Energy Minimization

Raquel Urtasun

TTI Chicago
Feb 26, 2013

Disparity Estimation

- DSI: Disparity image

Scene

Ground truth

Stereo Estimation Methods

- Local methods
- Grow and seed methods: use a few good correspondences and grow the estimation from them
- Adaptive Window methods (AW)
- Global methods: define a Markov random field over
- Pixel-level
- Fronto-parallel planes
- Slanted planes

MRFs on pixels

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

where $x_{i} \in\{0,1, \cdots, D\}$ represents a variable for the disparity of the $i-$ th pixel

- This optimization is in general NP-hard.

MRFs on pixels

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

where $x_{i} \in\{0,1, \cdots, D\}$ represents a variable for the disparity of the $i-$ th pixel

- This optimization is in general NP-hard.
- Global optima can be obtained in a few cases.

MRFs on pixels

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

where $x_{i} \in\{0,1, \cdots, D\}$ represents a variable for the disparity of the i-th pixel

- This optimization is in general NP-hard.
- Global optima can be obtained in a few cases.

Semiglobal block matching [Hirschmueller08]

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

with the following pairwise term

$$
C\left(d_{i}, d_{j}\right)= \begin{cases}0 & \text { if } d_{i}=d_{j} \\ \lambda_{1} & \text { if }\left|d_{i}-d_{j}\right|=1 \\ \lambda_{2} & \text { otherwise }\end{cases}
$$

- It computes the costs in each direction

$$
D_{j}(\mathbf{p} ; d)=C(\mathbf{p} ; d)+\min _{d^{\prime}}\left\{D\left(\mathbf{p}-\mathbf{j}, d^{\prime}\right)+\rho_{d}\left(d-d^{\prime}\right)\right\}
$$

Semiglobal block matching [Hirschmueller08]

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

with the following pairwise term

$$
C\left(d_{i}, d_{j}\right)= \begin{cases}0 & \text { if } d_{i}=d_{j} \\ \lambda_{1} & \text { if }\left|d_{i}-d_{j}\right|=1 \\ \lambda_{2} & \text { otherwise }\end{cases}
$$

- It computes the costs in each direction

$$
D_{j}(\mathbf{p} ; d)=C(\mathbf{p} ; d)+\min _{d^{\prime}}\left\{D\left(\mathbf{p}-\mathbf{j}, d^{\prime}\right)+\rho_{d}\left(d-d^{\prime}\right)\right\}
$$

- And aggregate the costs

$$
D(\mathbf{p} ; d)=\sum_{j} L_{j}(\mathbf{p}, d)
$$

Semiglobal block matching [Hirschmueller08]

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

with the following pairwise term

$$
C\left(d_{i}, d_{j}\right)= \begin{cases}0 & \text { if } d_{i}=d_{j} \\ \lambda_{1} & \text { if }\left|d_{i}-d_{j}\right|=1 \\ \lambda_{2} & \text { otherwise }\end{cases}
$$

- It computes the costs in each direction

$$
D_{j}(\mathbf{p} ; d)=C(\mathbf{p} ; d)+\min _{d^{\prime}}\left\{D\left(\mathbf{p}-\mathbf{j}, d^{\prime}\right)+\rho_{d}\left(d-d^{\prime}\right)\right\}
$$

- And aggregate the costs

$$
D(\mathbf{p} ; d)=\sum_{j} L_{j}(\mathbf{p}, d)
$$

- Then do winner take all

Semiglobal block matching [Hirschmueller08]

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

with the following pairwise term

$$
C\left(d_{i}, d_{j}\right)= \begin{cases}0 & \text { if } d_{i}=d_{j} \\ \lambda_{1} & \text { if }\left|d_{i}-d_{j}\right|=1 \\ \lambda_{2} & \text { otherwise }\end{cases}
$$

- It computes the costs in each direction

$$
D_{j}(\mathbf{p} ; d)=C(\mathbf{p} ; d)+\min _{d^{\prime}}\left\{D\left(\mathbf{p}-\mathbf{j}, d^{\prime}\right)+\rho_{d}\left(d-d^{\prime}\right)\right\}
$$

- And aggregate the costs

$$
D(\mathbf{p} ; d)=\sum_{j} L_{j}(\mathbf{p}, d)
$$

- Then do winner take all

Inference in trees

- Given distribution $p\left(y_{1}, \cdots, y_{n}\right)$
- Inference: computing functions of the distribution
- mean
- marginal
- conditionals
- Marginal inference in singly-connected graph (trees)
- Later: extensions to loopy graphs
[Source: P. Gehler]

Variable Elimination

- Consider Markov chain ($a, b, c, d \in\{0,1\}$)

with distribution

$$
p(a, b, c, d)=p(a \mid b) p(b \mid c) p(c \mid d) p(d)
$$

- Task: compute the marginal $p(a)$
[Source: P. Gehler]

Variable Elimination

$$
\begin{aligned}
p(a) & =\sum_{b, c, d} p(a, b, c, d) \\
& =\sum_{b, c, d} p(a \mid b) p(b \mid c) p(c \mid d) p(d)
\end{aligned}
$$

- Naive: $2 \times 2 \times 2=8$ states to sum over
- Re-order summation:

$$
p(a)=\sum_{b, c} p(a \mid b) p(b \mid c) \underbrace{\sum_{d} p(c \mid d) p(d)}_{\gamma_{d}(c)}
$$

[Source: P. Gehler]

Variable Elimination

$$
\begin{aligned}
& p(a)=\sum_{b, c} p(a \mid b) p(b \mid c) \underbrace{\sum_{d} p(c \mid d) p(d)}_{\gamma_{d}(c)} \\
& p(a)=\sum_{b} p(a \mid b) \underbrace{\sum_{c} p(b \mid c) \gamma_{d}(c)}_{\gamma_{c}(b)} \\
& p(a)=\sum_{b} p(a \mid b) \gamma_{c}(b)
\end{aligned}
$$

- We need $2+2+2=6$ calculations
- For a chain of length T scale linearly $n * 2$, cf naive approach 2^{n}
[Source: P. Gehler]

Finding Conditional Marginals

- Again:

$$
p(a, b, c, d)=p(a \mid b) p(b \mid c) p(c \mid d) p(d)
$$

- Now find $p(d \mid a)$

$$
\begin{aligned}
p(d \mid a) & \propto \sum_{b, c} p(a \mid b) p(b \mid c) p(c \mid d) p(d) \\
& =\sum_{c} \underbrace{\sum_{b} p(a \mid b) p(b \mid c) p(c \mid d) p(d)}_{\gamma_{b}(c)} \\
& \stackrel{\text { def }}{=} \gamma_{c}(d) \text { not a distribution }
\end{aligned}
$$

[Source: P. Gehler]

Finding Conditional Marginals

- Found that

$$
p(d \mid a)=k \gamma_{c}(d)
$$

- and since $\sum_{d} p(d \mid a)=1$

$$
k=\frac{1}{\sum_{d} \gamma_{c}(d)}
$$

- Again $\gamma_{c}(d)$ is not a distribution (but a message)
[Source: P. Gehler]

