Stereo and Energy Minimization

Raquel Urtasun

TTI Chicago
Feb 21, 2013

Stereo Estimation Methods

- Local methods
- Grow and seed methods: use a few good correspondences and grow the estimation from them
- Adaptive Window methods (AW)
- Global methods: define a Markov random field over
- Pixel-level
- Fronto-parallel planes
- Slanted planes

Which Similarity Measure?

- Sum of square intensity differences (SSD), i.e., mean square error - Absolute intensity differences (SAD), i.e., mean absolute difference

Which Similarity Measure?

- Sum of square intensity differences (SSD), i.e., mean square error
- Absolute intensity differences (SAD), i.e., mean absolute difference
- Robust measures including truncated quadratic functions: they limit the influence of mismatches

Which Similarity Measure?

- Sum of square intensity differences (SSD), i.e., mean square error
- Absolute intensity differences (SAD), i.e., mean absolute difference
- Robust measures including truncated quadratic functions: they limit the influence of mismatches
- Normalized cross-correlation: behaves similarly to the SSD

Which Similarity Measure?

- Sum of square intensity differences (SSD), i.e., mean square error
- Absolute intensity differences (SAD), i.e., mean absolute difference
- Robust measures including truncated quadratic functions: they limit the influence of mismatches
- Normalized cross-correlation: behaves similarly to the SSD
- Binary matching costs based on binary features such as edges (e.g., match or not match)

Which Similarity Measure?

- Sum of square intensity differences (SSD), i.e., mean square error
- Absolute intensity differences (SAD), i.e., mean absolute difference
- Robust measures including truncated quadratic functions: they limit the influence of mismatches
- Normalized cross-correlation: behaves similarly to the SSD
- Binary matching costs based on binary features such as edges (e.g., match or not match)
- Invariant to differences in camera gain or bias, e.g., gradient based measurement, filter responses

Which Similarity Measure?

- Sum of square intensity differences (SSD), i.e., mean square error
- Absolute intensity differences (SAD), i.e., mean absolute difference
- Robust measures including truncated quadratic functions: they limit the influence of mismatches
- Normalized cross-correlation: behaves similarly to the SSD
- Binary matching costs based on binary features such as edges (e.g., match or not match)
- Invariant to differences in camera gain or bias, e.g., gradient based measurement, filter responses
- All sort of feature descriptors that we saw before in class as well as others

Which Similarity Measure?

- Sum of square intensity differences (SSD), i.e., mean square error
- Absolute intensity differences (SAD), i.e., mean absolute difference
- Robust measures including truncated quadratic functions: they limit the influence of mismatches
- Normalized cross-correlation: behaves similarly to the SSD
- Binary matching costs based on binary features such as edges (e.g., match or not match)
- Invariant to differences in camera gain or bias, e.g., gradient based measurement, filter responses
- All sort of feature descriptors that we saw before in class as well as others

Disparity Estimation

- DSI: Disparity image

Scene

Ground truth

Sparse Correspondences

- Early approaches to stereo were feature-based
- Consists on first extract a set of "matchable" features. How?

Sparse Correspondences

- Early approaches to stereo were feature-based
- Consists on first extract a set of "matchable" features. How?
- This resulted in a sparse disparity computation, and a sparse 3D point cloud

Sparse Correspondences

- Early approaches to stereo were feature-based
- Consists on first extract a set of "matchable" features. How?
- This resulted in a sparse disparity computation, and a sparse 3D point cloud

Denser correspondences

Typical stereo pipeline
(1) Matching cost computation
(2) Cost aggregation
(3) Disparity computation
(1) Disparity refinement

Local methods

(1) Matching cost computation: is the square difference in intensity values at a given disparity
(2) Cost aggregation: adds matching cost over square window with constant disparity

Local methods

(1) Matching cost computation: is the square difference in intensity values at a given disparity
(2) Cost aggregation: adds matching cost over square window with constant disparity
(3) Disparity computation: select the minimal aggregated value at each pixel

Local methods

(1) Matching cost computation: is the square difference in intensity values at a given disparity
(2) Cost aggregation: adds matching cost over square window with constant disparity
(3) Disparity computation: select the minimal aggregated value at each pixel
(9) Disparity refinement: consistency check and sub-pixel estimation

Local methods

(1) Matching cost computation: is the square difference in intensity values at a given disparity
(2) Cost aggregation: adds matching cost over square window with constant disparity
(3) Disparity computation: select the minimal aggregated value at each pixel
(9) Disparity refinement: consistency check and sub-pixel estimation

Aggregation in local methods

- Aggregate the matching cost summing over a support region
- The support region can be 2D (i.e., x, y) or 3D (i.e., x, y, d). The latter supports slanted surfaces.

Aggregation in local methods

- Aggregate the matching cost summing over a support region
- The support region can be 2D (i.e., x, y) or 3D (i.e., x, y, d). The latter supports slanted surfaces.
- Simplest approach: Aggregation with fixed support can be done by performing 2D or 3D convolution

$$
C(x, y, d)=w(x, y, d) * C_{0}(x, y, d)
$$

Aggregation in local methods

- Aggregate the matching cost summing over a support region
- The support region can be 2D (i.e., x, y) or 3D (i.e., x, y, d). The latter supports slanted surfaces.
- Simplest approach: Aggregation with fixed support can be done by performing 2D or 3D convolution

$$
C(x, y, d)=w(x, y, d) * C_{0}(x, y, d)
$$

- Problems
- If too small, then ambiguous
- If too big, bleeding effects at the edges

$\mathrm{W}=3$

$\mathrm{W}=20$

Figure: from N. Snavely

Aggregation in local methods

- Aggregate the matching cost summing over a support region
- The support region can be 2D (i.e., x, y) or 3D (i.e., x, y, d). The latter supports slanted surfaces.
- Simplest approach: Aggregation with fixed support can be done by performing 2D or 3D convolution

$$
C(x, y, d)=w(x, y, d) * C_{0}(x, y, d)
$$

- Problems
- If too small, then ambiguous
- If too big, bleeding effects at the edges

Figure: from N. Snavely

Matching cost computation

- The disparity is then computed by

$$
d(x, y)=\arg \min _{d^{\prime}} C\left(x, y, d^{\prime}\right)
$$

[Source: N. Snavely]

More complex aggregation

- Solution: make the window adaptive to the image evidence (e.g., aggregate from pixels with similar appearance)
- Have we seen something similar in class? When? How would you do this?

More complex aggregation

- Solution: make the window adaptive to the image evidence (e.g., aggregate from pixels with similar appearance)
- Have we seen something similar in class? When? How would you do this?
- An alternative solution is to select between different windows. This can be computed efficiently using integral images. How?

More complex aggregation

- Solution: make the window adaptive to the image evidence (e.g., aggregate from pixels with similar appearance)
- Have we seen something similar in class? When? How would you do this?
- An alternative solution is to select between different windows. This can be computed efficiently using integral images. How?
- In iterative diffusion we repeately add to each pixel's costs the weighted value of their neighbors

More complex aggregation

- Solution: make the window adaptive to the image evidence (e.g., aggregate from pixels with similar appearance)
- Have we seen something similar in class? When? How would you do this?
- An alternative solution is to select between different windows. This can be computed efficiently using integral images. How?
- In iterative diffusion we repeately add to each pixel's costs the weighted value of their neighbors
- What happens as a function of the number of iterations?

