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Stereo Estimation Methods

Local methods

Grow and seed methods: use a few good correspondences and grow the
estimation from them

Adaptive Window methods (AW)

Global methods: define a Markov random field over

Pixel-level
Fronto-parallel planes
Slanted planes
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Which Similarity Measure?

Sum of square intensity differences (SSD), i.e., mean square error

Absolute intensity differences (SAD), i.e., mean absolute difference

Robust measures including truncated quadratic functions: they limit the
influence of mismatches

Normalized cross-correlation: behaves similarly to the SSD

Binary matching costs based on binary features such as edges (e.g., match
or not match)

Invariant to differences in camera gain or bias, e.g., gradient based
measurement, filter responses

All sort of feature descriptors that we saw before in class as well as others
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Disparity Estimation

DSI: Disparity image

Ground truth Scene 
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Sparse Correspondences

Early approaches to stereo were feature-based

Consists on first extract a set of ”matchable” features. How?

This resulted in a sparse disparity computation, and a sparse 3D point cloud
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Denser correspondences

Typical stereo pipeline

1 Matching cost computation

2 Cost aggregation

3 Disparity computation

4 Disparity refinement
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Local methods

1 Matching cost computation: is the square difference in intensity values at
a given disparity

2 Cost aggregation: adds matching cost over square window with constant
disparity

3 Disparity computation: select the minimal aggregated value at each pixel

4 Disparity refinement: consistency check and sub-pixel estimation
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Aggregation in local methods

Aggregate the matching cost summing over a support region

The support region can be 2D (i.e., x,y) or 3D (i.e., x,y,d). The latter
supports slanted surfaces.

Simplest approach: Aggregation with fixed support can be done by
performing 2D or 3D convolution

C (x , y , d) = w(x , y , d) ∗ C0(x , y , d)

Problems

If too small, then ambiguous
If too big, bleeding effects at the edges

W = 3 W = 20 

Figure: from N. Snavely

Raquel Urtasun (TTI-C) Computer Vision Feb 21, 2013 8 / 69



Aggregation in local methods

Aggregate the matching cost summing over a support region

The support region can be 2D (i.e., x,y) or 3D (i.e., x,y,d). The latter
supports slanted surfaces.

Simplest approach: Aggregation with fixed support can be done by
performing 2D or 3D convolution

C (x , y , d) = w(x , y , d) ∗ C0(x , y , d)

Problems

If too small, then ambiguous
If too big, bleeding effects at the edges

W = 3 W = 20 

Figure: from N. Snavely

Raquel Urtasun (TTI-C) Computer Vision Feb 21, 2013 8 / 69



Aggregation in local methods

Aggregate the matching cost summing over a support region

The support region can be 2D (i.e., x,y) or 3D (i.e., x,y,d). The latter
supports slanted surfaces.

Simplest approach: Aggregation with fixed support can be done by
performing 2D or 3D convolution

C (x , y , d) = w(x , y , d) ∗ C0(x , y , d)

Problems

If too small, then ambiguous
If too big, bleeding effects at the edges

W = 3 W = 20 

Figure: from N. Snavely

Raquel Urtasun (TTI-C) Computer Vision Feb 21, 2013 8 / 69



Aggregation in local methods

Aggregate the matching cost summing over a support region

The support region can be 2D (i.e., x,y) or 3D (i.e., x,y,d). The latter
supports slanted surfaces.

Simplest approach: Aggregation with fixed support can be done by
performing 2D or 3D convolution

C (x , y , d) = w(x , y , d) ∗ C0(x , y , d)

Problems

If too small, then ambiguous
If too big, bleeding effects at the edges

W = 3 W = 20 

Figure: from N. Snavely

Raquel Urtasun (TTI-C) Computer Vision Feb 21, 2013 8 / 69



Matching cost computation

I(x, y)  J(x, y)  

C(x, y, d); the disparity space image (DSI) x 

d 

The disparity is then computed by

d(x , y) = arg min
d′

C (x , y , d ′)

[Source: N. Snavely]
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More complex aggregation

Solution: make the window adaptive to the image evidence (e.g.,
aggregate from pixels with similar appearance)

Have we seen something similar in class? When? How would you do this?