Now with factor graphs

$$
\begin{gathered}
a-b(a, b, c, d)=f_{1}(a, b) f_{2}(b, c) f_{3}(c, d) f_{4}(d) \\
p(a, b, c)=\sum_{d} p(a, b, c, d) \\
=f_{1}(a, b) f_{2}(b, c) \underbrace{\sum_{d} f_{3}(c, d) f_{4}(d)}_{\mu_{d \rightarrow c}(c)} \\
p(a, b)=\sum_{c} p(a, b, c)=f_{1}(a, b) \underbrace{\sum_{c}^{f_{3}} f_{2}(b, c) \mu_{d \rightarrow c}(c)}_{\mu_{c \rightarrow b}(b)}
\end{gathered}
$$

[Source: P. Gehler]

Inference in Chain Structured Factor Graphs

- Simply recurse further
- $\gamma_{m \rightarrow n}(n)$ carries the information beyond m
- We did not need the factors in general (next) we will see that making a distinction is helpful
[Source: P. Gehler]

General singly-connected factor graphs I

- Now consider a branching graph:

with factors

$$
f_{1}(a, b) f_{2}(b, c, d) f_{3}(c) f_{4}(d, e) f_{5}(d)
$$

- For example: find marginal $p(a, b)$
[Source: P. Gehler]

General singly-connected factor graphs II

[Source: P. Gehler]

General singly-connected factor graphs III

[Source: P. Gehler]

General singly-connected factor graphs IV

- If we want to compute the marginal $p(a)$:

$$
p(a)=\underbrace{\sum_{b} f_{1}(a, b) \mu_{f_{2} \rightarrow b}(b)}_{\mu_{f_{1} \rightarrow a}(a)}
$$

- which we could also view as

$$
p(a)=\sum_{b} f_{1}(a, b) \underbrace{\mu_{f_{2} \rightarrow b}(b)}_{\mu_{b \rightarrow f_{1}}(b)}
$$

[Source: P. Gehler]

Summary

- Once computed, messages can be re-used
- All marginals $p(c), p(d), p(c, d), \cdots$ can be written as a function of messages
- We need an algorithm to compute all messages: Sum-Product algorithm

[Source: P. Gehler]

Sum-product algorithm overview

- Algorithm to compute all messages efficiently, assuming the graph is singly-connected
- It can be used to compute any desired marginals
- Also known as belief propagation (BP)

The algorithm is composed of
1 Initialization
2 Variable to Factor message
3 Factor to Variable message
[Source: P. Gehler]

1. Initialization

- Messages from extremal (simplical) node factors are initialized to the factor (left)
- Messages from extremal (simplical) variable nodes are set to unity (right)

[Source: P. Gehler]

2. Variable to Factor message

[Source: P. Gehler]

3. Factor to Variable message

- We sum over all states in the set of variables
- This explains the name for the algorithm (sum-product)

$$
\mu_{f \rightarrow x}(x)=\sum_{y \in \mathcal{X}_{f} \backslash x} \phi_{f}\left(\mathcal{X}_{f}\right) \prod_{y \in\{\operatorname{ne}(f) \backslash x\}} \mu_{y \rightarrow f}(y)
$$

[Source: P. Gehler]

Marginal computation

[Source: P. Gehler]

Message Ordering

- Messages depend on previous computed messages
- Only extremal |nodes/factors do not depend on other messages
- To compute all messages in the graph

1. leaf-to-root: (pick root node, compute messages pointing towards root)
2. root-to-leave: (compute messages pointing away from root)

[Source: P. Gehler]

Problems with loops

- Marginalizing over d introduces new link (changes graph structure - in contrast to singly connected graphs)

$$
p(a, b, c, d)=f_{1}(a, b) f_{2}(b, c) f_{3}(c, d) f_{4}(d, a)
$$

and marginal

$$
p(a, b, c)=f_{1}(a, b) f_{2}(b, c) \underbrace{\sum_{d} f_{3}(c, d) f_{4}(d, a)}_{f_{5}(a, c)}
$$

What to infer?

- Mean

$$
\mathbb{E}_{p(x)}[x]=\sum_{x \in \mathcal{X}} x p(x)
$$

- Mode

$$
x^{*}=\underset{x \in \mathcal{X}}{\operatorname{argmax}} p(x)
$$

- Conditional Distributions

$$
p\left(x_{i}, x_{j} \mid x_{k}, x_{l}\right) \operatorname{or} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)
$$

- Max-Marginals

$$
x_{i}^{*}=\underset{x_{i} \in \mathcal{X}_{i}}{\operatorname{argmax}} p\left(x_{i}\right)=\cdots d x_{n} \underset{x_{i} \in \mathcal{X}_{i}}{\operatorname{argmax}} \int_{\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)} p(x) d x_{1}
$$

Computing the Partition Function

- The partition function $\left(p(x)=\frac{1}{Z} \prod_{f} \Phi_{f}\left(\mathcal{X}_{f}\right)\right)$ (normalization constant) Z can be computed after the leaf-to-root step (no need for the root-to-leaf step) (choose any $x \in \mathcal{X}$)

$$
\begin{align*}
Z & =\sum_{\mathcal{X}} \prod_{f} \phi_{f}\left(\mathcal{X}_{f}\right) \tag{10}\\
& =\sum_{x} \sum_{\mathcal{X} \backslash\{x\}} \prod_{f \in \operatorname{ne}(x)} \prod_{f \notin \operatorname{ne}(x)} \phi_{f}\left(\mathcal{X}_{f}\right) \tag{11}\\
& =\sum_{x} \prod_{f \in \operatorname{ne}(x)} \sum_{\mathcal{X} \backslash\{x\}} \prod_{f \notin \operatorname{ne}(x)} \phi_{f}\left(\mathcal{X}_{f}\right) \tag{12}\\
& =\sum_{x} \prod_{f \in \operatorname{ne}(x)} \mu_{f \rightarrow x}(x) \tag{13}
\end{align*}
$$

Log Messages

- In large graphs, messages may become very small
- Work with log-messages instead $\lambda=\log \mu$
- Variable-to-factor messages

$$
\mu_{x \rightarrow f}(x)=\prod_{g \in\{\operatorname{ne}(x) \backslash f\}} \mu_{g \rightarrow x}(x)
$$

then becomes

$$
\lambda_{x \rightarrow f}(x)=\sum_{g \in\{\operatorname{ne}(x) \backslash f\}} \lambda_{g \rightarrow x}(x)
$$

[Source: P. Gehler]

Log Messages

- Work with log-messages instead $\lambda=\log \mu$
- Factor-to-Variable messages

$$
\begin{equation*}
\mu_{f \rightarrow x}(x)=\sum_{y \in \mathcal{X}_{f} \backslash x} \Phi_{f}\left(\mathcal{X}_{f}\right) \prod_{y \in\{\operatorname{ne}(f) \backslash x\}} \mu_{y \rightarrow f}(y) \tag{16}
\end{equation*}
$$

then becomes

$$
\begin{equation*}
\lambda_{f \rightarrow x}(x)=\log \left(\sum_{y \in \mathcal{X}_{f} \backslash x} \Phi\left(\mathcal{X}_{f}\right) \exp \left[\sum_{y \in\{\mathrm{ne}(f) \backslash \times\}} \lambda_{y \rightarrow f}(y)\right]\right. \tag{17}
\end{equation*}
$$

[Source: P. Gehler]