More complex aggregation

- Solution: make the window adaptive to the image evidence (e.g., aggregate from pixels with similar appearance)
- Have we seen something similar in class? When? How would you do this?
- An alternative solution is to select between different windows. This can be computed efficiently using integral images. How?
- In iterative diffusion we repeately add to each pixel's costs the weighted value of their neighbors
- What happens as a function of the number of iterations?
- Does a strategy like this seem familiar?

More complex aggregation

- Solution: make the window adaptive to the image evidence (e.g., aggregate from pixels with similar appearance)
- Have we seen something similar in class? When? How would you do this?
- An alternative solution is to select between different windows. This can be computed efficiently using integral images. How?
- In iterative diffusion we repeately add to each pixel's costs the weighted value of their neighbors
- What happens as a function of the number of iterations?
- Does a strategy like this seem familiar?
- Global methods are a more principle way to do aggregation

More complex aggregation

- Solution: make the window adaptive to the image evidence (e.g., aggregate from pixels with similar appearance)
- Have we seen something similar in class? When? How would you do this?
- An alternative solution is to select between different windows. This can be computed efficiently using integral images. How?
- In iterative diffusion we repeately add to each pixel's costs the weighted value of their neighbors
- What happens as a function of the number of iterations?
- Does a strategy like this seem familiar?
- Global methods are a more principle way to do aggregation

Local methods

(1) Matching cost computation: is the square difference in intensity values at a given disparity
(2) Cost aggregation: adds matching cost over square window with constant disparity
(3) Disparity computation: select the minimal aggregated value at each pixel. Winner takes all strategy!
(Disparity refinement:

Local methods

(1) Matching cost computation: is the square difference in intensity values at a given disparity
(2) Cost aggregation: adds matching cost over square window with constant disparity
(3) Disparity computation: select the minimal aggregated value at each pixel. Winner takes all strategy!
(1) Disparity refinement:
> - Consistency check: as the previous method check uniqueness of matches only on one direction

Local methods

(1) Matching cost computation: is the square difference in intensity values at a given disparity
(2) Cost aggregation: adds matching cost over square window with constant disparity
(3) Disparity computation: select the minimal aggregated value at each pixel. Winner takes all strategy!
(1) Disparity refinement:

- Consistency check: as the previous method check uniqueness of matches only on one direction
- Hole filling

Local methods

(1) Matching cost computation: is the square difference in intensity values at a given disparity
(2) Cost aggregation: adds matching cost over square window with constant disparity
(3) Disparity computation: select the minimal aggregated value at each pixel. Winner takes all strategy!
(1) Disparity refinement:

- Consistency check: as the previous method check uniqueness of matches only on one direction
- Hole filling
- Sub-pixel estimation

Local methods

(1) Matching cost computation: is the square difference in intensity values at a given disparity
(2) Cost aggregation: adds matching cost over square window with constant disparity
(3) Disparity computation: select the minimal aggregated value at each pixel. Winner takes all strategy!
(1) Disparity refinement:

- Consistency check: as the previous method check uniqueness of matches only on one direction
- Hole filling
- Sub-pixel estimation
- Remove of spurious matches

Local methods

(1) Matching cost computation: is the square difference in intensity values at a given disparity
(2) Cost aggregation: adds matching cost over square window with constant disparity
(3) Disparity computation: select the minimal aggregated value at each pixel. Winner takes all strategy!
(1) Disparity refinement:

- Consistency check: as the previous method check uniqueness of matches only on one direction
- Hole filling
- Sub-pixel estimation
- Remove of spurious matches

Subpixel Estimation

- Most algorithms retrieve a disparity which is an integer
- This is not good enough for some applications, e.g., image-based rendering

Subpixel Estimation

- Most algorithms retrieve a disparity which is an integer
- This is not good enough for some applications, e.g., image-based rendering
- To remedy this, most approaches perform sub-pixel refinement after the disparity is estimated

Subpixel Estimation

- Most algorithms retrieve a disparity which is an integer
- This is not good enough for some applications, e.g., image-based rendering
- To remedy this, most approaches perform sub-pixel refinement after the disparity is estimated
- Gradient descent or fitting a curve is the most common ways to do the subpixel estimation

Subpixel Estimation

- Most algorithms retrieve a disparity which is an integer
- This is not good enough for some applications, e.g., image-based rendering
- To remedy this, most approaches perform sub-pixel refinement after the disparity is estimated
- Gradient descent or fitting a curve is the most common ways to do the subpixel estimation
- What might be the problem?

Subpixel Estimation

- Most algorithms retrieve a disparity which is an integer
- This is not good enough for some applications, e.g., image-based rendering
- To remedy this, most approaches perform sub-pixel refinement after the disparity is estimated
- Gradient descent or fitting a curve is the most common ways to do the subpixel estimation
- What might be the problem?
- Disparities should be smooth

Subpixel Estimation

- Most algorithms retrieve a disparity which is an integer
- This is not good enough for some applications, e.g., image-based rendering
- To remedy this, most approaches perform sub-pixel refinement after the disparity is estimated
- Gradient descent or fitting a curve is the most common ways to do the subpixel estimation
- What might be the problem?
- Disparities should be smooth
- The regions where the disparities are estimated should be on the same (correct) surface, e.g., think of occlusion boundaries

Subpixel Estimation

- Most algorithms retrieve a disparity which is an integer
- This is not good enough for some applications, e.g., image-based rendering
- To remedy this, most approaches perform sub-pixel refinement after the disparity is estimated
- Gradient descent or fitting a curve is the most common ways to do the subpixel estimation
- What might be the problem?
- Disparities should be smooth
- The regions where the disparities are estimated should be on the same (correct) surface, e.g., think of occlusion boundaries

Other postprocessing

- Occluded areas can be detected using cross-checking, i.e., comparing left-to-right and right-to-left disparity maps
- A median filter is typically used to remove spurious mismatches

Other postprocessing

- Occluded areas can be detected using cross-checking, i.e., comparing left-to-right and right-to-left disparity maps
- A median filter is typically used to remove spurious mismatches
- Holes due to occlusion can be filled by surface fitting, or by distributing neighboring disparity estimates

Other postprocessing

- Occluded areas can be detected using cross-checking, i.e., comparing left-to-right and right-to-left disparity maps
- A median filter is typically used to remove spurious mismatches
- Holes due to occlusion can be filled by surface fitting, or by distributing neighboring disparity estimates
- It is interesting sometimes to estimate a notion of confidence for each estimate, e.g.,

$$
\operatorname{Var}(d)=\frac{\sigma_{f}^{2}}{a}
$$

with σ_{f}^{2} the image noise and a the curvature of the disparity image (DSI)

Other postprocessing

- Occluded areas can be detected using cross-checking, i.e., comparing left-to-right and right-to-left disparity maps
- A median filter is typically used to remove spurious mismatches
- Holes due to occlusion can be filled by surface fitting, or by distributing neighboring disparity estimates
- It is interesting sometimes to estimate a notion of confidence for each estimate, e.g.,

$$
\operatorname{Var}(d)=\frac{\sigma_{f}^{2}}{a}
$$

with σ_{f}^{2} the image noise and a the curvature of the disparity image (DSI)

