels are small and respect boundaries

$$
E\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)=\sum_{i} C\left(\mathbf{x}_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}_{j}} C\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

with $\mathbf{x}_{i} \in \Re$ for the fronto-parallel planes, and $\mathbf{x}_{i} \in \Re^{3}$ for the slanted planes

- This are continuous variables. Is this a problem?
- What can I do to solve this? Discretize the problem

Plane MRFs

- First segment an image into small regions, i.e., superpixels
- Assume that the 3D world is compose of small frontal/slanted planes
- Good representation if the superpixels are small and respect boundaries

$$
E\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)=\sum_{i} C\left(\mathbf{x}_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}_{j}} C\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

with $\mathbf{x}_{i} \in \Re$ for the fronto-parallel planes, and $\mathbf{x}_{i} \in \Re^{3}$ for the slanted planes

- This are continuous variables. Is this a problem?
- What can I do to solve this? Discretize the problem
- The unitary are usually agreegation of cost over the local matching on the pixels in that superpixel

Plane MRFs

- First segment an image into small regions, i.e., superpixels
- Assume that the 3D world is compose of small frontal/slanted planes
- Good representation if the superpixels are small and respect boundaries

$$
E\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)=\sum_{i} C\left(\mathbf{x}_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}_{j}} C\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

with $\mathbf{x}_{i} \in \Re$ for the fronto-parallel planes, and $\mathbf{x}_{i} \in \Re^{3}$ for the slanted planes

- This are continuous variables. Is this a problem?
- What can I do to solve this? Discretize the problem
- The unitary are usually agreegation of cost over the local matching on the pixels in that superpixel
- Pairwise is typically smoothness

Plane MRFs

- First segment an image into small regions, i.e., superpixels
- Assume that the 3D world is compose of small frontal/slanted planes
- Good representation if the superpixels are small and respect boundaries

$$
E\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)=\sum_{i} C\left(\mathbf{x}_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}_{j}} C\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

with $\mathbf{x}_{i} \in \Re$ for the fronto-parallel planes, and $\mathbf{x}_{i} \in \Re^{3}$ for the slanted planes

- This are continuous variables. Is this a problem?
- What can I do to solve this? Discretize the problem
- The unitary are usually agreegation of cost over the local matching on the pixels in that superpixel
- Pairwise is typically smoothness

Slanted-plane MRFs

A more sophisticated occlusion model

- MRF on continuous variables (slanted planes) and discrete var. (boundary)
- Combines depth ordering (segmentation) and stereo

- Takes as input disparities computed by any local algorithm

Energy of PCBP-Stereo

- \mathbf{y} the set of slanted 3D planes, \mathbf{o} the set of discrete boundary variables

$$
E(\mathbf{y}, \mathbf{o})=E_{\text {color }}(\mathbf{o})+E_{\text {match }}(\mathbf{y}, \mathbf{o})+E_{\text {compatibility }}(\mathbf{y}, \mathbf{o})+E_{\text {junction }}(\mathbf{o})
$$

Similar color \longrightarrow Likely to be coplanar

Similar

Dissimilar

Energy of PCBP-Stereo

- \mathbf{y} the set of slanted 3D planes, \mathbf{o} the set of discrete boundary variables

$$
E(\mathbf{y}, \mathbf{o})=E_{\text {color }}(\mathbf{o})+E_{\text {match }}(\mathbf{y}, \mathbf{o})+E_{\text {compatibility }}(\mathbf{y}, \mathbf{o})+E_{\text {junction }}(\mathbf{o})
$$

Agreement with result of input disparity map

Computed by any matching method (Modified semi-global matching)

On boundary
"Occlusion" - Foreground segment owns boundary

Energy of PCBP-Stereo

- \mathbf{y} the set of slanted 3D planes, \mathbf{o} the set of discrete boundary variables

$$
E(\mathbf{y}, \mathbf{o})=E_{\text {color }}(\mathbf{o})+E_{\text {match }}(\mathbf{y}, \mathbf{o})+E_{\text {compatibility }}(\mathbf{y}, \mathbf{o})+E_{\text {junction }}(\mathbf{o})
$$

(1) Preference of boundary label (Coplanar > Hinge > Occlusion) Impose penalty $\lambda_{\text {occ }}>\lambda_{\text {hinge }}>0$
(2) Boundary labels $\xrightarrow{\text { match }}$ Slanted planes

Energy of PCBP-Stereo

- \mathbf{y} the set of slanted 3D planes, \mathbf{o} the set of discrete boundary variables

$$
E(\mathbf{y}, \mathbf{o})=E_{\text {color }}(\mathbf{o})+E_{\text {match }}(\mathbf{y}, \mathbf{o})+E_{\text {compatibility }}(\mathbf{y}, \mathbf{o})+E_{\text {junction }}(\mathbf{o})
$$

Occlusion boundary reasoning [Malik 1987]
Penalize impossible junctions
Impossible cases

Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Easy Scenarios:

- Natural scenes, lots of texture, no objects
- A couple of errors at thin structures (poles)

Errors: < 0.5\%

Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Easy Scenarios:

- Shadows help the disambiguation process
- Errors at thin structures and far away textureless regions

Errors: < 0.5\%

Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Hard Scenarios:

- Textureless or saturated areas
- Ambiguous reflections

Errors: 22.1\%

Errors: 17.4\%

Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Hard Scenarios:

- Depth discontinuities / complicated geometries

Errors: 10.5\%

A different view on tracking

Tracking as a graph minimization

- Goal: Given a set of detections in video, link the detections into tracks
- Discover which detections are of the same object, and how many objects there are

Tracking as a graph minimization

- Problem: Given a set of detections in video, link the detections into tracks
- Discover which detections are of the same object, and how many objects there are
- This can be solved optimally as a network flow problem, with non-overlaping constraints in trajectories

Tracking as a graph minimization

- Problem: Given a set of detections in video, link the detections into tracks
- Discover which detections are of the same object, and how many objects there are
- This can be solved optimally as a network flow problem, with non-overlaping constraints in trajectories
- The optimal data association is found by a min-cost flow algorithm in the network

Tracking as a graph minimization

- Problem: Given a set of detections in video, link the detections into tracks
- Discover which detections are of the same object, and how many objects there are
- This can be solved optimally as a network flow problem, with non-overlaping constraints in trajectories
- The optimal data association is found by a min-cost flow algorithm in the network

Notation and Problem Definition

- Let $\mathcal{X}=\left\{\mathbf{x}_{i}\right\}$ be a set of object observations
- Each \mathbf{x}_{i} is detection response $\mathbf{x}_{i}=\left(x_{i}, s_{i}, a_{i}, t_{i}\right)$, where x_{i} is the position, s_{i} is the scale, a_{i} is the appearance and t_{i} is the time step (frame index)

Notation and Problem Definition

- Let $\mathcal{X}=\left\{\mathbf{x}_{i}\right\}$ be a set of object observations
- Each \mathbf{x}_{i} is detection response $\mathbf{x}_{i}=\left(x_{i}, s_{i}, a_{i}, t_{i}\right)$, where x_{i} is the position, s_{i} is the scale, a_{i} is the appearance and t_{i} is the time step (frame index)
- A single trajectory hypothesis is defined as an ordered list of object observations, $T_{k}=\left\{\mathbf{x}_{k_{1}}, \cdots, \mathbf{x}_{k_{k}}\right\}$, with $\mathbf{x}_{k_{i}} \in \mathcal{X}$

Notation and Problem Definition

- Let $\mathcal{X}=\left\{\mathbf{x}_{i}\right\}$ be a set of object observations
- Each \mathbf{x}_{i} is detection response $\mathbf{x}_{i}=\left(x_{i}, s_{i}, a_{i}, t_{i}\right)$, where x_{i} is the position, s_{i} is the scale, a_{i} is the appearance and t_{i} is the time step (frame index)
- A single trajectory hypothesis is defined as an ordered list of object observations, $T_{k}=\left\{\mathbf{x}_{k_{1}}, \cdots, \mathbf{x}_{k_{k}}\right\}$, with $\mathbf{x}_{k_{i}} \in \mathcal{X}$
- An association hypothesis T is defined as a set of single trajectory hypotheses, $\mathcal{T}=\left\{T_{k}\right\}$