Trick

- Log-Factor-to-Variable Message:

$$
\begin{equation*}
\lambda_{f \rightarrow x}(x)=\log \sum_{y \in \mathcal{X}_{f} \backslash x} \Phi_{f}\left(\mathcal{X}_{f}\right) \exp \sum_{y \in\{\operatorname{ne}(f) \backslash x\}} \lambda_{y \rightarrow f}(y) \tag{18}
\end{equation*}
$$

- large numbers lead to numerical instability
- Use the following equality

$$
\begin{equation*}
\log \sum_{i} \exp \left(v_{i}\right)=\alpha+\log \sum_{i} \exp \left(v_{i}-\alpha\right) \tag{19}
\end{equation*}
$$

- With $\alpha=\max \lambda_{y \rightarrow f}(y)$
[Source: P. Gehler]

Finding the maximal state: Max-Product

- For a given distribution $p(x)$ find the most likely state:

$$
x^{*}=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{n}\right)
$$

- Again use factorization structure to distribute the maximisation to local computations
- Example: chain

$$
\begin{aligned}
& \text { (x, } \left.d, x_{2}, x_{3}, x_{4}\right)=\phi\left(x_{1}, x_{2}\right) \phi\left(x_{2}, x_{3}\right) \phi\left(x_{3}, x_{1}\right)
\end{aligned}
$$

[Source: P. Gehler]

Be careful: not maximal marginal states!

- The most likely state

$$
x^{*}=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{n}\right)
$$

does not need to be the one for which the marginals are maximized:

- For all $i=1, \ldots, n$

$$
x_{i}^{*}=\underset{x_{i}}{\operatorname{argmax}} p\left(x_{i}\right)
$$

- Example: | | | $x=0$ | $x=1$ |
| :---: | :---: | :---: | :---: |
| | $y=0$ | 0.3 | 0.4 |
| | $y=1$ | 0.3 | 0.0 |

Example chain

$$
\begin{aligned}
\max _{x} f(x) & =\max _{x_{1}, x_{2}, x_{3}, x_{4}} \phi\left(x_{1}, x_{2}\right) \phi\left(x_{2}, x_{3}\right) \phi\left(x_{3}, x_{4}\right) \\
& =\max _{x_{1}, x_{2}, x_{3}} \phi\left(x_{1}, x_{2}\right) \phi\left(x_{2}, x_{3}\right) \underbrace{\max _{x_{4}} \phi\left(x_{3}, x_{4}\right)}_{\gamma\left(x_{3}\right)} \\
& =\max _{x_{1}, x_{2}} \phi\left(x_{1}, x_{2}\right) \underbrace{\max _{x_{3}} \phi\left(x_{2}, x_{3}\right) \gamma\left(x_{3}\right)}_{\gamma\left(x_{2}\right)} \\
& =\max _{x_{1}} \underbrace{\max _{x_{2}} \phi\left(x_{1}, x_{2}\right) \gamma\left(x_{2}\right)}_{\gamma\left(x_{1}\right)} \\
& =\max _{x_{1}} \gamma\left(x_{1}\right)
\end{aligned}
$$

[Source: P. Gehler]

Example chain

- Once computed the messages $(\gamma(\cdot))$ find the optimal values

$$
\begin{aligned}
x_{1}^{*} & =\underset{x_{1}}{\operatorname{argmax}} \gamma\left(x_{1}\right) \\
x_{2}^{*} & =\underset{x_{2}}{\operatorname{argmax}} \phi\left(x_{1}^{*}, x_{2}\right) \gamma\left(x_{2}\right) \\
x_{3}^{*} & =\underset{x_{3}}{\operatorname{argmax}} \phi\left(x_{2}^{*}, x_{3}\right) \gamma\left(x_{3}\right) \\
x_{4}^{*} & =\underset{x_{4}}{\operatorname{argmax}} \phi\left(x_{3}^{*}, x_{4}\right) \gamma\left(x_{4}\right)
\end{aligned}
$$

- this is called backtracking (an application of dynamic programming)
- can choose arbitrary start point
[Source: P. Gehler]

Trees

- Spot the messages:

Max-Product Algorithm

Pick any variable as root and
1 Initialisation (same as sum-product)
2 Variable to Factor message (same as sum-product)
3 Factor to Variable message
Then compute the maximal state
[Source: P. Gehler]

1. Initialization

- Messages from extremal node factors are initialized to the factor
- Messages from extremal variable nodes are set to unity

- Same as sum product
[Source: P. Gehler]

2. Variable to Factor message

- Same as for sum-product

$$
\mu_{x \rightarrow f}(x)=\prod_{g \in\{\operatorname{ne}(x) \backslash f\}} \mu_{g \rightarrow x}(x)
$$

[Source: P. Gehler]

3. Factor to Variable message

- Different message than in sum-product
- This is now a max-product

$$
\mu_{f \rightarrow x}(x)=\max _{y \in \mathcal{X}_{f} \backslash x} \phi_{f}\left(\mathcal{X}_{f}\right) \prod_{y \in\{\operatorname{ne}(f) \backslash x\}} \mu_{y \rightarrow f}(y)
$$

[Source: P. Gehler]

Maximal state of Variable

$$
x^{*}=\underset{x}{\operatorname{argmax}} \prod_{f \in \operatorname{ne}(x)} \mu_{f \rightarrow x}(x)
$$

- This does not work with loops
- Same problem as the sum product algorithm

```
Algorithm 1: Belief Propagation on Trees
    \((\log Z, \mu)=\) BeliefPropagation \((V, \quad F, E, E)\)
    Input:
        ( \(\mathrm{V}, \mathrm{F}, \mathrm{E}\) ), tree-structured factor graph,
        \(E\), energies \(E_{F}\) for all \(F\) F .
    Output:
        \(\log Z, \log\) partition function of \(p(y)\),
        \(\mu\), marginal distributions \(\mu_{\mathrm{F}}\) for all F F .
    Algorithm:
    Fix an element of V arbitrarily as tree root
    Compute leaf-to-root order R as sequence of directed
        edges of E
    for \(i=1, \ldots,|R|\) do
        if \((\mathrm{v}, \mathrm{F})=\mathrm{R}(\mathrm{i})\) is variable-to-factor edge then
            Compute \(\mathrm{g}_{\mathrm{Y}_{\mathrm{i}} \rightarrow \mathrm{F}}\) using (3.2)
        else
            \((F, v)=R(i)\) is factor-to-variable edge
            Compute \(\mathrm{r}_{\mathrm{F} \rightarrow \mathrm{Y}_{\mathrm{i}}}\) using (3.3)
        end if
    end for
    Compute \(\log Z\) by (3.4)
    Compute root-to-leaf order \(\mathbf{R}^{\prime}=\operatorname{reverse}(\mathbf{R})\)
    for \(i=1, \ldots,\left|\mathbf{R}^{\prime}\right|\) do
        if \((v, F)=R^{\prime}(i)\) is variable-to-factor edge then
            Compute \(\mathrm{qr}_{\mathrm{i} \rightarrow \mathrm{F}}\) using (3.2)
            Compute \(\mu_{\mathrm{F}}\) using (3.5)
        else
            \((F, v)=R^{\prime}(i)\) is factor-to-variable edge
            Compute \(\mathrm{r}_{\mathrm{F} \rightarrow \mathrm{Y}_{\mathrm{l}}}\) using (3.3)
            Compute \(\mathrm{p}\left(\mathrm{y}_{\mathrm{i}}\right)\) using (3.6)
        end if
    end for
```