Global Optimization

- There is no more aggregation step
- The problem is formulated as an energy minimization, i.e., MAP on a Markov random field

Global Optimization

- There is no more aggregation step
- The problem is formulated as an energy minimization, i.e., MAP on a Markov random field
- The MRF is expressed as the level of:

Global Optimization

- There is no more aggregation step
- The problem is formulated as an energy minimization, i.e., MAP on a Markov random field
- The MRF is expressed as the level of:
- Pixels

Global Optimization

- There is no more aggregation step
- The problem is formulated as an energy minimization, i.e., MAP on a Markov random field
- The MRF is expressed as the level of:
- Pixels
- Fronto-parallel planes for sets of pixels

Global Optimization

- There is no more aggregation step
- The problem is formulated as an energy minimization, i.e., MAP on a Markov random field
- The MRF is expressed as the level of:
- Pixels
- Fronto-parallel planes for sets of pixels
- Slanted plances for sets of pixels

Global Optimization

- There is no more aggregation step
- The problem is formulated as an energy minimization, i.e., MAP on a Markov random field
- The MRF is expressed as the level of:
- Pixels
- Fronto-parallel planes for sets of pixels
- Slanted plances for sets of pixels

MRFs on pixels

- Most methods write the energy of the system as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C_{i}\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C_{i j}\left(d_{i}, d_{j}\right)
$$

where $d_{i} \in\{0,1, \cdots, D\}$ represents the disparity of the i-th pixel

- If the second term does not exist, can we solve this easily? How?

MRFs on pixels

- Most methods write the energy of the system as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C_{i}\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C_{i j}\left(d_{i}, d_{j}\right)
$$

where $d_{i} \in\{0,1, \cdots, D\}$ represents the disparity of the i-th pixel

- If the second term does not exist, can we solve this easily? How?
- What about if the second term exists? do you know when we can solve this?

MRFs on pixels

- Most methods write the energy of the system as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C_{i}\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C_{i j}\left(d_{i}, d_{j}\right)
$$

where $d_{i} \in\{0,1, \cdots, D\}$ represents the disparity of the i-th pixel

- If the second term does not exist, can we solve this easily? How?
- What about if the second term exists? do you know when we can solve this?
- What are these costs functions?

MRFs on pixels

- Most methods write the energy of the system as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C_{i}\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C_{i j}\left(d_{i}, d_{j}\right)
$$

where $d_{i} \in\{0,1, \cdots, D\}$ represents the disparity of the i-th pixel

- If the second term does not exist, can we solve this easily? How?
- What about if the second term exists? do you know when we can solve this?
- What are these costs functions?
- C_{i} is any of the local matching algorithms we have seen

MRFs on pixels

- Most methods write the energy of the system as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C_{i}\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C_{i j}\left(d_{i}, d_{j}\right)
$$

where $d_{i} \in\{0,1, \cdots, D\}$ represents the disparity of the $i-$ th pixel

- If the second term does not exist, can we solve this easily? How?
- What about if the second term exists? do you know when we can solve this?
- What are these costs functions?
- C_{i} is any of the local matching algorithms we have seen
- What about $C_{i j}$?

MRFs on pixels

- Most methods write the energy of the system as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C_{i}\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C_{i j}\left(d_{i}, d_{j}\right)
$$

where $d_{i} \in\{0,1, \cdots, D\}$ represents the disparity of the i-th pixel

- If the second term does not exist, can we solve this easily? How?
- What about if the second term exists? do you know when we can solve this?
- What are these costs functions?
- C_{i} is any of the local matching algorithms we have seen
- What about $C_{i j}$?
- Encode for example that neighbors should be similar, or that for similar appearances, the neighbors should be similar. How do we encode this?

MRFs on pixels

- Most methods write the energy of the system as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C_{i}\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C_{i j}\left(d_{i}, d_{j}\right)
$$

where $d_{i} \in\{0,1, \cdots, D\}$ represents the disparity of the i-th pixel

- If the second term does not exist, can we solve this easily? How?
- What about if the second term exists? do you know when we can solve this?
- What are these costs functions?
- C_{i} is any of the local matching algorithms we have seen
- What about $C_{i j}$?
- Encode for example that neighbors should be similar, or that for similar appearances, the neighbors should be similar. How do we encode this?

Unitary cost functions

[Source: N. Snavely]

Pairwise cost functions

- A function of the disparity of neighboring pixels

$$
C\left(d_{i}, d_{j}\right)=\rho\left(d_{i}-d_{j}\right)
$$

with ρ a monotonic increasing function of disparity difference

- This can be the L-1 distance

$$
C\left(d_{i}, d_{j}\right)=\left|d_{i}-d_{j}\right|
$$

Pairwise cost functions

- A function of the disparity of neighboring pixels

$$
C\left(d_{i}, d_{j}\right)=\rho\left(d_{i}-d_{j}\right)
$$

with ρ a monotonic increasing function of disparity difference

- This can be the L-1 distance

$$
C\left(d_{i}, d_{j}\right)=\left|d_{i}-d_{j}\right|
$$

- A popular choice is the Potts model

$$
C\left(d_{i}, d_{j}\right)= \begin{cases}\gamma & \text { if } d_{i} \neq y_{j} \\ 0 & \text { if } d_{i}=y_{j}\end{cases}
$$

Figure: from N. Snavely

Pairwise cost functions

- A function of the disparity of neighboring pixels

$$
C\left(d_{i}, d_{j}\right)=\rho\left(d_{i}-d_{j}\right)
$$

with ρ a monotonic increasing function of disparity difference

- This can be the L-1 distance

$$
C\left(d_{i}, d_{j}\right)=\left|d_{i}-d_{j}\right|
$$

- A popular choice is the Potts model

$$
C\left(d_{i}, d_{j}\right)= \begin{cases}\gamma & \text { if } d_{i} \neq y_{j} \\ 0 & \text { if } d_{i}=y_{j}\end{cases}
$$

Figure: from N. Snavely

Pairwise cost functions

- This can be made dependent on the image evidence

$$
C\left(d_{i}, d_{j}\right)=\rho_{d}\left(d_{i}, d_{j}\right) \cdot \rho_{l}\left(\left\|I\left(u_{i}, v_{i}\right)-I\left(u_{j}, v_{j}\right)\right\|\right)
$$

where ρ_{l} is some monotonically decreasing function of intensity differences that lowers smoothness costs at high-intensity gradients

- More sophisticated cost functions can be defined. Any ideas?

Pairwise cost functions

- This can be made dependent on the image evidence

$$
C\left(d_{i}, d_{j}\right)=\rho_{d}\left(d_{i}, d_{j}\right) \cdot \rho_{l}\left(\left\|I\left(u_{i}, v_{i}\right)-I\left(u_{j}, v_{j}\right)\right\|\right)
$$

where ρ_{l} is some monotonically decreasing function of intensity differences that lowers smoothness costs at high-intensity gradients

- More sophisticated cost functions can be defined. Any ideas?

MRFs on pixels

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

where $x_{i} \in\{0,1, \cdots, D\}$ represents a variable for the disparity of the i-th pixel

- This optimization is in general NP-hard.