Notation and Problem Definition

- Let $\mathcal{X}=\left\{\mathbf{x}_{i}\right\}$ be a set of object observations
- Each \mathbf{x}_{i} is detection response $\mathbf{x}_{i}=\left(x_{i}, s_{i}, a_{i}, t_{i}\right)$, where x_{i} is the position, s_{i} is the scale, a_{i} is the appearance and t_{i} is the time step (frame index)
- A single trajectory hypothesis is defined as an ordered list of object observations, $T_{k}=\left\{\mathbf{x}_{k_{1}}, \cdots, \mathbf{x}_{k_{k}}\right\}$, with $\mathbf{x}_{k_{i}} \in \mathcal{X}$
- An association hypothesis T is defined as a set of single trajectory hypotheses, $\mathcal{T}=\left\{T_{k}\right\}$
- The association is given by

$$
\begin{aligned}
\mathcal{T}^{*} & =\arg \max _{\mathcal{T}} P(\mathcal{T} \mid \mathcal{X}) \\
& =\arg \max _{\mathcal{T}} P(\mathcal{X} \mid \mathcal{T}) P(\mathcal{T}) \\
& =\arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) P(\mathcal{T})
\end{aligned}
$$

Notation and Problem Definition

- Let $\mathcal{X}=\left\{\mathbf{x}_{i}\right\}$ be a set of object observations
- Each \mathbf{x}_{i} is detection response $\mathbf{x}_{i}=\left(x_{i}, s_{i}, a_{i}, t_{i}\right)$, where x_{i} is the position, s_{i} is the scale, a_{i} is the appearance and t_{i} is the time step (frame index)
- A single trajectory hypothesis is defined as an ordered list of object observations, $T_{k}=\left\{\mathbf{x}_{k_{1}}, \cdots, \mathbf{x}_{k_{k}}\right\}$, with $\mathbf{x}_{k_{i}} \in \mathcal{X}$
- An association hypothesis T is defined as a set of single trajectory hypotheses, $\mathcal{T}=\left\{T_{k}\right\}$
- The association is given by

$$
\begin{aligned}
\mathcal{T}^{*} & =\arg \max _{\mathcal{T}} P(\mathcal{T} \mid \mathcal{X}) \\
& =\arg \max _{\mathcal{T}} P(\mathcal{X} \mid \mathcal{T}) P(\mathcal{T}) \\
& =\arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) P(\mathcal{T})
\end{aligned}
$$

- We have assumed that the likelihood prob. are conditionally independent given \mathcal{T}.

Notation and Problem Definition

- Let $\mathcal{X}=\left\{\mathbf{x}_{i}\right\}$ be a set of object observations
- Each \mathbf{x}_{i} is detection response $\mathbf{x}_{i}=\left(x_{i}, s_{i}, a_{i}, t_{i}\right)$, where x_{i} is the position, s_{i} is the scale, a_{i} is the appearance and t_{i} is the time step (frame index)
- A single trajectory hypothesis is defined as an ordered list of object observations, $T_{k}=\left\{\mathbf{x}_{k_{1}}, \cdots, \mathbf{x}_{k_{k}}\right\}$, with $\mathbf{x}_{k_{i}} \in \mathcal{X}$
- An association hypothesis T is defined as a set of single trajectory hypotheses, $\mathcal{T}=\left\{T_{k}\right\}$
- The association is given by

$$
\begin{aligned}
\mathcal{T}^{*} & =\arg \max _{\mathcal{T}} P(\mathcal{T} \mid \mathcal{X}) \\
& =\arg \max _{\mathcal{T}} P(\mathcal{X} \mid \mathcal{T}) P(\mathcal{T}) \\
& =\arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) P(\mathcal{T})
\end{aligned}
$$

- We have assumed that the likelihood prob. are conditionally independent given \mathcal{T}.

Optimization problem

- We want to solve the following optimization

$$
\mathcal{T}^{*}=\arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) P(\mathcal{T})
$$

- The space \mathcal{T} is very large, so difficult to optimize

Optimization problem

- We want to solve the following optimization

$$
\mathcal{T}^{*}=\arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) P(\mathcal{T})
$$

- The space \mathcal{T} is very large, so difficult to optimize
- There is one more constraint: one object can only belong to one trajectory.

$$
\mathcal{T}_{k} \cap \mathcal{T}_{1}=\emptyset, \quad \forall k \neq 1
$$

Optimization problem

- We want to solve the following optimization

$$
\mathcal{T}^{*}=\arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) P(\mathcal{T})
$$

- The space \mathcal{T} is very large, so difficult to optimize
- There is one more constraint: one object can only belong to one trajectory.

$$
\mathcal{T}_{k} \cap \mathcal{T}_{I}=\emptyset, \quad \forall k \neq 1
$$

- If we assume that the motion of each object is independent

$$
\begin{aligned}
& \mathcal{T}^{*}= \arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) \prod_{\mathcal{T}_{k} \in \mathcal{T}} P\left(\mathcal{T}_{k}\right) \\
& \text { s.t. } \mathcal{T}_{k} \cap \mathcal{T}_{i}=\emptyset, \quad \forall k \neq 1
\end{aligned}
$$

Optimization problem

- We want to solve the following optimization

$$
\mathcal{T}^{*}=\arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) P(\mathcal{T})
$$

- The space \mathcal{T} is very large, so difficult to optimize
- There is one more constraint: one object can only belong to one trajectory.

$$
\mathcal{T}_{k} \cap \mathcal{T}_{I}=\emptyset, \quad \forall k \neq 1
$$

- If we assume that the motion of each object is independent

$$
\begin{gathered}
\mathcal{T}^{*}=\arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) \prod_{\mathcal{T}_{k} \in \mathcal{T}} P\left(\mathcal{T}_{k}\right) \\
\text { s.t. } \mathcal{T}_{k} \cap \mathcal{T}_{l}=\emptyset, \quad \forall k \neq 1
\end{gathered}
$$

- When is this assumption not good?

Optimization problem

- We want to solve the following optimization

$$
\mathcal{T}^{*}=\arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) P(\mathcal{T})
$$

- The space \mathcal{T} is very large, so difficult to optimize
- There is one more constraint: one object can only belong to one trajectory.

$$
\mathcal{T}_{k} \cap \mathcal{T}_{I}=\emptyset, \quad \forall k \neq 1
$$

- If we assume that the motion of each object is independent

$$
\begin{gathered}
\mathcal{T}^{*}=\arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) \prod_{\mathcal{T}_{k} \in \mathcal{T}} P\left(\mathcal{T}_{k}\right) \\
\text { s.t. } \mathcal{T}_{k} \cap \mathcal{T}_{l}=\emptyset, \quad \forall k \neq 1
\end{gathered}
$$

- When is this assumption not good?

Problem Formulation

$$
\begin{aligned}
\mathcal{T}^{*}= & \arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) \prod_{\mathcal{T}_{k} \in \mathcal{T}} P\left(\mathcal{T}_{k}\right) \\
& \text { s.t. } \mathcal{T}_{k} \cap \mathcal{T}_{I}=\emptyset, \quad \forall k \neq 1
\end{aligned}
$$

- $P\left(\mathbf{x}_{i} \mid \mathcal{T}\right)$ is the likelihood of observation \mathbf{x}_{i}. We can use a Bernoulli distribution for example to represent being an inlier or outlier

$$
P\left(\mathbf{x}_{i} \mid \mathcal{T}\right)= \begin{cases}1-\beta_{i} & \text { if } \exists \mathcal{T}_{k} \in \mathcal{T}, \mathbf{x}_{i} \in \mathbf{T}_{k} \\ \beta_{i} & \text { otherwise }\end{cases}
$$

Problem Formulation

$$
\begin{aligned}
\mathcal{T}^{*}= & \arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) \prod_{\mathcal{T}_{k} \in \mathcal{T}} P\left(\mathcal{T}_{k}\right) \\
& \text { s.t. } \mathcal{T}_{k} \cap \mathcal{T}_{I}=\emptyset, \quad \forall k \neq 1
\end{aligned}
$$

- $P\left(\mathbf{x}_{i} \mid \mathcal{T}\right)$ is the likelihood of observation \mathbf{x}_{i}. We can use a Bernoulli distribution for example to represent being an inlier or outlier

$$
P\left(\mathbf{x}_{i} \mid \mathcal{T}\right)= \begin{cases}1-\beta_{i} & \text { if } \exists \mathcal{T}_{k} \in \mathcal{T}, \mathbf{x}_{i} \in \mathbf{T}_{k} \\ \beta_{i} & \text { otherwise }\end{cases}
$$