An alternative solution is to select between different windows. This can be
computed efficiently using integral images. How?

In iterative diffusion we repeately add to each pixel’s costs the weighted
value of their neighbors

What happens as a function of the number of iterations?
Does a strategy like this seem familiar?

Global methods are a more principle way to do aggregation
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Local methods

1 Matching cost computation: is the square difference in intensity values at a
given disparity

2 Cost aggregation: adds matching cost over square window with constant
disparity

3 Disparity computation: select the minimal aggregated value at each pixel.
Winner takes all strategy!

4 Disparity refinement:

Consistency check: as the previous method check uniqueness of
matches only on one direction
Hole filling
Sub-pixel estimation
Remove of spurious matches
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Subpixel Estimation

Most algorithms retrieve a disparity which is an integer

This is not good enough for some applications, e.g., image-based rendering

To remedy this, most approaches perform sub-pixel refinement after the
disparity is estimated

Gradient descent or fitting a curve is the most common ways to do the
subpixel estimation

What might be the problem?

Disparities should be smooth
The regions where the disparities are estimated should be on the same
(correct) surface, e.g., think of occlusion boundaries
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Other postprocessing

Occluded areas can be detected using cross-checking, i.e., comparing
left-to-right and right-to-left disparity maps

A median filter is typically used to remove spurious mismatches

Holes due to occlusion can be filled by surface fitting, or by distributing
neighboring disparity estimates

It is interesting sometimes to estimate a notion of confidence for each
estimate, e.g.,

Var(d) =
σ2
f

a

with σ2
f the image noise and a the curvature of the disparity image (DSI)
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Global Optimization

There is no more aggregation step

The problem is formulated as an energy minimization, i.e., MAP on a
Markov random field

The MRF is expressed as the level of:

Pixels
Fronto-parallel planes for sets of pixels
Slanted plances for sets of pixels
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MRFs on pixels

Most methods write the energy of the system as

E (d1, · · · , dn) =
∑
i

Ci (di ) +
∑
i

∑
j∈N (j)

Cij(di , dj)

where di ∈ {0, 1, · · · ,D} represents the disparity of the i−th pixel

If the second term does not exist, can we solve this easily? How?

What about if the second term exists? do you know when we can solve this?

What are these costs functions?

Ci is any of the local matching algorithms we have seen

What about Cij?

Encode for example that neighbors should be similar, or that for similar
appearances, the neighbors should be similar. How do we encode this?
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Ci is any of the local matching algorithms we have seen

What about Cij?

Encode for example that neighbors should be similar, or that for similar
appearances, the neighbors should be similar. How do we encode this?
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Unitary cost functions

I(x, y)  J(x, y)  

C(x, y, d); the disparity space image (DSI) x 

d 

[Source: N. Snavely]
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Pairwise cost functions

A function of the disparity of neighboring pixels

C (di , dj) = ρ(di − dj)

with ρ a monotonic increasing function of disparity difference

This can be the L-1 distance

C (di , dj) = |di − dj |

A popular choice is the Potts model

C (di , dj) =

{
γ if di 6= yj

0 if di = yj

Figure: from N. Snavely
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Pairwise cost functions

This can be made dependent on the image evidence

C (di , dj) = ρd(di , dj) · ρl(||I (ui , vi )− I (uj , vj)||)

where ρl is some monotonically decreasing function of intensity differences
that lowers smoothness costs at high-intensity gradients

More sophisticated cost functions can be defined. Any ideas?
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MRFs on pixels

The energy is defined as

E (d1, · · · , dn) =
∑
i

C (di ) +
∑
i

∑
j∈N (j)

C (di , dj)

where xi ∈ {0, 1, · · · ,D} represents a variable for the disparity of the i−th
pixel

This optimization is in general NP-hard.

Global optima can be obtained in a few cases. Do you know any?