MRFs on pixels

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

where $x_{i} \in\{0,1, \cdots, D\}$ represents a variable for the disparity of the i-th pixel

- This optimization is in general NP-hard.
- Global optima can be obtained in a few cases. Do you know any?

MRFs on pixels

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

where $x_{i} \in\{0,1, \cdots, D\}$ represents a variable for the disparity of the $i-$ th pixel

- This optimization is in general NP-hard.
- Global optima can be obtained in a few cases. Do you know any?
- Several ways to get an approximate solution typically
- Dynamic programming approximations

MRFs on pixels

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

where $x_{i} \in\{0,1, \cdots, D\}$ represents a variable for the disparity of the i-th pixel

- This optimization is in general NP-hard.
- Global optima can be obtained in a few cases. Do you know any?
- Several ways to get an approximate solution typically
- Dynamic programming approximations
- Sampling

MRFs on pixels

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

where $x_{i} \in\{0,1, \cdots, D\}$ represents a variable for the disparity of the i-th pixel

- This optimization is in general NP-hard.
- Global optima can be obtained in a few cases. Do you know any?
- Several ways to get an approximate solution typically
- Dynamic programming approximations
- Sampling
- Simulated annealing

MRFs on pixels

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

where $x_{i} \in\{0,1, \cdots, D\}$ represents a variable for the disparity of the i-th pixel

- This optimization is in general NP-hard.
- Global optima can be obtained in a few cases. Do you know any?
- Several ways to get an approximate solution typically
- Dynamic programming approximations
- Sampling
- Simulated annealing
- Graph-cuts: imposes restrictions on the type of pairwise cost functions

MRFs on pixels

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

where $x_{i} \in\{0,1, \cdots, D\}$ represents a variable for the disparity of the i-th pixel

- This optimization is in general NP-hard.
- Global optima can be obtained in a few cases. Do you know any?
- Several ways to get an approximate solution typically
- Dynamic programming approximations
- Sampling
- Simulated annealing
- Graph-cuts: imposes restrictions on the type of pairwise cost functions
- Message passing: iterative algorithms that pass messages between nodes in the graph. Which graph?

MRFs on pixels

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

where $x_{i} \in\{0,1, \cdots, D\}$ represents a variable for the disparity of the $i-$ th pixel

- This optimization is in general NP-hard.
- Global optima can be obtained in a few cases. Do you know any?
- Several ways to get an approximate solution typically
- Dynamic programming approximations
- Sampling
- Simulated annealing
- Graph-cuts: imposes restrictions on the type of pairwise cost functions
- Message passing: iterative algorithms that pass messages between nodes in the graph. Which graph?

A simple DP algorithm

- Neglect the vertical smoothness constraints Scharstein and Szeliski (2002)

- Then simply optimize independent scanlines (one for each direction \mathbf{j}) in the global energy function by recursive computation

$$
D_{j}(\mathbf{p} ; d)=C(\mathbf{p} ; d)+\min _{d^{\prime}}\left\{D\left(\mathbf{p}-\mathbf{j}, d^{\prime}\right)+\rho_{d}\left(d-d^{\prime}\right)\right\}
$$

A simple DP algorithm

- Neglect the vertical smoothness constraints Scharstein and Szeliski (2002)

- Then simply optimize independent scanlines (one for each direction \mathbf{j}) in the global energy function by recursive computation

$$
D_{j}(\mathbf{p} ; d)=C(\mathbf{p} ; d)+\min _{d^{\prime}}\left\{D\left(\mathbf{p}-\mathbf{j}, d^{\prime}\right)+\rho_{d}\left(d-d^{\prime}\right)\right\}
$$

- What are the problems?

A simple DP algorithm

- Neglect the vertical smoothness constraints Scharstein and Szeliski (2002)

- Then simply optimize independent scanlines (one for each direction \mathbf{j}) in the global energy function by recursive computation

$$
D_{j}(\mathbf{p} ; d)=C(\mathbf{p} ; d)+\min _{d^{\prime}}\left\{D\left(\mathbf{p}-\mathbf{j}, d^{\prime}\right)+\rho_{d}\left(d-d^{\prime}\right)\right\}
$$

- What are the problems?
- What do we do with each direction?

A simple DP algorithm

- Neglect the vertical smoothness constraints Scharstein and Szeliski (2002)

- Then simply optimize independent scanlines (one for each direction \mathbf{j}) in the global energy function by recursive computation

$$
D_{j}(\mathbf{p} ; d)=C(\mathbf{p} ; d)+\min _{d^{\prime}}\left\{D\left(\mathbf{p}-\mathbf{j}, d^{\prime}\right)+\rho_{d}\left(d-d^{\prime}\right)\right\}
$$

- What are the problems?
- What do we do with each direction?

A simple DP algorithm

- Finds smooth path through DPI from left to right

[Source: N. Snavely]

A simple DP algorithm

[Source: N. Snavely]

Semiglobal block matching [Hirschmueller08]

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

with the following pairwise term

$$
C\left(d_{i}, d_{j}\right)= \begin{cases}0 & \text { if } d_{i}=d_{j} \\ \lambda_{1} & \text { if }\left|d_{i}-d_{j}\right|=1 \\ \lambda_{2} & \text { otherwise }\end{cases}
$$

- It computes the costs in each direction

$$
D_{j}(\mathbf{p} ; d)=C(\mathbf{p} ; d)+\min _{d^{\prime}}\left\{D\left(\mathbf{p}-\mathbf{j}, d^{\prime}\right)+\rho_{d}\left(d-d^{\prime}\right)\right\}
$$

Semiglobal block matching [Hirschmueller08]

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

with the following pairwise term

$$
C\left(d_{i}, d_{j}\right)= \begin{cases}0 & \text { if } d_{i}=d_{j} \\ \lambda_{1} & \text { if }\left|d_{i}-d_{j}\right|=1 \\ \lambda_{2} & \text { otherwise }\end{cases}
$$

- It computes the costs in each direction

$$
D_{j}(\mathbf{p} ; d)=C(\mathbf{p} ; d)+\min _{d^{\prime}}\left\{D\left(\mathbf{p}-\mathbf{j}, d^{\prime}\right)+\rho_{d}\left(d-d^{\prime}\right)\right\}
$$

- And aggregate the costs

$$
D(\mathbf{p} ; d)=\sum_{j} L_{j}(\mathbf{p}, d)
$$

Semiglobal block matching [Hirschmueller08]

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

with the following pairwise term

$$
C\left(d_{i}, d_{j}\right)= \begin{cases}0 & \text { if } d_{i}=d_{j} \\ \lambda_{1} & \text { if }\left|d_{i}-d_{j}\right|=1 \\ \lambda_{2} & \text { otherwise }\end{cases}
$$

- It computes the costs in each direction

$$
D_{j}(\mathbf{p} ; d)=C(\mathbf{p} ; d)+\min _{d^{\prime}}\left\{D\left(\mathbf{p}-\mathbf{j}, d^{\prime}\right)+\rho_{d}\left(d-d^{\prime}\right)\right\}
$$

- And aggregate the costs

$$
D(\mathbf{p} ; d)=\sum_{j} L_{j}(\mathbf{p}, d)
$$

- Then do winner take all

Semiglobal block matching [Hirschmueller08]