- $P\left(\mathcal{T}_{k}\right)$ can be modeled as a Markov chain, with initialization probability $P_{\text {ent }}$, termination probability $P_{\text {exit }}$, and transition probability $P_{\text {link }}\left(\mathbf{x}_{k_{i+1}} \mid \mathbf{x}_{k_{i}}\right)$

$$
\begin{aligned}
P\left(\mathcal{T}_{k}\right) & =P\left(\left\{\mathbf{x}_{k_{0}}, \cdots, \mathbf{x}_{k_{l}}\right\}\right) \\
& =P_{\text {ent }}\left(\mathrm{x}_{k_{0}}\right) p_{\text {link }}\left(\mathrm{x}_{k_{1}} \mid \mathrm{x}_{k_{0}}\right) \cdots p_{\text {link }}\left(\mathrm{x}_{k_{k_{k}}} \mid \mathbf{x}_{k_{k_{k}}}\right) p_{\text {exit }}\left(\mathrm{x}_{k_{k_{k}}}\right)
\end{aligned}
$$

Problem Formulation

$$
\begin{aligned}
\mathcal{T}^{*}= & \arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) \prod_{\mathcal{T}_{k} \in \mathcal{T}} P\left(\mathcal{T}_{k}\right) \\
& \text { s.t. } \mathcal{T}_{k} \cap \mathcal{T}_{I}=\emptyset, \quad \forall k \neq 1
\end{aligned}
$$

- $P\left(\mathbf{x}_{i} \mid \mathcal{T}\right)$ is the likelihood of observation \mathbf{x}_{i}. We can use a Bernoulli distribution for example to represent being an inlier or outlier

$$
P\left(\mathbf{x}_{i} \mid \mathcal{T}\right)= \begin{cases}1-\beta_{i} & \text { if } \exists \mathcal{T}_{k} \in \mathcal{T}, \mathbf{x}_{i} \in \mathbf{T}_{k} \\ \beta_{i} & \text { otherwise }\end{cases}
$$

- $P\left(\mathcal{T}_{k}\right)$ can be modeled as a Markov chain, with initialization probability $P_{\text {ent }}$, termination probability $P_{\text {exit }}$, and transition probability $P_{\text {link }}\left(\mathbf{x}_{k_{i+1}} \mid \mathbf{x}_{k_{i}}\right)$

$$
\begin{aligned}
P\left(\mathcal{T}_{k}\right) & =P\left(\left\{\mathbf{x}_{k_{0}}, \cdots, \mathbf{x}_{k_{l_{k}}}\right\}\right) \\
& =P_{\text {ent }}\left(\mathbf{x}_{k_{0}}\right) p_{\text {link }}\left(\mathbf{x}_{k_{1}} \mid \mathbf{x}_{k_{0}}\right) \cdots p_{\text {link }}\left(\mathbf{x}_{k_{k}} \mid \mathbf{x}_{k_{k}}\right) p_{\text {exit }}\left(\mathbf{x}_{k_{k}}\right)
\end{aligned}
$$

- $P\left(\mathrm{x}_{i} \mid \mathcal{T}\right)$ allows for selecting observations, rather than assume all the inputs to be true detections, without additional processing to remove false trajectories after association.

Problem Formulation

$$
\begin{aligned}
\mathcal{T}^{*}= & \arg \max _{\mathcal{T}} \prod_{i} P\left(\mathbf{x}_{i} \mid \mathcal{T}\right) \prod_{\mathcal{T}_{k} \in \mathcal{T}} P\left(\mathcal{T}_{k}\right) \\
& \text { s.t. } \mathcal{T}_{k} \cap \mathcal{T}_{I}=\emptyset, \quad \forall k \neq 1
\end{aligned}
$$

- $P\left(\mathbf{x}_{i} \mid \mathcal{T}\right)$ is the likelihood of observation \mathbf{x}_{i}. We can use a Bernoulli distribution for example to represent being an inlier or outlier

$$
P\left(\mathbf{x}_{i} \mid \mathcal{T}\right)= \begin{cases}1-\beta_{i} & \text { if } \exists \mathcal{T}_{k} \in \mathcal{T}, \mathbf{x}_{i} \in \mathbf{T}_{k} \\ \beta_{i} & \text { otherwise }\end{cases}
$$

- $P\left(\mathcal{T}_{k}\right)$ can be modeled as a Markov chain, with initialization probability $P_{\text {ent }}$, termination probability $P_{\text {exit }}$, and transition probability $P_{\text {link }}\left(\mathbf{x}_{k_{i+1}} \mid \mathbf{x}_{k_{i}}\right)$

$$
\begin{aligned}
P\left(\mathcal{T}_{k}\right) & =P\left(\left\{\mathbf{x}_{k_{0}}, \cdots, \mathbf{x}_{k_{k}}\right\}\right) \\
& =P_{\text {ent }}\left(\mathbf{x}_{k_{0}}\right) p_{\text {link }}\left(\mathbf{x}_{k_{1}} \mid \mathbf{x}_{k_{0}}\right) \cdots p_{\text {link }}\left(\mathbf{x}_{k_{k}} \mid \mathbf{x}_{k_{l_{k}}}\right) p_{\text {exit }}\left(\mathbf{x}_{k_{l_{k}}}\right)
\end{aligned}
$$

- $P\left(\mathbf{x}_{i} \mid \mathcal{T}\right)$ allows for selecting observations, rather than assume all the inputs to be true detections, without additional processing to remove false trajectories after association.

Useful definitions

- To couple the non-overlap constraints with the objective function we define $0-1$ indicator variables

$$
\begin{aligned}
f_{e n, i} & = \begin{cases}1 & \text { if } \exists \mathcal{T}_{k} \in \mathcal{T}, \mathcal{T}_{k} \text { starts from } \mathbf{x}_{i} \\
0 & \text { otherwise. }\end{cases} \\
f_{\text {ex }, i} & = \begin{cases}1 & \text { if } \exists \mathcal{T}_{k} \in \mathcal{T}, \mathcal{T}_{k} \text { ends at } \mathbf{x}_{i} \\
0 & \text { otherwise. }\end{cases} \\
f_{i, j} & = \begin{cases}1 & \text { if } \exists \mathcal{T}_{k} \in \mathcal{T}, \mathbf{x}_{j} \text { is after } \mathbf{x}_{i} \text { in } \mathcal{T}_{k} \\
0 & \text { otherwise. }\end{cases} \\
f_{i} & = \begin{cases}1 & \text { if } \exists \mathcal{T}_{k} \in \mathcal{T}, \mathbf{x}_{i} \in \mathcal{T}_{k} \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

- \mathcal{T} is non-overlap if and only if

$$
f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j}
$$

Useful definitions

- To couple the non-overlap constraints with the objective function we define $0-1$ indicator variables

$$
\begin{aligned}
f_{e n, i} & = \begin{cases}1 & \text { if } \exists \mathcal{T}_{k} \in \mathcal{T}, \mathcal{T}_{k} \text { starts from } \mathbf{x}_{i} \\
0 & \text { otherwise. }\end{cases} \\
f_{e x, i} & = \begin{cases}1 & \text { if } \exists \mathcal{T}_{k} \in \mathcal{T}, \mathcal{T}_{k} \text { ends at } \mathbf{x}_{i} \\
0 & \text { otherwise. }\end{cases} \\
f_{i, j} & = \begin{cases}1 & \text { if } \exists \mathcal{T}_{k} \in \mathcal{T}, \mathbf{x}_{j} \text { is after } \mathbf{x}_{i} \text { in } \mathcal{T}_{k} \\
0 & \text { otherwise. }\end{cases} \\
f_{i} & = \begin{cases}1 & \text { if } \exists \mathcal{T}_{k} \in \mathcal{T}, \mathbf{x}_{i} \in \mathcal{T}_{k} \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

- \mathcal{T} is non-overlap if and only if

$$
f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
$$

Min-cost flow problem

- We have the optimization problem

$$
\min _{\mathcal{T}}-\sum_{\mathcal{T}_{k} \in \mathcal{T}} \log P\left(\mathcal{T}_{k}\right)-\sum_{i} \log p\left(\mathbf{x}_{i} \mid \mathcal{T}\right)
$$