Dealing with loops

- Keep on doing this iterations, i.e., loopy BP
- The problem with loopy BP is that it is not guaranteed to converge
- Message-passing algorithms based on LP relaxations have been developed
- These methods are guaranteed to converge
- Perform much better in practice

```
Algorithm 2: Loopy Belief Propagation (sum-product)
    \((\log Z, \mu)=\operatorname{SumProductLoopyBP}(V, \mathcal{F}, \mathcal{E}, E, \varepsilon, T)\)
    Input:
        \((V, \mathcal{F}, \mathcal{E})\), factor graph,
        \(E\), energies \(E_{F}\) for all \(F \in \mathcal{F}\),
        \(\varepsilon\), convergence tolerance,
        \(T\), maximum number of iterations.
    Output:
        \(\log Z\), approximate \(\log\) partition function of \(p(y)\),
        \(\mu\), approximate marginal distributions \(\mu_{F}\) for all \(F \in \mathcal{F}\).
    Algorithm:
    \(q_{Y_{i} \rightarrow F}\left(y_{i}\right) \leftarrow 0\), for all \((i, F) \in \mathcal{E}, y_{i} \in \mathcal{Y}_{i}\)
    \(\mu_{F}\left(y_{F}\right) \leftarrow 0\), for all \(F \in \mathcal{F}, y_{F} \in \mathcal{Y}_{F}\)
    for \(t=1, \ldots, T\) do
        for \((v, F) \in \mathcal{F}\) do
            for \(y_{i} \in \mathcal{Y}_{i}\) do
                Compute \(r_{F \rightarrow Y_{i}}\left(y_{i}\right)\) using (3.3)
            end for
        end for
        for \((v, F) \in \mathcal{F}\) do
            for \(y_{i} \in \mathcal{Y}_{i}\) do
                Compute \(q_{Y_{i} \rightarrow F}\left(y_{i}\right)\) using (3.9) to (3.11)
            end for
        end for
        Compute approximate marginals \(\mu^{\prime}\) using (3.12) to (3.17)
        \(\mathrm{u} \leftarrow\left\|\mu^{\prime}-\mu\right\|_{\infty}\) \{Measure change in beliefs\}
        \(\mu \leftarrow \mu^{\prime}\)
        if \(u \leq \varepsilon\) then
            break \(\{\) Converged \(\}\)
        end if
    end for
    Compute \(\log Z\) using (3.18)

\section*{Global Minimization Techniques}

Ways to get an approximate solution typically
- Dynamic programming approximations
- Sampling
- Simulated annealing
- Graph-cuts: imposes restrictions on the type of pairwise cost functions
- Message passing: iterative algorithms that pass messages between nodes in the graph. Which graph?

Inference with graph cuts

\section*{Submodular Functions}
- A Pseudo-boolean function \(f:\{0,1\}^{n} \rightarrow \Re\) is submodular if
\[
f(A)+f(B) \geq \underbrace{f(A \vee B)}_{O R}+\underbrace{f(A \wedge B)}_{A N D} \quad \forall A, B \in\{0,1\}^{n}
\]
- Example: \(n=2, A=[1,0], B=[0,1]\)
\[
f([1,0])+f([0,1]) \geq f([1,1])+f([0,0])
\]
- Sum of submodular functions is submodular \(\rightarrow\) Easy to proof.
- Some energies in computer vision can be submodular

\section*{Minimizing submodular Functions}
- Pairwise submodular functions can be transformed to st-mincut/max-flow [Hammer, 65].
- Very low running time \(\sim \mathcal{O}(n)\)

\section*{The ST-mincut problem}
- Suppose we have a graph \(G=\{V, E, C\}\), with vertices \(V\), Edges \(E\) and costs \(C\).

[Source: P. Kohli]

\section*{The ST-mincut problem}
- An st-cut ( \(\mathrm{S}, \mathrm{T}\) ) divides the nodes between source and sink.
- The cost of a st-cut is the sum of cost of all edges going from \(S\) to \(T\)

[Source: P. Kohli]

\section*{The ST-mincut problem}
- The st-mincut is the st-cut with the minimum cost

[Source: P. Kohli]

\section*{Back to our energy minimization}

Construct a graph such that
1 Any st-cut corresponds to an assignment of \(x\)
2 The cost of the cut is equal to the energy of \(x\) : \(E(x)\)

[Source: P. Kohli]

\section*{St-mincut and Energy Minimization}
\[
\begin{gathered}
\qquad E(x)=\sum_{i} \theta_{i}\left(x_{i}\right)+\sum_{i, j} \theta_{i j}\left(x_{i}, x_{j}\right) \\
\text { For all ij } \theta_{i j}(0,1)+\theta_{i j}(1,0) \geq \theta_{i j}(0,0)+\theta_{i j}(1,1)
\end{gathered}
\]

\section*{Equivalent (transformable)}
\[
E(x)=\sum_{i} c_{i} x_{i}+\sum_{i, j} c_{i j} x_{i}\left(1-x_{j}\right) \quad c_{i j} \geq 0
\]
[Source: P. Kohli]

\section*{How are they equivalent?}
\[
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \quad C=\theta_{i j}(1,0) \quad D=\theta_{i j}(1,1)
\]

\[
\begin{aligned}
\theta_{\mathrm{ij}}\left(x_{\mathrm{i}}, x_{\mathrm{j}}\right) & =\theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) x_{i}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) x_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-x_{\mathrm{i}}\right) x_{\mathrm{j}}
\end{aligned}
\]
\(B+C-A-D \geq 0\) is true from the submodularity of \(\theta_{i j}\)
[Source: P. Kohli]

\section*{Graph Construction}

\section*{\(E\left(a_{1}, a_{2}\right)\)}

Source (0)



Sink (1)

\section*{Graph Construction}
\[
E\left(a_{1}, a_{2}\right)=2 a_{1}
\]


Sink (1)

\section*{Graph Construction}
\[
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}
\]


\section*{Graph Construction}
\[
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}
\]

[Source: P. Kohli]

\section*{Graph Construction}
\[
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}
\]

[Source: P. Kohli]

\section*{Graph Construction}
\[
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
\]

[Source: P. Kohli]

\section*{Graph Construction}
\[
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
\]

[Source: P. Kohli]

\section*{Graph Construction}
\(E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}\)

[Source: P. Kohli]

\section*{Graph Construction}
\[
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
\]

st-mincut cost = 8
\[
a_{1}=1 \quad a_{2}=0
\]
\[
E(1,0)=8
\]
[Source: P. Kohli]

\section*{How to compute the St-mincut?}

\section*{Solve the dual maximum flow problem}


Compute the maximum flow between Source and Sink s.t.

> Edges: Flow < Capacity
> Nodes: Flow in = Flow out

\section*{Min-cut \(\backslash\) Max-flow Theorem}

In every network, the maximum flow equals the cost of the st-mincut

Assuming non-negative capacity
[Source: P. Kohli]

\section*{How does the code look like}

\section*{Graph *g;}

For all pixels \(\mathbf{p}\)
/* Add a node to the graph */ \(\square\)
nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q add_weights(nodelD(p), nodelD(q), cost(p,q));
end
g->compute_maxflow();
label_p = g->is_connected_to_source(nodeID(p)); // is the label of pixel p (0 or 1)

\section*{How does the code look like}

Graph *g;
For all pixels p
/* Add a node to the graph */ nodelD(p) = g->add_node();
/* Set cost of terminal edges */ set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q), cost(p,q));
end
g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p)); // is the label of pixel p ( 0 or 1 )
[Source: P. Kohli]

\section*{How does the code look like}

> Graph *g;

For all pixels \(\mathbf{p}\)
/* Add a node to the graph */ nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q), cost(p,q)); end
g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p ( 0 or 1 )

\section*{How does the code look like}

Graph *g;
For all pixels p
/* Add a node to the graph */ nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels \(p, q\)
add_weights(nodeID(p), nodeID(q), cost(p,q));
end
```