- The energy is defined as

$$
E\left(d_{1}, \cdots, d_{n}\right)=\sum_{i} C\left(d_{i}\right)+\sum_{i} \sum_{j \in \mathcal{N}(j)} C\left(d_{i}, d_{j}\right)
$$

with the following pairwise term

$$
C\left(d_{i}, d_{j}\right)= \begin{cases}0 & \text { if } d_{i}=d_{j} \\ \lambda_{1} & \text { if }\left|d_{i}-d_{j}\right|=1 \\ \lambda_{2} & \text { otherwise }\end{cases}
$$

- It computes the costs in each direction

$$
D_{j}(\mathbf{p} ; d)=C(\mathbf{p} ; d)+\min _{d^{\prime}}\left\{D\left(\mathbf{p}-\mathbf{j}, d^{\prime}\right)+\rho_{d}\left(d-d^{\prime}\right)\right\}
$$

- And aggregate the costs

$$
D(\mathbf{p} ; d)=\sum_{j} L_{j}(\mathbf{p}, d)
$$

- Then do winner take all

Global Minimization Techniques

Multiple ways to get an approximate solution typically

- Dynamic programming approximations
- Sampling
- Simulated annealing
- Graph-cuts: imposes restrictions on the type of pairwise cost functions
- Message passing: iterative algorithms that pass messages between nodes in the graph. Which graph?

Let's look more generaly into MRFs

Structure Prediction

- Input: $x \in \mathcal{X}$, typically an image.
- Output: label $y \in \mathcal{Y}$.
- Consider a score function $\theta(x, y)$ called potential or feature such that

$$
\theta(x, y)= \begin{cases}\text { high } & \text { if } y \text { is a good label for } x \\ \text { low } & \text { if } y \text { is a bad label for } x\end{cases}
$$

- We want to predict a label as

$$
y^{*}=\arg \max _{y} \theta(x, y)
$$

Score Decomposition

- We assume that the score decomposes

$$
\theta(y \mid x)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This represents a (conditional) Markov Random Field (CRF)

$$
p(y \mid x)=\frac{1}{z} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)
$$

with $\log \psi_{i}\left(x, y_{i}\right)=\theta_{i}\left(x, y_{i}\right)$, and $\log \psi_{\alpha}\left(x, y_{\alpha}\right)=\theta_{\alpha}\left(x, y_{\alpha}\right)$.

Score Decomposition

- We assume that the score decomposes

$$
\theta(y \mid x)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This represents a (conditional) Markov Random Field (CRF)

$$
p(y \mid x)=\frac{1}{Z} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)
$$

with $\log \psi_{i}\left(x, y_{i}\right)=\theta_{i}\left(x, y_{i}\right)$, and $\log \psi_{\alpha}\left(x, y_{\alpha}\right)=\theta_{\alpha}\left(x, y_{\alpha}\right)$.

- $Z=\sum_{y} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)$ is the partition function.

Score Decomposition

- We assume that the score decomposes

$$
\theta(y \mid x)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This represents a (conditional) Markov Random Field (CRF)

$$
p(y \mid x)=\frac{1}{Z} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)
$$

with $\log \psi_{i}\left(x, y_{i}\right)=\theta_{i}\left(x, y_{i}\right)$, and $\log \psi_{\alpha}\left(x, y_{\alpha}\right)=\theta_{\alpha}\left(x, y_{\alpha}\right)$.

- $Z=\sum_{y} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)$ is the partition function.
- Prediction also decomposes

Score Decomposition

- We assume that the score decomposes

$$
\theta(y \mid x)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This represents a (conditional) Markov Random Field (CRF)

$$
p(y \mid x)=\frac{1}{Z} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)
$$

with $\log \psi_{i}\left(x, y_{i}\right)=\theta_{i}\left(x, y_{i}\right)$, and $\log \psi_{\alpha}\left(x, y_{\alpha}\right)=\theta_{\alpha}\left(x, y_{\alpha}\right)$.

- $Z=\sum_{y} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)$ is the partition function.
- Prediction also decomposes

$$
y^{*}=\arg \max _{y} \sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This in general is NP hard.

Score Decomposition

- We assume that the score decomposes

$$
\theta(y \mid x)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This represents a (conditional) Markov Random Field (CRF)

$$
p(y \mid x)=\frac{1}{Z} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)
$$

with $\log \psi_{i}\left(x, y_{i}\right)=\theta_{i}\left(x, y_{i}\right)$, and $\log \psi_{\alpha}\left(x, y_{\alpha}\right)=\theta_{\alpha}\left(x, y_{\alpha}\right)$.

- $Z=\sum_{y} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)$ is the partition function.
- Prediction also decomposes

$$
y^{*}=\arg \max _{y} \sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This in general is NP hard.

Markov Networks

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.
- A maximal clique is a clique that cannot be extended by including one more adjacent vertex.

Markov Networks

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.
- A maximal clique is a clique that cannot be extended by including one more adjacent vertex.
- For a set of variables $\mathbf{y}=\left\{y_{1}, \cdots, y_{N}\right\}$ a Markov network is defined as a product of potentials over the maximal cliques y_{α} of the graph G

$$
p\left(y_{1}, \cdots, y_{N}\right)=\frac{1}{z} \prod_{\alpha} \psi_{\alpha}\left(y_{\alpha}\right)
$$

Markov Networks

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.
- A maximal clique is a clique that cannot be extended by including one more adjacent vertex.
- For a set of variables $\mathbf{y}=\left\{y_{1}, \cdots, y_{N}\right\}$ a Markov network is defined as a product of potentials over the maximal cliques y_{α} of the graph G

$$
p\left(y_{1}, \cdots, y_{N}\right)=\frac{1}{Z} \prod_{\alpha} \psi_{\alpha}\left(y_{\alpha}\right)
$$

- Special case: cliques of size 2 - pairwise Markov network

Markov Networks

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.
- A maximal clique is a clique that cannot be extended by including one more adjacent vertex.
- For a set of variables $\mathbf{y}=\left\{y_{1}, \cdots, y_{N}\right\}$ a Markov network is defined as a product of potentials over the maximal cliques y_{α} of the graph G

$$
p\left(y_{1}, \cdots, y_{N}\right)=\frac{1}{Z} \prod_{\alpha} \psi_{\alpha}\left(y_{\alpha}\right)
$$

- Special case: cliques of size 2 - pairwise Markov network
- In case all potentials are strictly positive this is called a Gibbs distribution

Markov Networks

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.
- A maximal clique is a clique that cannot be extended by including one more adjacent vertex.
- For a set of variables $\mathbf{y}=\left\{y_{1}, \cdots, y_{N}\right\}$ a Markov network is defined as a product of potentials over the maximal cliques y_{α} of the graph G

$$
p\left(y_{1}, \cdots, y_{N}\right)=\frac{1}{Z} \prod_{\alpha} \psi_{\alpha}\left(y_{\alpha}\right)
$$

- Special case: cliques of size 2 - pairwise Markov network
- In case all potentials are strictly positive this is called a Gibbs distribution
- Example: $p(a, b, c)=\frac{1}{Z} \psi_{a, c}(a, c) \psi_{b c}(b, c)$