- This can be obtained as

$$
\begin{aligned}
\min _{\mathcal{T}} \sum_{\mathcal{T}_{k} \in \mathcal{T}}(& \left(C_{e n, k_{0}} f_{e n, k_{0}}+\sum_{j} C_{k_{j}, k_{j+1}} f_{k_{j}, k_{j+1}}+C_{e x, k_{k}} f_{e x, k_{k}}\right)+ \\
& +\sum_{i}\left(-\log \left(1-\beta_{i}\right) f_{i}-\log \beta_{i}\left(1-f_{i}\right)\right) \\
\text { s.t. } \quad & f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{aligned}
$$

Min-cost flow problem

- We have the optimization problem

$$
\min _{\mathcal{T}}-\sum_{\mathcal{T}_{k} \in \mathcal{T}} \log P\left(\mathcal{T}_{k}\right)-\sum_{i} \log p\left(\mathbf{x}_{i} \mid \mathcal{T}\right)
$$

- This can be obtained as

$$
\begin{gathered}
\min _{\mathcal{T}} \sum_{\mathcal{T}_{k} \in \mathcal{T}}\left(C_{e n, k_{0}} f_{e n, k_{0}}+\sum_{j} C_{k_{j}, k_{j+1}} f_{k_{j}, k_{j+1}}+C_{e x, k_{k}} f_{e x, k_{k}}\right)+ \\
\\
+\sum_{i}\left(-\log \left(1-\beta_{i}\right) f_{i}-\log \beta_{i}\left(1-f_{i}\right)\right) \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{gathered}
$$

- Which can be reformulated as

$$
\begin{array}{r}
\min _{\mathcal{T}} \quad \sum_{i} C_{e n, i} f_{e n, i}+\sum_{i, j} C_{i, j} f_{i, j}+\sum_{i} C_{e x, i} f_{e x, i}+\sum_{i} C_{i} f_{i} \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{array}
$$

Min-cost flow problem

- We have the optimization problem

$$
\min _{\mathcal{T}}-\sum_{\mathcal{T}_{k} \in \mathcal{T}} \log P\left(\mathcal{T}_{k}\right)-\sum_{i} \log p\left(\mathbf{x}_{i} \mid \mathcal{T}\right)
$$

- This can be obtained as

$$
\begin{gathered}
\min _{\mathcal{T}} \sum_{\mathcal{T}_{k} \in \mathcal{T}}\left(C_{e n, k_{0}} f_{e n, k_{0}}+\sum_{j} C_{k_{j}, k_{j+1}} f_{k_{j}, k_{j+1}}+C_{e x, k_{k}} f_{e x, k_{k}}\right)+ \\
+\sum_{i}\left(-\log \left(1-\beta_{i}\right) f_{i}-\log \beta_{i}\left(1-f_{i}\right)\right) \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{gathered}
$$

- Which can be reformulated as

$$
\begin{gathered}
\min _{\mathcal{T}} \quad \sum_{i} C_{e n, i} f_{e n, i}+\sum_{i, j} C_{i, j} f_{i, j}+\sum_{i} C_{e x, i} f_{e x, i}+\sum_{i} C_{i} f_{i} \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{gathered}
$$

- What are the relationships between the costs and the probabilities we had before?

Min-cost flow problem

- We have the optimization problem

$$
\min _{\mathcal{T}}-\sum_{\mathcal{T}_{k} \in \mathcal{T}} \log P\left(\mathcal{T}_{k}\right)-\sum_{i} \log p\left(\mathbf{x}_{i} \mid \mathcal{T}\right)
$$

- This can be obtained as

$$
\begin{gathered}
\min _{\mathcal{T}} \sum_{\mathcal{T}_{k} \in \mathcal{T}}\left(C_{e n, k_{0}} f_{e n, k_{0}}+\sum_{j} C_{k_{j}, k_{j+1}} f_{k_{j}, k_{j+1}}+C_{e x, k_{k}} f_{e x, k_{k}}\right)+ \\
+\sum_{i}\left(-\log \left(1-\beta_{i}\right) f_{i}-\log \beta_{i}\left(1-f_{i}\right)\right) \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{gathered}
$$

- Which can be reformulated as

$$
\begin{gathered}
\min _{\mathcal{T}} \quad \sum_{i} C_{e n, i} f_{e n, i}+\sum_{i, j} C_{i, j} f_{i, j}+\sum_{i} C_{e x, i} f_{e x, i}+\sum_{i} C_{i} f_{i} \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{gathered}
$$

- What are the relationships between the costs and the probabilities we had before?

Mapping to Min cost-flow network

- This can be mapped into a cost-flow network $G(\mathcal{X})$ with source s and $\operatorname{sink} t$

$$
\begin{gathered}
\min _{\mathcal{T}} \quad \sum_{i} C_{e n, i} f_{e n, i}+\sum_{i, j} C_{i, j} f_{i, j}+\sum_{i} C_{e x, i} f_{e x, i}+\sum_{i} C_{i} f_{i} \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{gathered}
$$

- For every observation $\mathbf{x}_{i} \in \mathcal{X}$ create two nodes u_{i}, v_{i}, and an arc with cost $c\left(u_{i}, v_{j}\right)=C_{i}$ and flow f_{i}.

Mapping to Min cost-flow network

- This can be mapped into a cost-flow network $G(\mathcal{X})$ with source s and $\operatorname{sink} t$

$$
\begin{array}{r}
\min _{\mathcal{T}} \quad \sum_{i} C_{e n, i} f_{e n, i}+\sum_{i, j} C_{i, j} f_{i, j}+\sum_{i} C_{e x, i} f_{e x, i}+\sum_{i} C_{i} f_{i} \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{array}
$$

- For every observation $\mathbf{x}_{i} \in \mathcal{X}$ create two nodes u_{i}, v_{i}, and an arc with cost $c\left(u_{i}, v_{j}\right)=C_{i}$ and flow f_{i}.
- Add $\operatorname{arcs} c\left(s, u_{i}\right)=C_{\text {en, } i}$ and flow $f_{\text {en }, i}$, as well as $c\left(t, u_{i}\right)=C_{\text {ex }, i}$ and flow $f_{e x, i}$

Mapping to Min cost-flow network

- This can be mapped into a cost-flow network $G(\mathcal{X})$ with source s and $\operatorname{sink} t$

$$
\begin{gathered}
\min _{\mathcal{T}} \quad \sum_{i} C_{e n, i} f_{e n, i}+\sum_{i, j} C_{i, j} f_{i, j}+\sum_{i} C_{e x, i} f_{e x, i}+\sum_{i} C_{i} f_{i} \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{gathered}
$$

- For every observation $\mathbf{x}_{i} \in \mathcal{X}$ create two nodes u_{i}, v_{i}, and an arc with cost $c\left(u_{i}, v_{j}\right)=C_{i}$ and flow f_{i}.
- Add $\operatorname{arcs} c\left(s, u_{i}\right)=C_{e n, i}$ and flow $f_{e n, i}$, as well as $c\left(t, u_{i}\right)=C_{e x, i}$ and flow $f_{e x, i}$
- For every transition $p_{\text {link }}\left(\mathrm{x}_{j} \mid \mathrm{x}_{i}\right) \neq 0$, create an arc with cost $c\left(v_{i}, u_{j}\right)=C_{i, j}$ and flow $f_{i, j}$.

Mapping to Min cost-flow network

- This can be mapped into a cost-flow network $G(\mathcal{X})$ with source s and $\operatorname{sink} t$

$$
\begin{gathered}
\min _{\mathcal{T}} \quad \sum_{i} C_{e n, i} f_{e n, i}+\sum_{i, j} C_{i, j} f_{i, j}+\sum_{i} C_{e x, i} f_{e x, i}+\sum_{i} C_{i} f_{i} \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{gathered}
$$

- For every observation $\mathbf{x}_{i} \in \mathcal{X}$ create two nodes u_{i}, v_{i}, and an arc with cost $c\left(u_{i}, v_{j}\right)=C_{i}$ and flow f_{i}.
- Add arcs $c\left(s, u_{i}\right)=C_{e n, i}$ and flow $f_{e n, i}$, as well as $c\left(t, u_{i}\right)=C_{e x, i}$ and flow $f_{e x, i}$
- For every transition $p_{\text {link }}\left(\mathbf{x}_{j} \mid \mathbf{x}_{i}\right) \neq 0$, create an arc with cost $c\left(v_{i}, u_{j}\right)=C_{i, j}$ and flow $f_{i, j}$.
- The constraint is equivalent to the flow conservation constraint