g->compute_maxflow();
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

```

\[
a_{1}=b g \quad a_{2}=f g
\]
[Source: P. Kohli]

\section*{Graph cuts for multi-label problems}
- Exact Transformation to QPBF [Roy and Cox 98] [Ishikawa 03] [Schlesinger et al. 06] [Ramalingam et al. 08]

\section*{So what is the problem?}
 such that:
Let Y and X be the set of feasible solutions, then
1. One-One encoding function \(T: X->Y\)
2. \(\arg \min E_{m}(y)=T\left(\arg \min E_{b}(x)\right)\)
- Very high computational cost
[Source: P. Kohli]

\section*{Computing the Optimal Move}


Bigger move space
- Better solutions
- Finding the optimal move hard

\section*{Move Making Algorithms}

\section*{Minimizing Pairwise Functions}
[Boykov Veksler and Zabih, PAMI 2001]
- Series of locally optimal moves
- Each move reduces energy
- Optimal move by minimizing submodular function

- Current Solution

n Number of Variables
L Number of Labels

\section*{Energy Minimization}
- Consider pairwise MRFs
\[
E(f)=\sum_{\{p, q\} \in \mathcal{N}} V_{p, q}\left(f_{p}, f_{q}\right)+\sum_{p} D_{p}\left(f_{p}\right)
\]
with \(\mathcal{N}\) defining the interactions between nodes, e.g., pixels
- \(D_{p}\) non-negative, but arbitrary.

\section*{Energy Minimization}
- Consider pairwise MRFs
\[
E(f)=\sum_{\{p, q\} \in \mathcal{N}} V_{p, q}\left(f_{p}, f_{q}\right)+\sum_{p} D_{p}\left(f_{p}\right)
\]
with \(\mathcal{N}\) defining the interactions between nodes, e.g., pixels
- \(D_{p}\) non-negative, but arbitrary.
- This is the graph-cuts notation.
- Important to notice it's the same thing.

\section*{Energy Minimization}
- Consider pairwise MRFs
\[
E(f)=\sum_{\{p, q\} \in \mathcal{N}} V_{p, q}\left(f_{p}, f_{q}\right)+\sum_{p} D_{p}\left(f_{p}\right)
\]
with \(\mathcal{N}\) defining the interactions between nodes, e.g., pixels
- \(D_{p}\) non-negative, but arbitrary.
- This is the graph-cuts notation.
- Important to notice it's the same thing.

\section*{Metric vs Semimetric}

Two general classes of pairwise interactions
- Metric if it satisfies for any set of labels \(\alpha, \beta, \gamma\)
\[
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0 \\
V(\alpha, \beta) & \leq V(\alpha, \gamma)+V(\gamma, \beta)
\end{aligned}
\]
- Semi-metric if it satisfies for any set of labels \(\alpha, \beta, \gamma\)
\[
\begin{aligned}
V(\alpha, \beta)=0 & \Leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0
\end{aligned}
\]

\section*{Metric vs Semimetric}

Two general classes of pairwise interactions
- Metric if it satisfies for any set of labels \(\alpha, \beta, \gamma\)
\[
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0 \\
V(\alpha, \beta) & \leq V(\alpha, \gamma)+V(\gamma, \beta)
\end{aligned}
\]
- Semi-metric if it satisfies for any set of labels \(\alpha, \beta, \gamma\)
\[
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0
\end{aligned}
\]

\section*{Examples for 1D label set}
- Truncated quadratic is a semi-metric
\[
V(\alpha, \beta)=\min \left(K,|\alpha-\beta|^{2}\right)
\]
with \(K\) a constant.
- Truncated absolute distance is a metric
\[
V(\alpha, \beta)=\min (K,|\alpha-\beta|)
\]
with \(K\) a constant.

\section*{Examples for 1D label set}
- Truncated quadratic is a semi-metric
\[
V(\alpha, \beta)=\min \left(K,|\alpha-\beta|^{2}\right)
\]
with \(K\) a constant.
- Truncated absolute distance is a metric
\[
V(\alpha, \beta)=\min (K,|\alpha-\beta|)
\]
with \(K\) a constant.
- For multi-dimensional, replace |• | by any norm.

\section*{Examples for 1D label set}
- Truncated quadratic is a semi-metric
\[
V(\alpha, \beta)=\min \left(K,|\alpha-\beta|^{2}\right)
\]
with \(K\) a constant.
- Truncated absolute distance is a metric
\[
V(\alpha, \beta)=\min (K,|\alpha-\beta|)
\]
with \(K\) a constant.
- For multi-dimensional, replace \(|\cdot|\) by any norm.
- Potts model is a metric
\[
V(\alpha, \beta)=K \cdot T(\alpha \neq \beta)
\]
with \(T(\cdot)=1\) if the argument is true and 0 otherwise.

\section*{Examples for 1D label set}
- Truncated quadratic is a semi-metric
\[
V(\alpha, \beta)=\min \left(K,|\alpha-\beta|^{2}\right)
\]
with \(K\) a constant.
- Truncated absolute distance is a metric
\[
V(\alpha, \beta)=\min (K,|\alpha-\beta|)
\]
with \(K\) a constant.
- For multi-dimensional, replace \(|\cdot|\) by any norm.
- Potts model is a metric
\[
V(\alpha, \beta)=K \cdot T(\alpha \neq \beta)
\]
with \(T(\cdot)=1\) if the argument is true and 0 otherwise.

\section*{Binary Moves}
- \(\alpha-\beta\) moves works for semi-metrics
- \(\alpha\) expansion works for \(V\) being a metric


Minimize over move variables t

Figure: Figure from P. Kohli tutorial on graph-cuts
- For certain \(x^{1}\) and \(x^{2}\), the move energy is sub-modular QPBF

\section*{Swap Move}
- Variables labeled \(\alpha, \beta\) can swap their labels

[Source: P. Kohli]

\section*{Swap Move}
- Variables labeled \(\alpha, \beta\) can swap their labels
- Move energy is submodular if:
- Unary Potentials: Arbitrary
- Pairwise potentials: Semi-metric
\[
\begin{gathered}
\theta_{\mathrm{ij}}\left(I_{\mathrm{a}}, I_{\mathrm{b}}\right) \geq 0 \\
\theta_{\mathrm{ij}}\left(I_{\mathrm{a}}, I_{\mathrm{b}}\right)=0 \quad \mathrm{a}=\mathrm{b}
\end{gathered}
\]

Examples: Potts model, Truncated Convex
[Source: P. Kohli]

\section*{Expansion Move}
- Variables take label \(\alpha\) or retain current label

\section*{Status: Exipaliveflyithatee}

[Source: P. Kohli]

\section*{Expansion Move}
- Variables take label \(\alpha\) or retain current label
- Move energy is submodular if:
- Unary Potentials: Arbitrary
- Pairwise potentials: Metric

\section*{Semi metric +}

Triangle Inequality
\[
\theta_{i j}\left(l_{a}, l_{b}\right)+\theta_{i j}\left(l_{b}, l_{c}\right) \geq \theta_{i j}\left(l_{a}, l_{c}\right)
\]

Examples: Potts model, Truncated linear

Cannot solve truncated quadratic

\section*{More formally}