Several ways to get an approximate solution typically

Dynamic programming approximations
Sampling
Simulated annealing
Graph-cuts: imposes restrictions on the type of pairwise cost functions
Message passing: iterative algorithms that pass messages between
nodes in the graph. Which graph?
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A simple DP algorithm

Neglect the vertical smoothness constraints Scharstein and Szeliski (2002)

Then simply optimize independent scanlines (one for each direction j) in the
global energy function by recursive computation

Dj(p; d) = C (p; d) + mind′{D(p− j, d ′) + ρd(d − d ′)}

What are the problems?

What do we do with each direction?
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A simple DP algorithm

Finds smooth path through DPI from left to right

y = 141 

x 

d 

[Source: N. Snavely]
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Semiglobal block matching [Hirschmueller08]

The energy is defined as

E (d1, · · · , dn) =
∑
i

C (di ) +
∑
i

∑
j∈N (j)

C (di , dj)

with the following pairwise term

C (di , dj) =


0 if di = dj

λ1 if |di − dj | = 1

λ2 otherwise

It computes the costs in each direction

Dj(p; d) = C (p; d) + mind′{D(p− j, d ′) + ρd(d − d ′)}

And aggregate the costs

D(p; d) =
∑
j

Lj(p, d)

Then do winner take all
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Global Minimization Techniques

Multiple ways to get an approximate solution typically

Dynamic programming approximations

Sampling

Simulated annealing

Graph-cuts: imposes restrictions on the type of pairwise cost functions

Message passing: iterative algorithms that pass messages between nodes in
the graph. Which graph?
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Let’s look more generaly into MRFs
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Structure Prediction

Input: x ∈ X , typically an image.

Output: label y ∈ Y.

Consider a score function θ(x , y) called potential or feature such that

θ(x , y) =

{
high if y is a good label for x

low if y is a bad label for x

We want to predict a label as

y∗ = arg max
y
θ(x , y)
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Score Decomposition

We assume that the score decomposes

θ(y |x) =
∑
i

θi (yi ) +
∑
α

θα(yα)

This represents a (conditional) Markov Random Field (CRF)

p(y |x) =
1

Z

∏
i

ψi (x , yi )
∏
α

ψα(x , yα)

with logψi (x , yi ) = θi (x , yi ), and logψα(x , yα) = θα(x , yα).

Z =
∑

y

∏
i ψi (x , yi )

∏
α ψα(x , yα) is the partition function.

Prediction also decomposes

y∗ = arg max
y

∑
i

θi (yi ) +
∑
α

θα(yα)

This in general is NP hard.
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Markov Networks

A clique in an undirected graph is a subset of its vertices such that every
two vertices in the subset are connected by an edge.

A maximal clique is a clique that cannot be extended by including one
more adjacent vertex.

For a set of variables y = {y1, · · · , yN} a Markov network is defined as a
product of potentials over the maximal cliques yα of the graph G

p(y1, · · · , yN) =
1

Z

∏
α

ψα(yα)

Special case: cliques of size 2 – pairwise Markov network

In case all potentials are strictly positive this is called a Gibbs distribution

Example: p(a, b, c) = 1
Z ψa,c(a, c)ψbc(b, c)
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Properties of Markov Network

Marginalizing over c makes a and b dependent

Conditioning on c makes a and b independent

[Source: P. Gehler]
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Local and Global Markov properties

Local Markov property: condition on neighbours makes indep. of the rest

p(yi |y \ {yi}) = p(y |ne(yi ))

Example: y4⊥{y1, y7}|{y2, y3, y5, y6}
Global Markov Property: For disjoint sets of variables (A,B,S), where S
separates A from B then A⊥B|S

S is called a separator.
Example: y1⊥y7|{y4}

[Source: P. Gehler]
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Relationship Potentials to Graphs

Consider

p(a, b, c) =
1

Z
ψ(a, b)ψ(b, c)ψ(c , a)

What is the corresponding Markov network (graphical representation)?

Which other factorization is represented by this network?

The factorization is not specified by the graph

Let’s look at Factor Graphs
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Factor Graphs

Now consider we introduce an extra node (a square) for each factor

The factor graph (FG) has a node (represented by a square) for each factor
ψ(yα) and a variable node (represented by a circle) for each variable xi .