Mapping to Min cost-flow network

- This can be mapped into a cost-flow network $G(\mathcal{X})$ with source s and $\operatorname{sink} t$

$$
\begin{gathered}
\min _{\mathcal{T}} \quad \sum_{i} C_{e n, i} f_{e n, i}+\sum_{i, j} C_{i, j} f_{i, j}+\sum_{i} C_{e x, i} f_{e x, i}+\sum_{i} C_{i} f_{i} \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{gathered}
$$

- For every observation $\mathbf{x}_{i} \in \mathcal{X}$ create two nodes u_{i}, v_{i}, and an arc with cost $c\left(u_{i}, v_{j}\right)=C_{i}$ and flow f_{i}.
- Add arcs $c\left(s, u_{i}\right)=C_{e n, i}$ and flow $f_{e n, i}$, as well as $c\left(t, u_{i}\right)=C_{e x, i}$ and flow $f_{e x, i}$
- For every transition $p_{\text {link }}\left(\mathbf{x}_{j} \mid \mathbf{x}_{i}\right) \neq 0$, create an arc with cost $c\left(v_{i}, u_{j}\right)=C_{i, j}$ and flow $f_{i, j}$.
- The constraint is equivalent to the flow conservation constraint
- The objective is the cost of the flow in G

Mapping to Min cost-flow network

- This can be mapped into a cost-flow network $G(\mathcal{X})$ with source s and $\operatorname{sink} t$

$$
\begin{gathered}
\min _{\mathcal{T}} \quad \sum_{i} C_{e n, i} f_{e n, i}+\sum_{i, j} C_{i, j} f_{i, j}+\sum_{i} C_{e x, i} f_{e x, i}+\sum_{i} C_{i} f_{i} \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{gathered}
$$

- For every observation $\mathbf{x}_{i} \in \mathcal{X}$ create two nodes u_{i}, v_{i}, and an arc with cost $c\left(u_{i}, v_{j}\right)=C_{i}$ and flow f_{i}.
- Add $\operatorname{arcs} c\left(s, u_{i}\right)=C_{e n, i}$ and flow $f_{e n, i}$, as well as $c\left(t, u_{i}\right)=C_{e x, i}$ and flow $f_{e x, i}$
- For every transition $p_{\text {link }}\left(\mathbf{x}_{j} \mid \mathbf{x}_{i}\right) \neq 0$, create an arc with cost $c\left(v_{i}, u_{j}\right)=C_{i, j}$ and flow $f_{i, j}$.
- The constraint is equivalent to the flow conservation constraint
- The objective is the cost of the flow in G.
- Finding optimal association hypothesis \mathcal{T}^{*}, is equivalent to sending the flow from source to sink that minimizes the cost.

Mapping to Min cost-flow network

- This can be mapped into a cost-flow network $G(\mathcal{X})$ with source s and $\operatorname{sink} t$

$$
\begin{array}{r}
\min _{\mathcal{T}} \quad \sum_{i} C_{e n, i} f_{e n, i}+\sum_{i, j} C_{i, j} f_{i, j}+\sum_{i} C_{e x, i} f_{e x, i}+\sum_{i} C_{i} f_{i} \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{array}
$$

- For every observation $\mathbf{x}_{i} \in \mathcal{X}$ create two nodes u_{i}, v_{i}, and an arc with cost $c\left(u_{i}, v_{j}\right)=C_{i}$ and flow f_{i}.
- Add $\operatorname{arcs} c\left(s, u_{i}\right)=C_{e n, i}$ and flow $f_{e n, i}$, as well as $c\left(t, u_{i}\right)=C_{e x, i}$ and flow $f_{e x, i}$
- For every transition $p_{\text {link }}\left(\mathbf{x}_{j} \mid \mathbf{x}_{i}\right) \neq 0$, create an arc with cost $c\left(v_{i}, u_{j}\right)=C_{i, j}$ and flow $f_{i, j}$.
- The constraint is equivalent to the flow conservation constraint
- The objective is the cost of the flow in G.
- Finding optimal association hypothesis \mathcal{T}^{*}, is equivalent to sending the flow from source to sink that minimizes the cost.

Mapping to Min cost-flow network

- This can be mapped into a cost-flow network $G(\mathcal{X})$ with source s and $\operatorname{sink} t$

$$
\begin{gathered}
\min _{\mathcal{T}} \quad \sum_{i} C_{e n, i} f_{e n, i}+\sum_{i, j} C_{i, j} f_{i, j}+\sum_{i} C_{e x, i} f_{e x, i}+\sum_{i} C_{i} f_{i} \\
\text { s.t. } \quad f_{e n, i}+\sum_{j} f_{j, i}=f_{i}=f_{e x, i}+\sum_{j} f_{i, j} \quad \forall i
\end{gathered}
$$

How is to optimize the objective

- For a given $f(G)$, the minimal cost can be solved for in polynomial time by a min-cost flow algorithm
- Construct the graph $G(V, E, C, f)$ from observation set \mathcal{X}
- Start with empty flow
- WHILE ($f(G)$ can be augmented)
- Augment $f(G)$ by one.
- Find the min cost flow by the algorithm of [12].
- IF (current min cost < global optimal cost)

Store current min-cost assignment as global optimum.

- Return the global optimal flow as the best association hypothesis
- The minimal cost is a convex function w.r.t $f(G)$

How is to optimize the objective

- For a given $f(G)$, the minimal cost can be solved for in polynomial time by a min-cost flow algorithm
- Construct the graph $G(V, E, C, f)$ from observation set \mathcal{X}
- Start with empty flow
- WHILE ($f(G)$ can be augmented)
- Augment $f(G)$ by one.
- Find the min cost flow by the algorithm of [12].
- IF (current min cost < global optimal cost)

Store current min-cost assignment as global optimum.

- Return the global optimal flow as the best association hypothesis
- The minimal cost is a convex function w.r.t $f(G)$
- Hence the enumeration over all possible $f(G)$ can be replaced by a Fibonacci search, which finds the global minimal cost by at most $\mathcal{O}(\log n)$

How is to optimize the objective

- For a given $f(G)$, the minimal cost can be solved for in polynomial time by a min-cost flow algorithm
- Construct the graph $G(V, E, C, f)$ from observation set \mathcal{X}
- Start with empty flow
- WHILE ($f(G)$ can be augmented)
- Augment $f(G)$ by one.
- Find the min cost flow by the algorithm of [12].
- IF (current min cost < global optimal cost)

Store current min-cost assignment as global optimum.

- Return the global optimal flow as the best association hypothesis
- The minimal cost is a convex function w.r.t $f(G)$
- Hence the enumeration over all possible $f(G)$ can be replaced by a Fibonacci search, which finds the global minimal cost by at most $\mathcal{O}(\log n)$

Tracking Results

[L. Zhang, Y. Li and R. Nevatia, CVPR08]

- What are the problems with this approach?

Grouping

When do we use grouping?

- In the case of frontal/slanted plane methods, we assume that the image has been over-segmented into a set of superpixels
- This can be applied to the general problem of matching to do it in a more robust way.

When do we use grouping?

- In the case of frontal/slanted plane methods, we assume that the image has been over-segmented into a set of superpixels
- This can be applied to the general problem of matching to do it in a more robust way.
- What is the model assumption then?

When do we use grouping?

- In the case of frontal/slanted plane methods, we assume that the image has been over-segmented into a set of superpixels
- This can be applied to the general problem of matching to do it in a more robust way.
- What is the model assumption then?
- How are those superpixels computed?

When do we use grouping?

- In the case of frontal/slanted plane methods, we assume that the image has been over-segmented into a set of superpixels
- This can be applied to the general problem of matching to do it in a more robust way.
- What is the model assumption then?
- How are those superpixels computed?
- We will see a few different approaches.

When do we use grouping?

- In the case of frontal/slanted plane methods, we assume that the image has been over-segmented into a set of superpixels
- This can be applied to the general problem of matching to do it in a more robust way.
- What is the model assumption then?
- How are those superpixels computed?
- We will see a few different approaches.
- At first sight, the problem is very similar to clustering

When do we use grouping?

- In the case of frontal/slanted plane methods, we assume that the image has been over-segmented into a set of superpixels
- This can be applied to the general problem of matching to do it in a more robust way.
- What is the model assumption then?
- How are those superpixels computed?
- We will see a few different approaches.
- At first sight, the problem is very similar to clustering
- We can draw inspiration from clustering algorithms

When do we use grouping?