- Any labeling can be uniquely represented by a partition of image pixels \(\mathbf{P}=\left\{\mathcal{P}_{I} \mid I \in \mathcal{L}\right\}\), where \(\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}\) is a subset of pixels assigned label \(I\).
- There is a one to one correspondence between labelings \(f\) and partitions \(\mathcal{P}\).

\section*{More formally}
- Any labeling can be uniquely represented by a partition of image pixels \(\mathbf{P}=\left\{\mathcal{P}_{I} \mid I \in \mathcal{L}\right\}\), where \(\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}\) is a subset of pixels assigned label \(I\).
- There is a one to one correspondence between labelings \(f\) and partitions \(\mathcal{P}\).
- Given a pair of labels \(\alpha, \beta\), a move from a partition \(\mathcal{P}\) (labeling \(f\) ) to a new partition \(\mathcal{P}^{\prime}\) (labeling \(f^{\prime}\) ) is called an \(\alpha-\beta\) swap if \(\mathcal{P}_{l}=\mathcal{P}^{\prime}\) for any label \(I \neq \alpha, \beta\).

\section*{More formally}
- Any labeling can be uniquely represented by a partition of image pixels \(\mathbf{P}=\left\{\mathcal{P}_{I} \mid I \in \mathcal{L}\right\}\), where \(\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}\) is a subset of pixels assigned label \(I\).
- There is a one to one correspondence between labelings \(f\) and partitions \(\mathcal{P}\).
- Given a pair of labels \(\alpha, \beta\), a move from a partition \(\mathcal{P}\) (labeling \(f\) ) to a new partition \(\mathcal{P}^{\prime}\) (labeling \(f^{\prime}\) ) is called an \(\alpha-\beta\) swap if \(\mathcal{P}_{l}=\mathcal{P}^{\prime}\) for any label \(I \neq \alpha, \beta\).
- The only difference between \(\mathcal{P}\) and \(\mathcal{P}^{\prime}\) is that some pixels that were labeled in \(\mathcal{P}\) are now labeled in \(\mathcal{P}^{\prime}\), and vice-versa.

\section*{More formally}
- Any labeling can be uniquely represented by a partition of image pixels \(\mathbf{P}=\left\{\mathcal{P}_{I} \mid I \in \mathcal{L}\right\}\), where \(\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}\) is a subset of pixels assigned label \(I\).
- There is a one to one correspondence between labelings \(f\) and partitions \(\mathcal{P}\).
- Given a pair of labels \(\alpha, \beta\), a move from a partition \(\mathcal{P}\) (labeling \(f\) ) to a new partition \(\mathcal{P}^{\prime}\) (labeling \(f^{\prime}\) ) is called an \(\alpha-\beta\) swap if \(\mathcal{P}_{l}=\mathcal{P}^{\prime}\) for any label \(I \neq \alpha, \beta\).
- The only difference between \(\mathcal{P}\) and \(\mathcal{P}^{\prime}\) is that some pixels that were labeled in \(\mathcal{P}\) are now labeled in \(\mathcal{P}^{\prime}\), and vice-versa.
- Given a label \(I\), a move from a partition \(\mathcal{P}\) (labeling \(f\) ) to a new partition \(\mathcal{P}^{\prime}\) (labeling \(f^{\prime}\) ) is called an \(\alpha\)-expansion if \(\mathcal{P}_{\alpha} \subset \mathcal{P}_{\alpha}^{\prime}\) and \(\mathcal{P}_{l}^{\prime} \subset \mathcal{P}_{I}\).

\section*{More formally}
- Any labeling can be uniquely represented by a partition of image pixels \(\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}\), where \(\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}\) is a subset of pixels assigned label \(I\).
- There is a one to one correspondence between labelings \(f\) and partitions \(\mathcal{P}\).
- Given a pair of labels \(\alpha, \beta\), a move from a partition \(\mathcal{P}\) (labeling \(f\) ) to a new partition \(\mathcal{P}^{\prime}\) (labeling \(f^{\prime}\) ) is called an \(\alpha-\beta\) swap if \(\mathcal{P}_{l}=\mathcal{P}^{\prime}\) for any label \(I \neq \alpha, \beta\).
- The only difference between \(\mathcal{P}\) and \(\mathcal{P}^{\prime}\) is that some pixels that were labeled in \(\mathcal{P}\) are now labeled in \(\mathcal{P}^{\prime}\), and vice-versa.
- Given a label \(I\), a move from a partition \(\mathcal{P}\) (labeling \(f\) ) to a new partition \(\mathcal{P}^{\prime}\) (labeling \(f^{\prime}\) ) is called an \(\alpha\)-expansion if \(\mathcal{P}_{\alpha} \subset \mathcal{P}_{\alpha}^{\prime}\) and \(\mathcal{P}_{I}^{\prime} \subset \mathcal{P}_{I}\).
- An \(\alpha\)-expansion move allows any set of image pixels to change their labels to \(\alpha\).

\section*{More formally}
- Any labeling can be uniquely represented by a partition of image pixels \(\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}\), where \(\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}\) is a subset of pixels assigned label \(I\).
- There is a one to one correspondence between labelings \(f\) and partitions \(\mathcal{P}\).
- Given a pair of labels \(\alpha, \beta\), a move from a partition \(\mathcal{P}\) (labeling \(f\) ) to a new partition \(\mathcal{P}^{\prime}\) (labeling \(f^{\prime}\) ) is called an \(\alpha-\beta\) swap if \(\mathcal{P}_{l}=\mathcal{P}^{\prime}\) for any label \(I \neq \alpha, \beta\).
- The only difference between \(\mathcal{P}\) and \(\mathcal{P}^{\prime}\) is that some pixels that were labeled in \(\mathcal{P}\) are now labeled in \(\mathcal{P}^{\prime}\), and vice-versa.
- Given a label \(I\), a move from a partition \(\mathcal{P}\) (labeling \(f\) ) to a new partition \(\mathcal{P}^{\prime}\) (labeling \(f^{\prime}\) ) is called an \(\alpha\)-expansion if \(\mathcal{P}_{\alpha} \subset \mathcal{P}_{\alpha}^{\prime}\) and \(\mathcal{P}_{I}^{\prime} \subset \mathcal{P}_{I}\).
- An \(\alpha\)-expansion move allows any set of image pixels to change their labels to \(\alpha\).

\section*{Example}


Figure: (a) Current partition (b) local move (c) \(\alpha-\beta\)-swap (d) \(\alpha\)-expansion.

\section*{Algorithms}
1. Start with an arbitrary labeling \(f\)
2. Set success \(:=0\)
3. For each pair of labels \(\{\alpha, \beta\} \subset \mathcal{L}\)