Markov Networks

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.
- A maximal clique is a clique that cannot be extended by including one more adjacent vertex.
- For a set of variables $\mathbf{y}=\left\{y_{1}, \cdots, y_{N}\right\}$ a Markov network is defined as a product of potentials over the maximal cliques y_{α} of the graph G

$$
p\left(y_{1}, \cdots, y_{N}\right)=\frac{1}{Z} \prod_{\alpha} \psi_{\alpha}\left(y_{\alpha}\right)
$$

- Special case: cliques of size 2 - pairwise Markov network
- In case all potentials are strictly positive this is called a Gibbs distribution
- Example: $p(a, b, c)=\frac{1}{Z} \psi_{a, c}(a, c) \psi_{b c}(b, c)$

Properties of Markov Network

- Marginalizing over c makes a and b dependent

- Conditioning on c makes a and b independent

[Source: P. Gehler]

Properties of Markov Network

- Marginalizing over c makes a and b dependent

- Conditioning on c makes a and b independent

[Source: P. Gehler]

Local and Global Markov properties

- Local Markov property: condition on neighbours makes indep. of the rest

$$
p\left(y_{i} \mid \mathbf{y} \backslash\left\{y_{i}\right\}\right)=p\left(y \mid n e\left(y_{i}\right)\right)
$$

Example: $y_{4} \perp\left\{y_{1}, y_{7}\right\} \mid\left\{y_{2}, y_{3}, y_{5}, y_{6}\right\}$

- Global Markov Property: For disjoint sets of variables $(\mathcal{A}, \mathcal{B}, \mathcal{S})$, where \mathcal{S} separates \mathcal{A} from \mathcal{B} then $\mathcal{A} \perp \mathcal{B} \mid \mathcal{S}$

Local and Global Markov properties

- Local Markov property: condition on neighbours makes indep. of the rest

$$
p\left(y_{i} \mid \mathbf{y} \backslash\left\{y_{i}\right\}\right)=p\left(y \mid n e\left(y_{i}\right)\right)
$$

Example: $y_{4} \perp\left\{y_{1}, y_{7}\right\} \mid\left\{y_{2}, y_{3}, y_{5}, y_{6}\right\}$

- Global Markov Property: For disjoint sets of variables $(\mathcal{A}, \mathcal{B}, \mathcal{S})$, where \mathcal{S} separates \mathcal{A} from \mathcal{B} then $\mathcal{A} \perp \mathcal{B} \mid \mathcal{S}$
- \mathcal{S} is called a separator. Example: $y_{1} \perp y_{7} \mid\left\{y_{4}\right\}$

[Source: P. Gehler]

Local and Global Markov properties

- Local Markov property: condition on neighbours makes indep. of the rest

$$
p\left(y_{i} \mid \mathbf{y} \backslash\left\{y_{i}\right\}\right)=p\left(y \mid n e\left(y_{i}\right)\right)
$$

Example: $y_{4} \perp\left\{y_{1}, y_{7}\right\} \mid\left\{y_{2}, y_{3}, y_{5}, y_{6}\right\}$

- Global Markov Property: For disjoint sets of variables $(\mathcal{A}, \mathcal{B}, \mathcal{S})$, where \mathcal{S} separates \mathcal{A} from \mathcal{B} then $\mathcal{A} \perp \mathcal{B} \mid \mathcal{S}$
- \mathcal{S} is called a separator.

Example: $y_{1} \perp y_{7} \mid\left\{y_{4}\right\}$

[Source: P. Gehler]

Relationship Potentials to Graphs

- Consider

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b) \psi(b, c) \psi(c, a)
$$

- What is the corresponding Markov network (graphical representation)?

Relationship Potentials to Graphs

- Consider

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b) \psi(b, c) \psi(c, a)
$$

- What is the corresponding Markov network (graphical representation)?

- Which other factorization is represented by this network?

Relationship Potentials to Graphs

- Consider

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b) \psi(b, c) \psi(c, a)
$$

- What is the corresponding Markov network (graphical representation)?

- Which other factorization is represented by this network?

Relationship Potentials to Graphs

- Consider

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b) \psi(b, c) \psi(c, a)
$$

- What is the corresponding Markov network (graphical representation)?

- Which other factorization is represented by this network?

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b, c)
$$

- The factorization is not specified by the graph

Relationship Potentials to Graphs

- Consider

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b) \psi(b, c) \psi(c, a)
$$

- What is the corresponding Markov network (graphical representation)?

- Which other factorization is represented by this network?

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b, c)
$$

- The factorization is not specified by the graph
- Let's look at Factor Graphs

Relationship Potentials to Graphs

- Consider

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b) \psi(b, c) \psi(c, a)
$$

- What is the corresponding Markov network (graphical representation)?

- Which other factorization is represented by this network?

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b, c)
$$

- The factorization is not specified by the graph
- Let's look at Factor Graphs

Factor Graphs

Now consider we introduce an extra node (a square) for each factor

The factor graph (FG) has a node (represented by a square) for each factor $\psi\left(y_{\alpha}\right)$ and a variable node (represented by a circle) for each variable x_{i}.

- Left: Markov Network
- Middle: Factor graph representation of $\psi(a, b, c)$
- Right: Factor graph representation of $\psi(a, b) \psi(b, c) \psi(c, a)$
- Different factor graphs can have the same Markov network
[Source: P. Gehler]

Examples

- Which distribution?

- What factor graph?

$$
p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)
$$

[Source: P. Gehler]

Inference in trees

- Given distribution $p\left(y_{1}, \cdots, y_{n}\right)$
- Inference: computing functions of the distribution
- mean
- marginal
- conditionals
- Marginal inference in singly-connected graph (trees)
- Later: extensions to loopy graphs
[Source: P. Gehler]

Variable Elimination

- Consider Markov chain ($a, b, c, d \in\{0,1\}$)

with distribution

$$
p(a, b, c, d)=p(a \mid b) p(b \mid c) p(c \mid d) p(d)
$$

- Task: compute the marginal $p(a)$
[Source: P. Gehler]

Variable Elimination

$$
\begin{aligned}
p(a) & =\sum_{b, c, d} p(a, b, c, d) \\
& =\sum_{b, c, d} p(a \mid b) p(b \mid c) p(c \mid d) p(d)
\end{aligned}
$$

- Naive: $2 \times 2 \times 2=8$ states to sum over
- Re-order summation:

$$
p(a)=\sum_{b, c} p(a \mid b) p(b \mid c) \underbrace{\sum_{d} p(c \mid d) p(d)}_{\gamma_{d}(c)}
$$

[Source: P. Gehler]

Variable Elimination

$$
\begin{aligned}
& p(a)=\sum_{b, c} p(a \mid b) p(b \mid c) \underbrace{\sum_{d} p(c \mid d) p(d)}_{\gamma_{d}(c)} \\
& p(a)=\sum_{b} p(a \mid b) \underbrace{\sum_{c} p(b \mid c) \gamma_{d}(c)}_{\gamma_{c}(b)} \\
& p(a)=\sum_{b} p(a \mid b) \gamma_{c}(b)
\end{aligned}
$$

- We need $2+2+2=6$ calculations
- For a chain of length T scale linearly $n * 2$, cf naive approach 2^{n}
[Source: P. Gehler]