- In the case of frontal/slanted plane methods, we assume that the image has been over-segmented into a set of superpixels
- This can be applied to the general problem of matching to do it in a more robust way.
- What is the model assumption then?
- How are those superpixels computed?
- We will see a few different approaches.
- At first sight, the problem is very similar to clustering
- We can draw inspiration from clustering algorithms

Techniques we will see

- K-means style clustering, e.g., SLIC superpixels
- Normalized cuts
- Graph-based superpixels
- Wathershed transform
- Mean-shift

Simple K-means

- Find three clusters in this data

Figure: From M. Tappen

Simple K-means

- Find three clusters in this data

Figure: From M. Tappen

Simple K-means

- Find three clusters in this data

\bigcirc

Figure: From M. Tappen

Simple K-means

- Find three clusters in this data

Figure: From M. Tappen

K-means style algorithms

- We would like to encode
- Super-pixels have regular shape

K-means style algorithms

- We would like to encode
- Super-pixels have regular shape
- Pixels in super-pixels have similar appearance

K-means style algorithms

- We would like to encode
- Super-pixels have regular shape
- Pixels in super-pixels have similar appearance
- Let $S=\left\{s_{1}, \cdots, s_{m}\right\}$ be the set of superpixel assignments

K-means style algorithms

- We would like to encode
- Super-pixels have regular shape
- Pixels in super-pixels have similar appearance
- Let $\mathbf{S}=\left\{s_{1}, \cdots, s_{m}\right)$ be the set of superpixel assignments
- We define $\mu=\left\{\mu_{1}, \cdots, \mu_{m}\right\}$ as the mean location of each superpixel, and $\mathbf{c}=\left\{c_{1}, \cdots, c_{m}\right\}$ as the mean appearance descriptor.

K-means style algorithms

- We would like to encode
- Super-pixels have regular shape
- Pixels in super-pixels have similar appearance
- Let $\mathbf{S}=\left\{s_{1}, \cdots, s_{m}\right)$ be the set of superpixel assignments
- We define $\mu=\left\{\mu_{1}, \cdots, \mu_{m}\right\}$ as the mean location of each superpixel, and $\mathbf{c}=\left\{c_{1}, \cdots, c_{m}\right\}$ as the mean appearance descriptor.
- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}\left(\mathbf{p}, c_{s_{p}}\right)+\lambda_{\mathrm{pos}} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)
$$

K-means style algorithms

- We would like to encode
- Super-pixels have regular shape
- Pixels in super-pixels have similar appearance
- Let $\mathbf{S}=\left\{s_{1}, \cdots, s_{m}\right)$ be the set of superpixel assignments
- We define $\mu=\left\{\mu_{1}, \cdots, \mu_{m}\right\}$ as the mean location of each superpixel, and $\mathbf{c}=\left\{c_{1}, \cdots, c_{m}\right\}$ as the mean appearance descriptor.
- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}\left(\mathbf{p}, c_{s_{p}}\right)+\lambda_{\mathrm{pos}} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)
$$

- The problem becomes

$$
\min _{\mathbf{s}, \mu, \mathbf{c}} \sum_{\mathbf{p}} E\left(\mathbf{p}, s_{p}, \mu_{s_{p}}, c_{s_{p}}\right) .
$$

K-means style algorithms

- We would like to encode
- Super-pixels have regular shape
- Pixels in super-pixels have similar appearance
- Let $\mathbf{S}=\left\{s_{1}, \cdots, s_{m}\right)$ be the set of superpixel assignments
- We define $\mu=\left\{\mu_{1}, \cdots, \mu_{m}\right\}$ as the mean location of each superpixel, and $\mathbf{c}=\left\{c_{1}, \cdots, c_{m}\right\}$ as the mean appearance descriptor.
- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}\left(\mathbf{p}, c_{s_{p}}\right)+\lambda_{\mathrm{pos}} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)
$$

- The problem becomes

$$
\min _{\mathbf{s}, \mu, \mathbf{c}} \sum_{\mathbf{p}} E\left(\mathbf{p}, s_{p}, \mu_{s_{p}}, c_{s_{p}}\right) .
$$

K-means style algorithms

- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}\left(\mathbf{p}, c_{s_{p}}\right)+\lambda_{\mathrm{pos}} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)
$$

- The problem becomes

$$
\min _{\mathbf{s}, \mu, \mathbf{c}} \sum_{\mathbf{p}} E\left(\mathbf{p}, s_{p}, \mu_{s_{p}}, c_{s_{p}}\right) .
$$

- Simple iterative algorithm:
- Solve for the assignments S
- Solve in parallel for the positions μ and appearances \mathbf{c}

K-means style algorithms

- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}\left(\mathbf{p}, c_{s_{p}}\right)+\lambda_{\mathrm{pos}} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)
$$

- The problem becomes

$$
\min _{\mathbf{s}, \mu, \mathbf{c}} \sum_{\mathbf{p}} E\left(\mathbf{p}, s_{p}, \mu_{s_{p}}, c_{s_{p}}\right) .
$$

- Simple iterative algorithm:
- Solve for the assignments \mathbf{S}
- Solve in parallel for the positions μ and appearances \mathbf{c}
- Is this easy to do?

K-means style algorithms

- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}\left(\mathbf{p}, c_{s_{p}}\right)+\lambda_{\mathrm{pos}} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)
$$

- The problem becomes

$$
\min _{\mathbf{s}, \mu, \mathbf{c}} \sum_{\mathbf{p}} E\left(\mathbf{p}, s_{p}, \mu_{s_{p}}, c_{s_{p}}\right) .
$$

- Simple iterative algorithm:
- Solve for the assignments \mathbf{S}
- Solve in parallel for the positions μ and appearances \mathbf{c}
- Is this easy to do?

Results

[R. Achanta and A. Shaji and K. Smith and A. Lucchi and P. Fua and S. Susstrunk, PAMI12]

Joint Segmentation and Depth Estimation

- Let $\mathbf{S}=\left\{s_{1}, \cdots, s_{m}\right\}$ be the set of superpixel assignments
- Let $\Theta=\left\{\theta_{1}, \cdots, \theta_{m}\right\}$ be the set of plane parameters

Joint Segmentation and Depth Estimation

- Let $\mathbf{S}=\left\{s_{1}, \cdots, s_{m}\right)$ be the set of superpixel assignments
- Let $\Theta=\left\{\theta_{1}, \cdots, \theta_{m}\right\}$ be the set of plane parameters
- We define $\mu=\left\{\mu_{1}, \cdots, \mu_{m}\right\}$ as the mean location of each superpixel, and $\mathbf{c}=\left\{c_{1}, \cdots, c_{m}\right\}$ as the mean appearance descriptor.

Joint Segmentation and Depth Estimation

- Let $\mathbf{S}=\left\{s_{1}, \cdots, s_{m}\right)$ be the set of superpixel assignments
- Let $\Theta=\left\{\theta_{1}, \cdots, \theta_{m}\right\}$ be the set of plane parameters
- We define $\mu=\left\{\mu_{1}, \cdots, \mu_{m}\right\}$ as the mean location of each superpixel, and $\mathbf{c}=\left\{c_{1}, \cdots, c_{m}\right\}$ as the mean appearance descriptor.
- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}^{\prime, r}\left(\mathbf{p}, c_{s_{p}}, \theta_{s_{p}}\right)+\lambda_{\text {pos }} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)+\lambda_{\text {disp }} E_{\text {disp }}^{\prime, r}\left(\mathbf{p}, \theta_{s_{p}}\right),
$$

Joint Segmentation and Depth Estimation

- Let $\mathbf{S}=\left\{s_{1}, \cdots, s_{m}\right)$ be the set of superpixel assignments
- Let $\Theta=\left\{\theta_{1}, \cdots, \theta_{m}\right\}$ be the set of plane parameters
- We define $\mu=\left\{\mu_{1}, \cdots, \mu_{m}\right\}$ as the mean location of each superpixel, and $\mathbf{c}=\left\{c_{1}, \cdots, c_{m}\right\}$ as the mean appearance descriptor.
- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}^{\prime, r}\left(\mathbf{p}, c_{s_{p}}, \theta_{s_{p}}\right)+\lambda_{\mathrm{pos}} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)+\lambda_{\mathrm{disp}} E_{\mathrm{disp}}^{\prime, r}\left(\mathbf{p}, \theta_{s_{p}}\right),
$$