3.1. Find \(\hat{f}=\arg \min E\left(f^{\prime}\right)\) among \(f^{\prime}\) within one \(\alpha-\beta\) swap of \(f\)
3.2. If \(E(\hat{f})<E(f)\), set \(f:=\hat{f}\) and success \(:=1\)
4. If success \(=1\) goto 2
5. Return \(f\)
1. Start with an arbitrary labeling \(f\)
2. Set success := 0
3. For each label \(\alpha \in \mathcal{L}\)
3.1. Find \(\hat{f}=\arg \min E\left(f^{\prime}\right)\) among \(f^{\prime}\) within one \(\alpha\)-expansion of \(f\)
3.2. If \(E(\hat{f})<E(f)\), set \(f:=\hat{f}\) and success \(:=1\)
4. If success \(=1\) goto 2
5. Return \(f\)

\section*{Finding optimal Swap move}
- Given an input labeling \(f\) (partition \(\mathcal{P}\) ) and a pair of labels \(\alpha, \beta\) we want to find a labeling \(\hat{f}\) that minimizes \(E\) over all labelings within one \(\alpha-\beta\)-swap of \(f\).
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph \(\mathcal{G}_{\alpha \beta}=\left(\mathcal{V}_{\alpha \beta}, \mathcal{E}_{\alpha \beta}\right)\).

\section*{Finding optimal Swap move}
- Given an input labeling \(f\) (partition \(\mathcal{P}\) ) and a pair of labels \(\alpha, \beta\) we want to find a labeling \(\hat{f}\) that minimizes \(E\) over all labelings within one \(\alpha-\beta\)-swap of \(f\).
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph \(\mathcal{G}_{\alpha \beta}=\left(\mathcal{V}_{\alpha \beta}, \mathcal{E}_{\alpha \beta}\right)\).
- The structure of this graph is dynamically determined by the current partition \(\mathcal{P}\) and by the labels \(\alpha, \beta\).

\section*{Finding optimal Swap move}
- Given an input labeling \(f\) (partition \(\mathcal{P}\) ) and a pair of labels \(\alpha, \beta\) we want to find a labeling \(\hat{f}\) that minimizes \(E\) over all labelings within one \(\alpha-\beta\)-swap of \(f\).
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph \(\mathcal{G}_{\alpha \beta}=\left(\mathcal{V}_{\alpha \beta}, \mathcal{E}_{\alpha \beta}\right)\).
- The structure of this graph is dynamically determined by the current partition \(\mathcal{P}\) and by the labels \(\alpha, \beta\).

\section*{Graph Construction}
- The set of vertices includes the two terminals \(\alpha\) and \(\beta\), as well as image pixels \(p\) in the sets \(\mathcal{P}_{\alpha}\) and \(\mathcal{P}_{\beta}\) (i.e., \(f_{p} \in\{\alpha, \beta\}\) ).
- Each pixel \(p \in \mathcal{P}_{\alpha \beta}\) is connected to the terminals \(\alpha\) and \(\beta\), called \(t\)-links.
- Each set of pixels \(p, q \in \mathcal{P}_{\alpha \beta}\) which are neighbors is connected by an edge \(e_{p, q}\)

\begin{tabular}{|c|c|c|}
\hline edge & weight & for \\
\hline \hline\(t_{p}^{\alpha}\) & \(D_{p}(\alpha)+\sum_{\substack{q \in \mathcal{N}_{p} \\
q \notin \mathcal{P}_{\alpha \beta}}} V\left(\alpha, f_{q}\right)\) & \(p \in \mathcal{P}_{\alpha \beta}\) \\
\hline\(t_{p}^{\beta}\) & \(D_{p}(\beta)+\sum_{\substack{q \in \mathcal{N}_{p} \\
q \notin \mathcal{P}_{\alpha \beta}}} V\left(\beta, f_{q}\right)\) & \(p \in \mathcal{P}_{\alpha \beta}\) \\
\hline\(e_{\{p, q\}}\) & \(V(\alpha, \beta)\) & \begin{tabular}{c}
\(\{p, q\} \in \mathcal{N}\) \\
\(p, q \in \mathcal{P}_{\alpha \beta}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Computing the Cut}
- Any cut must have a single \(t\)-link not cut.
- This defines a labeling
\[
f_{p}^{\mathcal{C}}= \begin{cases}\alpha & \text { if } t_{p}^{\alpha} \in \mathcal{C} \text { for } p \in \mathcal{P}_{\alpha \beta} \\ \beta & \text { if } t_{p}^{\beta} \in \mathcal{C} \text { for } p \in \mathcal{P}_{\alpha \beta} \\ f_{p} & \text { for } p \in \mathcal{P}, p \notin \mathcal{P}_{\alpha \beta}\end{cases}
\]
- There is a one-to-one correspondences between a cut and a labeling.
- The energy of the cut is the energy of the labeling.
- See Boykov et al, " fast approximate energy minimization via graph cuts" PAMI 2001.

\section*{Properties}
- For any cut, then
(a) If \(t_{p}^{\alpha}, t_{q}^{\alpha} \in \mathcal{C}\) then \(e_{\{p, q\}} \notin \mathcal{C}\).
(b) If \(t_{p}^{\beta}, t_{q}^{\beta} \in \mathcal{C}\) then \(e_{\{p, q\}} \notin \mathcal{C}\).
(c) If \(t_{p}^{\beta}, t_{q}^{\alpha} \in \mathcal{C}\) then \(e_{\{p, q\}} \in \mathcal{C}\).
(d) If \(t_{p}^{\alpha}, t_{q}^{\beta} \in \mathcal{C}\) then \(e_{\{p, q\}} \in \mathcal{C}\).


\section*{Finding the optimal \(\alpha\) expansion}
- Given an input labeling \(f\) (partition \(\mathcal{P}\) ) and a label \(\alpha\) we want to find a labeling \(\hat{f}\) that minimizes \(E\) over all labelings within one \(\alpha\)-expansion of \(f\).
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph \(\mathcal{G}_{\alpha}=\left(\mathcal{V}_{\alpha}, \mathcal{E}_{\alpha}\right)\).

\section*{Finding the optimal \(\alpha\) expansion}
- Given an input labeling \(f\) (partition \(\mathcal{P}\) ) and a label \(\alpha\) we want to find a labeling \(\hat{f}\) that minimizes \(E\) over all labelings within one \(\alpha\)-expansion of \(f\).
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph \(\mathcal{G}_{\alpha}=\left(\mathcal{V}_{\alpha}, \mathcal{E}_{\alpha}\right)\).
- The structure of this graph is dynamically determined by the current partition \(\mathcal{P}\) and by the label \(\alpha\).

\section*{Finding the optimal \(\alpha\) expansion}
- Given an input labeling \(f\) (partition \(\mathcal{P}\) ) and a label \(\alpha\) we want to find a labeling \(\hat{f}\) that minimizes \(E\) over all labelings within one \(\alpha\)-expansion of \(f\).
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph \(\mathcal{G}_{\alpha}=\left(\mathcal{V}_{\alpha}, \mathcal{E}_{\alpha}\right)\).
- The structure of this graph is dynamically determined by the current partition \(\mathcal{P}\) and by the label \(\alpha\).
- Different graph than the \(\alpha-\beta\) swap.

\section*{Finding the optimal \(\alpha\) expansion}