Finding Conditional Marginals

- Again:

$$
p(a, b, c, d)=p(a \mid b) p(b \mid c) p(c \mid d) p(d)
$$

- Now find $p(d \mid a)$

$$
\begin{aligned}
p(d \mid a) & \propto \sum_{b, c} p(a \mid b) p(b \mid c) p(c \mid d) p(d) \\
& =\sum_{c} \underbrace{\sum_{b} p(a \mid b) p(b \mid c) p(c \mid d) p(d)}_{\gamma_{b}(c)} \\
& \stackrel{\text { def }}{=} \gamma_{c}(d) \text { not a distribution }
\end{aligned}
$$

[Source: P. Gehler]

Finding Conditional Marginals

- Found that

$$
p(d \mid a)=k \gamma_{c}(d)
$$

- and since $\sum_{d} p(d \mid a)=1$

$$
k=\frac{1}{\sum_{d} \gamma_{c}(d)}
$$

- Again $\gamma_{c}(d)$ is not a distribution (but a message)
[Source: P. Gehler]

Now with factor graphs

$$
\begin{gathered}
a-b(a, b, c, d)=f_{1}(a, b) f_{2}(b, c) f_{3}(c, d) f_{4}(d) \\
p(a, b, c)=\sum_{d} p(a, b, c, d) \\
=f_{1}(a, b) f_{2}(b, c) \underbrace{\sum_{d} f_{3}(c, d) f_{4}(d)}_{\mu_{d \rightarrow c}(c)} \\
p(a, b)=\sum_{c} p(a, b, c)=f_{1}(a, b) \underbrace{\sum_{c}^{f_{3}} f_{2}(b, c) \mu_{d \rightarrow c}(c)}_{\mu_{c \rightarrow b}(b)}
\end{gathered}
$$

[Source: P. Gehler]

Inference in Chain Structured Factor Graphs

- Simply recurse further
- $\gamma_{m \rightarrow n}(n)$ carries the information beyond m
- We did not need the factors in general (next) we will see that making a distinction is helpful
[Source: P. Gehler]

General singly-connected factor graphs I

- Now consider a branching graph:

with factors

$$
f_{1}(a, b) f_{2}(b, c, d) f_{3}(c) f_{4}(d, e) f_{5}(d)
$$

- For example: find marginal $p(a, b)$
[Source: P. Gehler]

General singly-connected factor graphs II

$$
p(a, b)=f_{1}(a, b) \underbrace{\mu_{f_{2} \rightarrow b}(b)=\sum_{c, d} f_{2}(b, c, d) \underbrace{f_{3}(c)}_{\mu_{f_{2} \rightarrow b}(b)} \underbrace{f_{5}(d) \sum_{e} f_{4}(d, e)}_{\mu_{2}}}_{\sum_{c, d, e} f_{2}(b, c, d) f_{3}(c) f_{5}(d) f_{4}(d, e)}
$$

[Source: P. Gehler]

General singly-connected factor graphs III

[Source: P. Gehler]

General singly-connected factor graphs IV

- If we want to compute the marginal $p(a)$:

$$
p(a)=\underbrace{\sum_{b} f_{1}(a, b) \mu_{f_{2} \rightarrow b}(b)}_{\mu_{f_{1} \rightarrow a}(a)}
$$

- which we could also view as

$$
p(a)=\sum_{b} f_{1}(a, b) \underbrace{\mu_{f_{2} \rightarrow b}(b)}_{\mu_{b \rightarrow f_{1}}(b)}
$$

[Source: P. Gehler]

Summary

- Once computed, messages can be re-used
- All marginals $p(c), p(d), p(c, d), \cdots$ can be written as a function of messages
- We need an algorithm to compute all messages: Sum-Product algorithm

[Source: P. Gehler]

Sum-product algorithm overview

- Algorithm to compute all messages efficiently, assuming the graph is singly-connected
- It can be used to compute any desired marginals
- Also known as belief propagation (BP)

The algorithm is composed of
1 Initialization
2 Variable to Factor message
3 Factor to Variable message
[Source: P. Gehler]

1. Initialization

- Messages from extremal (simplical) node factors are initialized to the factor (left)
- Messages from extremal (simplical) variable nodes are set to unity (right)

[Source: P. Gehler]

2. Variable to Factor message

[Source: P. Gehler]

3. Factor to Variable message

- We sum over all states in the set of variables
- This explains the name for the algorithm (sum-product)

$$
\mu_{f \rightarrow x}(x)=\sum_{y \in \mathcal{X}_{f} \backslash x} \phi_{f}\left(\mathcal{X}_{f}\right) \prod_{y \in\{\operatorname{ne}(f) \backslash x\}} \mu_{y \rightarrow f}(y)
$$

[Source: P. Gehler]

Marginal computation

[Source: P. Gehler]

Message Ordering

- Messages depend on previous computed messages
- Only extremal |nodes/factors do not depend on other messages
- To compute all messages in the graph

1. leaf-to-root: (pick root node, compute messages pointing towards root)
2. root-to-leave: (compute messages pointing away from root)

[Source: P. Gehler]

Problems with loops

- Marginalizing over d introduces new link (changes graph structure - in contrast to singly connected graphs)

$$
p(a, b, c, d)=f_{1}(a, b) f_{2}(b, c) f_{3}(c, d) f_{4}(d, a)
$$

and marginal

$$
p(a, b, c)=f_{1}(a, b) f_{2}(b, c) \underbrace{\sum_{d} f_{3}(c, d) f_{4}(d, a)}_{f_{5}(a, c)}
$$

What to infer?

- Mean

$$
\mathbb{E}_{p(x)}[x]=\sum_{x \in \mathcal{X}} x p(x)
$$

- Mode

$$
x^{*}=\underset{x \in \mathcal{X}}{\operatorname{argmax}} p(x)
$$

- Conditional Distributions

$$
p\left(x_{i}, x_{j} \mid x_{k}, x_{l}\right) \operatorname{or} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)
$$

- Max-Marginals

$$
x_{i}^{*}=\underset{x_{i} \in \mathcal{X}_{i}}{\operatorname{argmax}} p\left(x_{i}\right)=\cdots d x_{n} \underset{x_{i} \in \mathcal{X}_{i}}{\operatorname{argmax}} \int_{\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)} p(x) d x_{1}
$$

Computing the Partition Function

- The partition function $\left(p(x)=\frac{1}{Z} \prod_{f} \Phi_{f}\left(\mathcal{X}_{f}\right)\right)$ (normalization constant) Z can be computed after the leaf-to-root step (no need for the root-to-leaf step) (choose any $x \in \mathcal{X}$)

$$
\begin{align*}
Z & =\sum_{\mathcal{X}} \prod_{f} \phi_{f}\left(\mathcal{X}_{f}\right) \tag{10}\\
& =\sum_{x} \sum_{\mathcal{X} \backslash\{x\}} \prod_{f \in \operatorname{ne}(x)} \prod_{f \notin \operatorname{ne}(x)} \phi_{f}\left(\mathcal{X}_{f}\right) \tag{11}\\
& =\sum_{x} \prod_{f \in \operatorname{ne}(x)} \sum_{\mathcal{X} \backslash\{x\}} \prod_{f \notin \operatorname{ne}(x)} \phi_{f}\left(\mathcal{X}_{f}\right) \tag{12}\\
& =\sum_{x} \prod_{f \in \operatorname{ne}(x)} \mu_{f \rightarrow x}(x) \tag{13}
\end{align*}
$$