Joint Segmentation and Depth Estimation

- Let $\mathbf{S}=\left\{s_{1}, \cdots, s_{m}\right)$ be the set of superpixel assignments
- Let $\Theta=\left\{\theta_{1}, \cdots, \theta_{m}\right\}$ be the set of plane parameters
- We define $\mu=\left\{\mu_{1}, \cdots, \mu_{m}\right\}$ as the mean location of each superpixel, and $\mathbf{c}=\left\{c_{1}, \cdots, c_{m}\right\}$ as the mean appearance descriptor.
- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}^{\prime, r}\left(\mathbf{p}, c_{s_{p}}, \theta_{s_{p}}\right)+\lambda_{\mathrm{pos}} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)+\lambda_{\mathrm{disp}} E_{\mathrm{disp}}^{\prime, r}\left(\mathbf{p}, \theta_{s_{p}}\right),
$$

- We can use:

$$
E_{p o s}\left(\mathbf{p}, \mu_{s_{p}}\right)=\left\|\mathrm{p}-\mu_{s_{p}}\right\|_{2}^{2} / \mathrm{g} \quad E_{c o l}\left(\mathrm{p}, c_{s_{p}}=\left(I_{t}(\mathrm{p})-c_{s_{p}}\right)^{2}\right.
$$

and

$$
E_{d i s p}\left(\mathbf{p}, \theta_{s_{p}}\right)= \begin{cases}\left(d\left(\mathbf{p}, \theta_{s_{p}}\right)-\hat{d}(\mathbf{p})\right)^{2} & \text { if } \mathbf{p} \in \mathcal{F} \\ \lambda & \text { otherwise }\end{cases}
$$

Joint Segmentation and Depth Estimation

- Let $\mathbf{S}=\left\{s_{1}, \cdots, s_{m}\right)$ be the set of superpixel assignments
- Let $\Theta=\left\{\theta_{1}, \cdots, \theta_{m}\right\}$ be the set of plane parameters
- We define $\mu=\left\{\mu_{1}, \cdots, \mu_{m}\right\}$ as the mean location of each superpixel, and $\mathbf{c}=\left\{c_{1}, \cdots, c_{m}\right\}$ as the mean appearance descriptor.
- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}^{\prime, r}\left(\mathbf{p}, c_{s_{p}}, \theta_{s_{p}}\right)+\lambda_{\mathrm{pos}} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)+\lambda_{\mathrm{disp}} E_{\mathrm{disp}}^{\prime, r}\left(\mathbf{p}, \theta_{s_{p}}\right),
$$

- We can use:

$$
E_{p o s}\left(\mathbf{p}, \mu_{s_{p}}\right)=\left\|\mathbf{p}-\mu_{s_{p}}\right\|_{2}^{2} / g \quad E_{c o l}\left(\mathbf{p}, c_{s_{p}}=\left(I_{t}(\mathbf{p})-c_{s_{p}}\right)^{2}\right.
$$

and

$$
E_{d i s p}\left(\mathbf{p}, \theta_{s_{p}}\right)= \begin{cases}\left(d\left(\mathbf{p}, \theta_{s_{p}}\right)-\hat{d}(\mathbf{p})\right)^{2} & \text { if } \mathbf{p} \in \mathcal{F} \\ \lambda & \text { otherwise }\end{cases}
$$

Joint Segmentation and Depth Estimation

- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}^{l, r}\left(\mathbf{p}, c_{s_{p}}, \theta_{s_{p}}\right)+\lambda_{\mathrm{pos}} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)+\lambda_{\mathrm{disp}} E_{\mathrm{disp}}^{l, r}\left(\mathbf{p}, \theta_{s_{p}}\right),
$$

- The problem of joint unsupervised segmentation and flow estimation becomes

$$
\min _{\theta, S, \mu, c} \sum_{p} E\left(p, s_{p}, \theta_{S_{p}}, \mu_{s_{p}}, c_{s_{p}}\right) .
$$

Joint Segmentation and Depth Estimation

- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}^{1, r}\left(\mathbf{p}, c_{s_{p}}, \theta_{s_{p}}\right)+\lambda_{\mathrm{pos}} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)+\lambda_{\mathrm{disp}} E_{\mathrm{disp}}^{l, r}\left(\mathbf{p}, \theta_{s_{p}}\right),
$$

- The problem of joint unsupervised segmentation and flow estimation becomes

$$
\min _{\Theta, \mathbf{s}, \mu, \mathbf{c}} \sum_{\mathbf{p}} E\left(\mathbf{p}, s_{p}, \theta_{s_{p}}, \mu_{s_{p}}, c_{s_{p}}\right) .
$$

- Simple iterative algorithm
- Solve for the assignments S
- Solve in parallel for the planes Θ, positions μ and appearances \mathbf{c}

Joint Segmentation and Depth Estimation

- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}^{l, r}\left(\mathbf{p}, c_{s_{p}}, \theta_{s_{p}}\right)+\lambda_{\mathrm{pos}} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)+\lambda_{\mathrm{disp}} E_{\mathrm{disp}}^{l, r}\left(\mathbf{p}, \theta_{s_{p}}\right),
$$

- The problem of joint unsupervised segmentation and flow estimation becomes

$$
\min _{\Theta, \mathbf{s}, \mu, \mathbf{c}} \sum_{\mathbf{p}} E\left(\mathbf{p}, s_{p}, \theta_{s_{p}}, \mu_{s_{p}}, c_{s_{p}}\right) .
$$

- Simple iterative algorithm
- Solve for the assignments S
- Solve in parallel for the planes Θ, positions μ and appearances \mathbf{c}
- How do we do this?

Joint Segmentation and Depth Estimation

- We can define the total energy of a pixel as

$$
E(p)=E_{\mathrm{col}}^{1, r}\left(\mathbf{p}, c_{s_{p}}, \theta_{s_{p}}\right)+\lambda_{\text {pos }} E_{\mathrm{pos}}\left(\mathbf{p}, \mu_{s_{p}}\right)+\lambda_{\mathrm{disp}} E_{\mathrm{disp}}^{1, r}\left(\mathbf{p}, \theta_{s_{p}}\right),
$$

- The problem of joint unsupervised segmentation and flow estimation becomes

$$
\min _{\Theta, \mathbf{s}, \mu, \mathbf{c}} \sum_{\mathbf{p}} E\left(\mathbf{p}, s_{p}, \theta_{s_{p}}, \mu_{s_{p}}, c_{s_{p}}\right) .
$$

- Simple iterative algorithm
- Solve for the assignments S
- Solve in parallel for the planes Θ, positions μ and appearances \mathbf{c}
- How do we do this?

 Fanconc in z जavin x ज
 His

[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR13]

 $=4-5=5015$

 $=20=0,5350$

Techniques we will see

- K-means style clustering, e.g., SLIC superpixels
- Normalized cuts
- Graph-based superpixels
- Wathershed transform
- Mean-shift

Segmentation as a mincut problem

- Examines the affinities (similarities) between nearby pixels and tries to separate groups that are connected with weak affinities.

- The cut separate the nodes into two groups

Minimun Cuts

- The cut between two groups A and B is defined as the sum of all the weights being cut

$$
\operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i, j}
$$

- Problem: Results in small cuts that isolates single pixels

- We need to normalize somehow

Normalized Cuts

- Better measure is the normalized cuts

$$
N_{\text {cut }}(A, B)=\frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(A, V)}+\frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(B, V)}
$$

with $\operatorname{assoc}(A, A)=\sum_{i \in A, j \in A} w_{i j}$ is the association term within a cluster and $\operatorname{Assoc}(A, V)=\operatorname{assoc}(A, A)+\operatorname{cut}(A, B)$ is the sum of all the weights associated with nodes in A.

	A	B	sum
A	$\operatorname{assoc}(A, A)$	$\operatorname{cut}(A, B)$	$\operatorname{assoc}(A, V)$
B	$\operatorname{cut}(B, A)$	$\operatorname{assoc}(B, B)$	$\operatorname{assoc}(B, V)$
sum	$\operatorname{assoc}(A, V)$	$\operatorname{assoc}(B, v)$	

- We want minimize the disassociation between the groups and maximize the association within the groups

Normalize Cuts

- Computing the optimal normalized cut is NP-Complete.
- Instead, relax by computing a real value assignment

Normalize Cuts

- Computing the optimal normalized cut is NP-Complete.
- Instead, relax by computing a real value assignment
- Let x be an indicator vector, with $x_{i}=1$ if $x_{i} \in A$, and $x_{i}=-1$ otherwise. Let $\mathbf{d}=\mathbf{W} 1$ be the row sums of the symmetric matrix \mathbf{W}, and $\mathbf{D}=\operatorname{diag}(\mathbf{d})$ be the corresponding diagonal matrix.