- Given an input labeling \(f\) (partition \(\mathcal{P}\) ) and a label \(\alpha\) we want to find a labeling \(\hat{f}\) that minimizes \(E\) over all labelings within one \(\alpha\)-expansion of \(f\).
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph \(\mathcal{G}_{\alpha}=\left(\mathcal{V}_{\alpha}, \mathcal{E}_{\alpha}\right)\).
- The structure of this graph is dynamically determined by the current partition \(\mathcal{P}\) and by the label \(\alpha\).
- Different graph than the \(\alpha-\beta\) swap.

\section*{Graph Construction}
- The set of vertices includes the two terminals \(\alpha\) and \(\bar{\alpha}\), as well as all image pixels \(p \in \mathcal{P}\).
- Additionally, for each pair of neighboring pixels \(p, q\) such that \(f_{p} \neq f_{q}\) we create an auxiliary node \(a_{p, q}\).

\section*{Graph Construction}
- The set of vertices includes the two terminals \(\alpha\) and \(\bar{\alpha}\), as well as all image pixels \(p \in \mathcal{P}\).
- Additionally, for each pair of neighboring pixels \(p, q\) such that \(f_{p} \neq f_{q}\) we create an auxiliary node \(a_{p, q}\).
- Each pixel \(p\) is connected to the terminals \(\alpha\) and \(\bar{\alpha}\), called \(t\)-links.

\section*{Graph Construction}
- The set of vertices includes the two terminals \(\alpha\) and \(\bar{\alpha}\), as well as all image pixels \(p \in \mathcal{P}\).
- Additionally, for each pair of neighboring pixels \(p, q\) such that \(f_{p} \neq f_{q}\) we create an auxiliary node \(a_{p, q}\).
- Each pixel \(p\) is connected to the terminals \(\alpha\) and \(\bar{\alpha}\), called \(t\)-links.
- Each set of pixels \(p, q\) which are neighbors and \(f_{p}=f_{q}\), we connect with and \(n\)-link.

\section*{Graph Construction}
- The set of vertices includes the two terminals \(\alpha\) and \(\bar{\alpha}\), as well as all image pixels \(p \in \mathcal{P}\).
- Additionally, for each pair of neighboring pixels \(p, q\) such that \(f_{p} \neq f_{q}\) we create an auxiliary node \(a_{p, q}\).
- Each pixel \(p\) is connected to the terminals \(\alpha\) and \(\bar{\alpha}\), called \(t\)-links.
- Each set of pixels \(p, q\) which are neighbors and \(f_{p}=f_{q}\), we connect with and \(n\)-link.
- For each pair of neighboring pixels such that \(f_{p} \neq f_{q}\), we create a triplet \(\left\{e_{p, a}, e_{a, q}, t_{a}^{\bar{\alpha}}\right\}\).

\section*{Graph Construction}
- The set of vertices includes the two terminals \(\alpha\) and \(\bar{\alpha}\), as well as all image pixels \(p \in \mathcal{P}\).
- Additionally, for each pair of neighboring pixels \(p, q\) such that \(f_{p} \neq f_{q}\) we create an auxiliary node \(a_{p, q}\).
- Each pixel \(p\) is connected to the terminals \(\alpha\) and \(\bar{\alpha}\), called \(t\)-links.
- Each set of pixels \(p, q\) which are neighbors and \(f_{p}=f_{q}\), we connect with and \(n\)-link.
- For each pair of neighboring pixels such that \(f_{p} \neq f_{q}\), we create a triplet \(\left\{e_{p, a}, e_{a, q}, t_{a}^{\bar{\alpha}}\right\}\).
- The set of edges is then
\[
\mathcal{E}_{\alpha}=\left\{\bigcup_{p \in \mathcal{P}}\left\{t_{p}^{\alpha}, t_{p}^{\bar{\alpha}}\right\}, \bigcup_{\substack{\left(p, q \in \mathcal{E} \\ p, f_{p}\right.}} \mathcal{E}_{\{p, q\}}, \bigcup_{\substack{(p, q) \in \mathcal{V} \\ p, p, q}} e_{\{p, q\}}\right\}
\]

\section*{Graph Construction}
- The set of vertices includes the two terminals \(\alpha\) and \(\bar{\alpha}\), as well as all image pixels \(p \in \mathcal{P}\).
- Additionally, for each pair of neighboring pixels \(p, q\) such that \(f_{p} \neq f_{q}\) we create an auxiliary node \(a_{p, q}\).
- Each pixel \(p\) is connected to the terminals \(\alpha\) and \(\bar{\alpha}\), called \(t\)-links.
- Each set of pixels \(p, q\) which are neighbors and \(f_{p}=f_{q}\), we connect with and \(n\)-link.
- For each pair of neighboring pixels such that \(f_{p} \neq f_{q}\), we create a triplet \(\left\{e_{p, a}, e_{a, q}, t_{a}^{\bar{\alpha}}\right\}\).
- The set of edges is then
\[
\mathcal{E}_{\alpha}=\left\{\bigcup_{p \in \mathcal{P}}\left\{t_{p}^{\alpha}, t_{p}^{\bar{\alpha}}\right\}, \bigcup_{\substack{\left\{p, p \in \mathbb{N} \\ p, F_{q}\right.}} \mathcal{E}_{\{p, q\}}, \bigcup_{\substack{\left\{p, p \in \in \mathcal{N} \\ p, f_{q}\right.}} e_{\{p, q\}}\right\}
\]

\section*{Graph Construction}


\section*{Properties}
- There is a one-to-one correspondences between a cut and a labeling.
\[
f_{p}^{\mathcal{C}}=\left\{\begin{array}{lll}
\alpha & \text { if } & t_{p}^{\alpha} \in \mathcal{C} \\
f_{p} & \text { if } & t_{p}^{\bar{\alpha}} \in \mathcal{C}
\end{array} \quad \forall p \in \mathcal{P}\right.
\]
- The energy of the cut is the energy of the labeling.
- See Boykov et al, "fast approximate energy minimization via graph cuts" PAMI 2001.

Property 5.2. If \(\{p, q\} \in \mathcal{N}\) and \(f_{p} \neq f_{q}\), then a minimum cut \(\mathcal{C}\) on \(\mathcal{G}_{\alpha}\) satisfies:
(a) If \(t_{p}^{\alpha}, t_{q}^{\alpha} \in \mathcal{C}\) then \(\mathcal{C} \cap \mathcal{E}_{\{p, q\}}=\emptyset\).
(b) If \(t_{p}^{\bar{\alpha}}, t_{q}^{\bar{\alpha}} \in \mathcal{C}\) then \(\mathcal{C} \cap \mathcal{E}_{\{p, q\}}=t_{a}^{\bar{\alpha}}\).
(c) If \(t_{p}^{\bar{\alpha}}, t_{q}^{\alpha} \in \mathcal{C}\) then \(\mathcal{C} \cap \mathcal{E}_{\{p, q\}}=e_{\{p, a\}}\).
(d) If \(t_{p}^{\alpha}, t_{q}^{\bar{\alpha}} \in \mathcal{C} \quad\) then \(\quad \mathcal{C} \cap \mathcal{E}_{\{p, q\}}=e_{\{a, q\}}\).

\section*{Global Minimization Techniques}

Ways to get an approximate solution typically
- Dynamic programming approximations
- Sampling
- Simulated annealing
- Graph-cuts: imposes restrictions on the type of pairwise cost functions
- Message passing: iterative algorithms that pass messages between nodes in the graph. Which graph?

Now we can solve for the MAP (approximately) in general energies. We can solve for other problems than stereo```