Log Messages

- In large graphs, messages may become very small
- Work with log-messages instead $\lambda=\log \mu$
- Variable-to-factor messages

$$
\mu_{x \rightarrow f}(x)=\prod_{g \in\{\operatorname{ne}(x) \backslash f\}} \mu_{g \rightarrow x}(x)
$$

then becomes

$$
\lambda_{x \rightarrow f}(x)=\sum_{g \in\{\operatorname{ne}(x) \backslash f\}} \lambda_{g \rightarrow x}(x)
$$

[Source: P. Gehler]

Log Messages

- Work with log-messages instead $\lambda=\log \mu$
- Factor-to-Variable messages

$$
\begin{equation*}
\mu_{f \rightarrow x}(x)=\sum_{y \in \mathcal{X}_{f} \backslash x} \Phi_{f}\left(\mathcal{X}_{f}\right) \prod_{y \in\{\operatorname{ne}(f) \backslash x\}} \mu_{y \rightarrow f}(y) \tag{16}
\end{equation*}
$$

then becomes

$$
\begin{equation*}
\lambda_{f \rightarrow x}(x)=\log \left(\sum_{y \in \mathcal{X}_{f} \backslash x} \Phi\left(\mathcal{X}_{f}\right) \exp \left[\sum_{y \in\{\mathrm{ne}(f) \backslash \times\}} \lambda_{y \rightarrow f}(y)\right]\right. \tag{17}
\end{equation*}
$$

[Source: P. Gehler]

Trick

- Log-Factor-to-Variable Message:

$$
\begin{equation*}
\lambda_{f \rightarrow x}(x)=\log \sum_{y \in \mathcal{X}_{f} \backslash x} \Phi_{f}\left(\mathcal{X}_{f}\right) \exp \sum_{y \in\{\operatorname{ne}(f) \backslash x\}} \lambda_{y \rightarrow f}(y) \tag{18}
\end{equation*}
$$

- large numbers lead to numerical instability
- Use the following equality

$$
\begin{equation*}
\log \sum_{i} \exp \left(v_{i}\right)=\alpha+\log \sum_{i} \exp \left(v_{i}-\alpha\right) \tag{19}
\end{equation*}
$$

- With $\alpha=\max \lambda_{y \rightarrow f}(y)$
[Source: P. Gehler]

Finding the maximal state: Max-Product

- For a given distribution $p(x)$ find the most likely state:

$$
x^{*}=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{n}\right)
$$

- Again use factorization structure to distribute the maximisation to local computations
- Example: chain

$$
\begin{aligned}
& \text { (x, } \left.d, x_{2}, x_{3}, x_{4}\right)=\phi\left(x_{1}, x_{2}\right) \phi\left(x_{2}, x_{3}\right) \phi\left(x_{3}, x_{1}\right)
\end{aligned}
$$

[Source: P. Gehler]

Be careful: not maximal marginal states!

- The most likely state

$$
x^{*}=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{n}\right)
$$

does not need to be the one for which the marginals are maximized:

- For all $i=1, \ldots, n$

$$
x_{i}^{*}=\underset{x_{i}}{\operatorname{argmax}} p\left(x_{i}\right)
$$

- Example: | | | $x=0$ | $x=1$ |
| :---: | :---: | :---: | :---: |
| | $y=0$ | 0.3 | 0.4 |
| | $y=1$ | 0.3 | 0.0 |

Example chain

$$
\begin{aligned}
\max _{x} f(x) & =\max _{x_{1}, x_{2}, x_{3}, x_{4}} \phi\left(x_{1}, x_{2}\right) \phi\left(x_{2}, x_{3}\right) \phi\left(x_{3}, x_{4}\right) \\
& =\max _{x_{1}, x_{2}, x_{3}} \phi\left(x_{1}, x_{2}\right) \phi\left(x_{2}, x_{3}\right) \underbrace{\max _{x_{4}} \phi\left(x_{3}, x_{4}\right)}_{\gamma\left(x_{3}\right)} \\
& =\max _{x_{1}, x_{2}} \phi\left(x_{1}, x_{2}\right) \underbrace{\max _{x_{3}} \phi\left(x_{2}, x_{3}\right) \gamma\left(x_{3}\right)}_{\gamma\left(x_{2}\right)} \\
& =\max _{x_{1}} \underbrace{\max _{x_{2}} \phi\left(x_{1}, x_{2}\right) \gamma\left(x_{2}\right)}_{\gamma\left(x_{1}\right)} \\
& =\max _{x_{1}} \gamma\left(x_{1}\right)
\end{aligned}
$$

[Source: P. Gehler]

Example chain

- Once computed the messages $(\gamma(\cdot))$ find the optimal values

$$
\begin{aligned}
x_{1}^{*} & =\underset{x_{1}}{\operatorname{argmax}} \gamma\left(x_{1}\right) \\
x_{2}^{*} & =\underset{x_{2}}{\operatorname{argmax}} \phi\left(x_{1}^{*}, x_{2}\right) \gamma\left(x_{2}\right) \\
x_{3}^{*} & =\underset{x_{3}}{\operatorname{argmax}} \phi\left(x_{2}^{*}, x_{3}\right) \gamma\left(x_{3}\right) \\
x_{4}^{*} & =\underset{x_{4}}{\operatorname{argmax}} \phi\left(x_{3}^{*}, x_{4}\right) \gamma\left(x_{4}\right)
\end{aligned}
$$

- this is called backtracking (an application of dynamic programming)
- can choose arbitrary start point
[Source: P. Gehler]

Trees

- Spot the messages:

Max-Product Algorithm

Pick any variable as root and
1 Initialisation (same as sum-product)
2 Variable to Factor message (same as sum-product)
3 Factor to Variable message
Then compute the maximal state
[Source: P. Gehler]

1. Initialization

- Messages from extremal node factors are initialized to the factor
- Messages from extremal variable nodes are set to unity

- Same as sum product
[Source: P. Gehler]

2. Variable to Factor message

- Same as for sum-product

$$
\mu_{x \rightarrow f}(x)=\prod_{g \in\{\operatorname{ne}(x) \backslash f\}} \mu_{g \rightarrow x}(x)
$$

[Source: P. Gehler]

3. Factor to Variable message

- Different message than in sum-product
- This is now a max-product

$$
\mu_{f \rightarrow x}(x)=\max _{y \in \mathcal{X}_{f} \backslash x} \phi_{f}\left(\mathcal{X}_{f}\right) \prod_{y \in\{\operatorname{ne}(f) \backslash x\}} \mu_{y \rightarrow f}(y)
$$

[Source: P. Gehler]

Maximal state of Variable

$$
x^{*}=\underset{x}{\operatorname{argmax}} \prod_{f \in \operatorname{ne}(x)} \mu_{f \rightarrow x}(x)
$$

- This does not work with loops
- Same problem as the sum product algorithm

Dealing with loops

- Keep on doing this iterations, i.e., loopy BP
- The problem with loopy BP is that it is not guaranteed to converge
- Message-passing algorithms based on LP relaxations have been developed
- These methods are guaranteed to converge
- Perform much better in practice

