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The ST-mincut problem

Suppose we have a graph G = {V ,E ,C}, with vertices V , Edges E and
costs C .

[Source: P. Kohli]
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The ST-mincut problem

An st-cut (S,T) divides the nodes between source and sink.

The cost of a st-cut is the sum of cost of all edges going from S to T

[Source: P. Kohli]
Raquel Urtasun (TTI-C) Computer Vision Feb 28, 2013 3 / 48



The ST-mincut problem

The st-mincut is the st-cut with the minimum cost

[Source: P. Kohli]
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Back to our energy minimization

Construct a graph such that

1 Any st-cut corresponds to an assignment of x

2 The cost of the cut is equal to the energy of x : E(x)

[Source: P. Kohli]
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St-mincut and Energy Minimization

[Source: P. Kohli]
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How are they equivalent?
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Graph Construction

[Source: P. Kohli]
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Graph Construction

[Source: P. Kohli]
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How to compute the St-mincut?

[Source: P. Kohli]
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How does the code look like

[Source: P. Kohli]
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How does the code look like

[Source: P. Kohli]
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Graph cuts for multi-label problems

Exact Transformation to QPBF [Roy and Cox 98] [Ishikawa 03] [Schlesinger
et al. 06] [Ramalingam et al. 08]

Very high computational cost

[Source: P. Kohli]
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Computing the Optimal Move

[Source: P. Kohli]
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Move Making Algorithms

[Source: P. Kohli]
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Energy Minimization

Consider pairwise MRFs

E (f ) =
∑

{p,q}∈N

Vp,q(fp, fq) +
∑
p

Dp(fp)

with N defining the interactions between nodes, e.g., pixels

Dp non-negative, but arbitrary.

This is the graph-cuts notation.

Important to notice it’s the same thing.
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Metric vs Semimetric

Two general classes of pairwise interactions

Metric if it satisfies for any set of labels α, β, γ

V (α, β) = 0 ↔ α = β

V (α, β) = V (β, α) ≥ 0

V (α, β) ≤ V (α, γ) + V (γ, β)

Semi-metric if it satisfies for any set of labels α, β, γ

V (α, β) = 0 ↔ α = β

V (α, β) = V (β, α) ≥ 0
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Examples for 1D label set

Truncated quadratic is a semi-metric

V (α, β) = min(K , |α− β|2)

with K a constant.

Truncated absolute distance is a metric

V (α, β) = min(K , |α− β|)

with K a constant.

For multi-dimensional, replace | · | by any norm.

Potts model is a metric

V (α, β) = K · T (α 6= β)

with T (·) = 1 if the argument is true and 0 otherwise.

Raquel Urtasun (TTI-C) Computer Vision Feb 28, 2013 16 / 48



Examples for 1D label set

Truncated quadratic is a semi-metric

V (α, β) = min(K , |α− β|2)

with K a constant.

Truncated absolute distance is a metric

V (α, β) = min(K , |α− β|)

with K a constant.

For multi-dimensional, replace | · | by any norm.

Potts model is a metric

V (α, β) = K · T (α 6= β)

with T (·) = 1 if the argument is true and 0 otherwise.

Raquel Urtasun (TTI-C) Computer Vision Feb 28, 2013 16 / 48



Examples for 1D label set

Truncated quadratic is a semi-metric

V (α, β) = min(K , |α− β|2)

with K a constant.

Truncated absolute distance is a metric

V (α, β) = min(K , |α− β|)

with K a constant.

For multi-dimensional, replace | · | by any norm.

Potts model is a metric

V (α, β) = K · T (α 6= β)

with T (·) = 1 if the argument is true and 0 otherwise.

Raquel Urtasun (TTI-C) Computer Vision Feb 28, 2013 16 / 48



Examples for 1D label set

Truncated quadratic is a semi-metric

V (α, β) = min(K , |α− β|2)

with K a constant.

Truncated absolute distance is a metric

V (α, β) = min(K , |α− β|)

with K a constant.

For multi-dimensional, replace | · | by any norm.

Potts model is a metric

V (α, β) = K · T (α 6= β)

with T (·) = 1 if the argument is true and 0 otherwise.

Raquel Urtasun (TTI-C) Computer Vision Feb 28, 2013 16 / 48



Binary Moves

α− β moves works for semi-metrics

α expansion works for V being a metric

Figure: Figure from P. Kohli tutorial on graph-cuts

For certain x1 and x2, the move energy is sub-modular QPBF

[Source: P. Kohli]Raquel Urtasun (TTI-C) Computer Vision Feb 28, 2013 17 / 48



Swap Move

[Source: P. Kohli]
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Swap Move

[Source: P. Kohli]
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Expansion Move

[Source: P. Kohli]
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Expansion Move

[Source: P. Kohli]
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More formally

Any labeling can be uniquely represented by a partition of image pixels
P = {Pl |l ∈ L}, where Pl = {p ∈ P|fp = l} is a subset of pixels assigned
label l .

There is a one to one correspondence between labelings f and partitions P.

Given a pair of labels α, β, a move from a partition P (labeling f ) to a new
partition P’ (labeling f ′) is called an α− β swap if Pl = P ′ for any label
l 6= α, β.

The only difference between P and P ′ is that some pixels that were labeled
in P are now labeled in P ′, and vice-versa.

Given a label l , a move from a partition P (labeling f ) to a new partition P ′

(labeling f ′) is called an α-expansion if Pα ⊂ P ′
α and P ′

l ⊂ Pl .