Normalize Cuts

- Computing the optimal normalized cut is NP-Complete.
- Instead, relax by computing a real value assignment
- Let \mathbf{x} be an indicator vector, with $x_{i}=1$ if $x_{i} \in A$, and $x_{i}=-1$ otherwise. Let $\mathbf{d}=\mathbf{W} 1$ be the row sums of the symmetric matrix \mathbf{W}, and $\mathbf{D}=\operatorname{diag}(\mathbf{d})$ be the corresponding diagonal matrix.
- Shi and Malik, compute the cut by solving

$$
\begin{aligned}
& \text { with } \mathbf{y}=((1+\mathbf{x})-b(1-\mathbf{x})) / 2 \text { is a vector with all } 1 \text { 's and -b's such that } \\
& \mathbf{y} \cdot \mathbf{d}=0 \text {, by relaxing } \mathbf{y} \text { to be real value. }
\end{aligned}
$$

Normalize Cuts

- Computing the optimal normalized cut is NP-Complete.
- Instead, relax by computing a real value assignment
- Let \mathbf{x} be an indicator vector, with $x_{i}=1$ if $x_{i} \in A$, and $x_{i}=-1$ otherwise. Let $\mathbf{d}=\mathbf{W} 1$ be the row sums of the symmetric matrix \mathbf{W}, and $\mathbf{D}=\operatorname{diag}(\mathbf{d})$ be the corresponding diagonal matrix.
- Shi and Malik, compute the cut by solving

$$
\min _{y} \frac{\mathbf{y}^{T}(\mathbf{D}-\mathbf{W}) \mathbf{y}}{\mathbf{y}^{\top} \mathbf{D y}}
$$

with $\mathbf{y}=((1+\mathbf{x})-b(1-\mathbf{x})) / 2$ is a vector with all 1 's and -b 's such that $\mathbf{y} \cdot \mathbf{d}=0$, by relaxing \mathbf{y} to be real value.

- D - W is the Laplacian

Normalize Cuts

- Computing the optimal normalized cut is NP-Complete.
- Instead, relax by computing a real value assignment
- Let \mathbf{x} be an indicator vector, with $x_{i}=1$ if $x_{i} \in A$, and $x_{i}=-1$ otherwise. Let $\mathbf{d}=\mathbf{W} 1$ be the row sums of the symmetric matrix \mathbf{W}, and $\mathbf{D}=\operatorname{diag}(\mathbf{d})$ be the corresponding diagonal matrix.
- Shi and Malik, compute the cut by solving

$$
\min _{y} \frac{\mathbf{y}^{T}(\mathbf{D}-\mathbf{W}) \mathbf{y}}{\mathbf{y}^{\top} \mathbf{D y}}
$$

with $\mathbf{y}=((1+\mathbf{x})-b(1-\mathbf{x})) / 2$ is a vector with all 1 's and -b 's such that $\mathbf{y} \cdot \mathbf{d}=0$, by relaxing \mathbf{y} to be real value.

- $\mathbf{D}-\mathbf{W}$ is the Laplacian

Solving for the cut

- Minimizing this Rayleigh quotient is equivalent to solving the generalized eigenvalue system

$$
(\mathbf{D}-\mathbf{W}) \mathbf{y}=\lambda \mathbf{D} \mathbf{y}
$$

- This is a normal eigenvalue problem

$$
(\mathbf{I}-\mathbf{N}) \mathbf{z}=\lambda \mathbf{z}
$$

with $\mathbf{N}=\mathbf{D}^{1 / 2} \mathbf{W} \mathbf{D}^{1 / 2}$ is the normalized affinity matrix, and $\mathbf{z}=\mathbf{D}^{1 / 2} \mathbf{y}$.

Solving for the cut

- Minimizing this Rayleigh quotient is equivalent to solving the generalized eigenvalue system

$$
(\mathbf{D}-\mathbf{W}) \mathbf{y}=\lambda \mathbf{D} \mathbf{y}
$$

- This is a normal eigenvalue problem

$$
(\mathbf{I}-\mathbf{N}) \mathbf{z}=\lambda \mathbf{z}
$$

with $\mathbf{N}=\mathbf{D}^{1 / 2} \mathbf{W} \mathbf{D}^{1 / 2}$ is the normalized affinity matrix, and $\mathbf{z}=\mathbf{D}^{1 / 2} \mathbf{y}$.

- This is an example of a spectral method for segmentation, solution is the second smallest eigenvector/eigenvalue

Solving for the cut

- Minimizing this Rayleigh quotient is equivalent to solving the generalized eigenvalue system

$$
(\mathbf{D}-\mathbf{W}) \mathbf{y}=\lambda \mathbf{D} \mathbf{y}
$$

- This is a normal eigenvalue problem

$$
(\mathbf{I}-\mathbf{N}) \mathbf{z}=\lambda \mathbf{z}
$$

with $\mathbf{N}=\mathbf{D}^{1 / 2} \mathbf{W} \mathbf{D}^{1 / 2}$ is the normalized affinity matrix, and $\mathbf{z}=\mathbf{D}^{1 / 2} \mathbf{y}$.

- This is an example of a spectral method for segmentation, solution is the second smallest eigenvector/eigenvalue
- This process can be applied in a hierarchical manner to have more clusters

Solving for the cut

- Minimizing this Rayleigh quotient is equivalent to solving the generalized eigenvalue system

$$
(\mathbf{D}-\mathbf{W}) \mathbf{y}=\lambda \mathbf{D} \mathbf{y}
$$

- This is a normal eigenvalue problem

$$
(\mathbf{I}-\mathbf{N}) \mathbf{z}=\lambda \mathbf{z}
$$

with $\mathbf{N}=\mathbf{D}^{1 / 2} \mathbf{W} \mathbf{D}^{1 / 2}$ is the normalized affinity matrix, and $\mathbf{z}=\mathbf{D}^{1 / 2} \mathbf{y}$.

- This is an example of a spectral method for segmentation, solution is the second smallest eigenvector/eigenvalue
- This process can be applied in a hierarchical manner to have more clusters
- Shi and Malik employ the following affinity

for pixels within a radious $\left\|p_{i}-p_{j}\right\|_{2}<r$, and \mathbf{F} is a feature vector with color, intensities, histograms, gradients, etc.

Solving for the cut

- Minimizing this Rayleigh quotient is equivalent to solving the generalized eigenvalue system

$$
(\mathbf{D}-\mathbf{W}) \mathbf{y}=\lambda \mathbf{D} \mathbf{y}
$$

- This is a normal eigenvalue problem

$$
(\mathbf{I}-\mathbf{N}) \mathbf{z}=\lambda \mathbf{z}
$$

with $\mathbf{N}=\mathbf{D}^{1 / 2} \mathbf{W} \mathbf{D}^{1 / 2}$ is the normalized affinity matrix, and $\mathbf{z}=\mathbf{D}^{1 / 2} \mathbf{y}$.

- This is an example of a spectral method for segmentation, solution is the second smallest eigenvector/eigenvalue
- This process can be applied in a hierarchical manner to have more clusters
- Shi and Malik employ the following affinity

$$
w_{i, j}=\exp \left(-\frac{\left\|\mathbf{F}_{i}-\mathbf{F}_{j}\right\|_{2}^{2}}{\sigma_{f}^{2}}-\frac{\left\|p_{i}-p_{j}\right\|_{2}^{2}}{\sigma_{s}^{2}}\right)
$$

for pixels within a radious $\left\|p_{i}-p_{j}\right\|_{2}<r$, and \mathbf{F} is a feature vector with color, intensities, histograms, gradients, etc.

Algorithm

1. Given an image or image sequence, set up a weighted graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and set the weight on the edge connecting two nodes to be a measure of the similarity between the two nodes.
2. Solve $(\mathbf{D}-\mathbf{W}) \boldsymbol{x}=\lambda \mathbf{D} x$ for eigenvectors with the smallest eigenvalues.
3. Use the eigenvector with the second smallest eigenvalue to bipartition the graph.
4. Decide if the current partition should be subdivided and recursively repartition the segmented parts if necessary.

Examples

Figure: Shi and Malik N-Cuts

[^0]: Vladimir Kolmogorov and Ramin Zabih. Computing Visual Correspondence with Occlusions using Graph Cuts. ICCV 2001.