Left: Markov Network

Middle: Factor graph representation of ψ(a, b, c)

Right: Factor graph representation of ψ(a, b)ψ(b, c)ψ(c , a)

Different factor graphs can have the same Markov network

[Source: P. Gehler]
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Examples

Which distribution?

What factor graph?

p(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2)

[Source: P. Gehler]
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Inference in trees

Given distribution p(y1, · · · , yn)

Inference: computing functions of the distribution

mean
marginal
conditionals

Marginal inference in singly-connected graph (trees)

Later: extensions to loopy graphs

[Source: P. Gehler]
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Variable Elimination

[Source: P. Gehler]
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Variable Elimination
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Finding Conditional Marginals

[Source: P. Gehler]
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Finding Conditional Marginals

[Source: P. Gehler]
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Now with factor graphs

[Source: P. Gehler]
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Inference in Chain Structured Factor Graphs

Simply recurse further

γm→n(n) carries the information beyond m

We did not need the factors in general (next) we will see that making a
distinction is helpful

[Source: P. Gehler]
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General singly-connected factor graphs I

[Source: P. Gehler]
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General singly-connected factor graphs II

[Source: P. Gehler]
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General singly-connected factor graphs III

[Source: P. Gehler]
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General singly-connected factor graphs IV

[Source: P. Gehler]
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Summary

Once computed, messages can be re-used

All marginals p(c), p(d), p(c , d), · · · can be written as a function of
messages

We need an algorithm to compute all messages: Sum-Product algorithm

[Source: P. Gehler]
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Sum-product algorithm overview

Algorithm to compute all messages efficiently, assuming the graph is
singly-connected

It can be used to compute any desired marginals

Also known as belief propagation (BP)

The algorithm is composed of

1 Initialization

2 Variable to Factor message

3 Factor to Variable message

[Source: P. Gehler]
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1. Initialization

Messages from extremal (simplical) node factors are initialized to the factor
(left)

Messages from extremal (simplical) variable nodes are set to unity (right)

[Source: P. Gehler]
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2. Variable to Factor message

[Source: P. Gehler]
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3. Factor to Variable message

We sum over all states in the set of variables

This explains the name for the algorithm (sum-product)

[Source: P. Gehler]
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Marginal computation

[Source: P. Gehler]
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Message Ordering

[Source: P. Gehler]
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Problems with loops

[Source: P. Gehler]
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What to infer?

[Source: P. Gehler]
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Computing the Partition Function

[Source: P. Gehler]
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Log Messages

[Source: P. Gehler]
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Log Messages

[Source: P. Gehler]

Raquel Urtasun (TTI-C) Computer Vision Feb 21, 2013 57 / 69



Trick

[Source: P. Gehler]
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Finding the maximal state: Max-Product

[Source: P. Gehler]
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Be careful: not maximal marginal states!

[Source: P. Gehler]
Raquel Urtasun (TTI-C) Computer Vision Feb 21, 2013 60 / 69



Example chain

[Source: P. Gehler]
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Example chain

[Source: P. Gehler]
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Trees

[Source: P. Gehler]
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Max-Product Algorithm

Pick any variable as root and

1 Initialisation (same as sum-product)

2 Variable to Factor message (same as sum-product)

3 Factor to Variable message

Then compute the maximal state

[Source: P. Gehler]
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1. Initialization

Messages from extremal node factors are initialized to the factor

Messages from extremal variable nodes are set to unity

Same as sum product

[Source: P. Gehler]
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2. Variable to Factor message

Same as for sum-product

[Source: P. Gehler]
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3. Factor to Variable message

Different message than in sum-product

This is now a max-product

[Source: P. Gehler]
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Maximal state of Variable

This does not work with loops

Same problem as the sum product algorithm

[Source: P. Gehler]
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Dealing with loops

Keep on doing this iterations, i.e., loopy BP

The problem with loopy BP is that it is not guaranteed to converge

Message-passing algorithms based on LP relaxations have been developed

These methods are guaranteed to converge

Perform much better in practice
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