An α-expansion move allows any set of image pixels to change their labels
to α.
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Example

Figure: (a) Current partition (b) local move (c) α− β-swap (d) α-expansion.
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Algorithms
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Finding optimal Swap move

Given an input labeling f (partition P) and a pair of labels α, β we want to
find a labeling f̂ that minimizes E over all labelings within one α− β-swap
of f .

This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gαβ = (Vαβ , Eαβ).

The structure of this graph is dynamically determined by the current
partition P and by the labels α, β.
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Graph Construction

The set of vertices includes the two terminals α and β, as well as image
pixels p in the sets Pα and Pβ (i.e., fp ∈ {α, β}).

Each pixel p ∈ Pαβ is connected to the terminals α and β, called t-links.

Each set of pixels p, q ∈ Pαβ which are neighbors is connected by an edge
ep,q
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Computing the Cut

Any cut must have a single t-link not cut.

This defines a labeling

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, ”fast approximate energy minimization via graph cuts”
PAMI 2001.

Raquel Urtasun (TTI-C) Computer Vision Feb 28, 2013 25 / 48



Properties

For any cut, then
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Finding the optimal α expansion

Given an input labeling f (partition P) and a label α we want to find a
labeling f̂ that minimizes E over all labelings within one α-expansion of f .

This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gα = (Vα, Eα).

The structure of this graph is dynamically determined by the current
partition P and by the label α.

Different graph than the α− β swap.
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Graph Construction

The set of vertices includes the two terminals α and ᾱ, as well as all image
pixels p ∈ P.

Additionally, for each pair of neighboring pixels p, q such that fp 6= fq we
create an auxiliary node ap,q.

Each pixel p is connected to the terminals α and ᾱ, called t-links.

Each set of pixels p, q which are neighbors and fp = fq, we connect with and
n-link.

For each pair of neighboring pixels such that fp 6= fq, we create a triplet
{ep,a, ea,q, tᾱa }.

The set of edges is then
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pixels p ∈ P.

Additionally, for each pair of neighboring pixels p, q such that fp 6= fq we
create an auxiliary node ap,q.

Each pixel p is connected to the terminals α and ᾱ, called t-links.
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Graph Construction
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Properties

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, ”fast approximate energy minimization via graph cuts”
PAMI 2001.
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Global Minimization Techniques

Ways to get an approximate solution typically

Dynamic programming approximations

Sampling

Simulated annealing

Graph-cuts: imposes restrictions on the type of pairwise cost functions

Message passing: iterative algorithms that pass messages between nodes in
the graph.

Now we can solve for the MAP (approximately) in general energies. We can solve

for other problems than stereo
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Let’s look at data/bechmarks
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Benchmarks

Two benchmarks with very different characteristics

(Middlebury) (KITTI)
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Middlebury Dataset

Middlebury Stereo Evaluation – Version 2

Laboratory

Lambertian

Rich in texture

Medium-size label set

Largely fronto-parallel
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Benchmarks for Stereo and metrics

Middlebury Stereo Evaluation – Version 2

Best methods < 3% errors (for all non-occluded regions)

http://vision.middlebury.edu/stereo/data/
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Benchmarks: KITTI Data Collection

Two stereo rigs (1392× 512 px, 54 cm base, 90◦ opening)

Velodyne laser scanner, GPS+IMU localization

6 hours at 10 frames per second!
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The KITTI Vision Benchmark Suite
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Novel Challenges

Fast guided cost-volume filtering (Rhemann et al., CVPR 2011)

Middlebury, Errors: 2.7%

Error threshold: 1 px (Middlebury) / 3 px (KITTI)
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Middlebury, Errors: 2.7% KITTI, Errors: 46.3%
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Novel Challenges

So what is the difference?

Middlebury

Laboratory

Lambertian

Rich in texture

Medium-size label set

Largely fronto-parallel

KITTI

Moving vehicle

Specularities

Sensor saturation

Large label set

Strong slants
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Novel Challenges

So what is the difference?

Middlebury

d = 50 px

d = 16 px

Laboratory

Lambertian

Rich in texture

Medium-size label set

Largely fronto-parallel

KITTI

d = 150 px

d = 0 px

Moving vehicle

Specularities

Sensor saturation

Large label set

Strong slants
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Stereo Evaluation
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MRFs for stereo

Global methods: define a Markov random field over

Pixel-level

Fronto-parallel planes

Slanted planes

Raquel Urtasun (TTI-C) Computer Vision Feb 28, 2013 41 / 48



Plane MRFs

First segment an image into small regions, i.e., superpixels

Assume that the 3D world is compose of small frontal/slanted planes

Good representation if the superpixels are small and respect boundaries

E (x1, · · · , xn) =
∑
i

C (xi ) +
∑
i

∑
j∈Nj

C (xi , xj)

with xi ∈ < for the fronto-parallel planes, and xi ∈ <3 for the slanted planes

This are continuous variables. Is this a problem?

What can I do to solve this? Discretize the problem

The unitary are usually agreegation of cost over the local matching on the
pixels in that superpixel

Pairwise is typically smoothness
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Slanted-plane MRFs
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A more sophisticated occlusion model

MRF on continuous variables (slanted planes) and discrete var. (boundary)

Combines depth ordering (segmentation) and stereo
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Takes as input disparities computed by any local algorithm
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Energy of PCBP-Stereo

y the set of slanted 3D planes, o the set of discrete boundary variables

E (y, o) = Ecolor (o) + Ematch(y, o) + Ecompatibility (y, o) + Ejunction(o)
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y the set of slanted 3D planes, o the set of discrete boundary variables
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