Stereo

Raquel Urtasun

TTI Chicago

Feb 7, 2013

• Chapter 11 of Szeliski's book

Let's look into stereo reconstruction

Stereo

[Source: N. Snavely]

- Stereo matching is the process of taking two or more images and estimating a 3D model of the scene by finding matching pixels in the images and converting their 2D positions into 3D depths
- We perceived depth based on the difference in appearance of the right and left eye.

- Stereo matching is the process of taking two or more images and estimating a 3D model of the scene by finding matching pixels in the images and converting their 2D positions into 3D depths
- We perceived depth based on the difference in appearance of the right and left eye.

Given two images from different viewpoints

- The depth is proportional to the inverse of the disparity
- How can we compute the depth of each point in the image?

Given two images from different viewpoints

- The depth is proportional to the inverse of the disparity
- How can we compute the depth of each point in the image?
- Based on how much each pixel moves between the two images

[Source: N. Snavely]

Given two images from different viewpoints

- The depth is proportional to the inverse of the disparity
- How can we compute the depth of each point in the image?
- Based on how much each pixel moves between the two images

[Source: N. Snavely]

- Pixel in one image x₀ projects to an epipolar line segment in the other image
- The segment is bounded at one end by the projection of the original viewing ray at infinity p_∞ and at the other end by the projection of the original camera center c_0 into the second camera, which is known as the $epipole \ e_1$.

- Pixel in one image x₀ projects to an epipolar line segment in the other image
- The segment is bounded at one end by the projection of the original viewing ray at infinity p_∞ and at the other end by the projection of the original camera center c_0 into the second camera, which is known as the $epipole \ e_1$.

- If we project the epipolar line in the second image back into the first, we get another line (segment), this time bounded by the other corresponding **epipole** *e*₀
- Extending both line segments to infinity, we get a pair of corresponding epipolar lines, which are the intersection of the two image planes with the **epipolar plane** that passes through both camera centers c_0 and c_1 as well as the point of interest p

- If we project the epipolar line in the second image back into the first, we get another line (segment), this time bounded by the other corresponding **epipole** *e*₀
- Extending both line segments to infinity, we get a pair of corresponding epipolar lines, which are the intersection of the two image planes with the **epipolar plane** that passes through both camera centers c_0 and c_1 as well as the point of interest p

[Source: Ramani]

- The epipolar geometry depends on the relative **pose** and **calibration** of the cameras
- This can be computed using the fundamental matrix

- The epipolar geometry depends on the relative **pose** and **calibration** of the cameras
- This can be computed using the fundamental matrix
- Once this is computed, we can use the epipolar lines to restrict the search space to a 1D search

- The epipolar geometry depends on the relative **pose** and **calibration** of the cameras
- This can be computed using the fundamental matrix
- Once this is computed, we can use the epipolar lines to restrict the search space to a 1D search
- **Rectification**, the process of transforming the image so that the search is along horizontal line

- The epipolar geometry depends on the relative **pose** and **calibration** of the cameras
- This can be computed using the fundamental matrix
- Once this is computed, we can use the epipolar lines to restrict the search space to a 1D search
- **Rectification**, the process of transforming the image so that the search is along horizontal line

Two images captured by a purely horizontal translating camera (*rectified* stereo pair)

• The disparity for pixel (x_1, y_1) is $(x_2 - x_1)$ if the images are rectified

• This is a one dimensional search for each pixel

Two images captured by a purely horizontal translating camera (*rectified* stereo pair)

- The disparity for pixel (x_1, y_1) is $(x_2 x_1)$ if the images are rectified
- This is a one dimensional search for each pixel
- Very challenging to estimate the correspondences

[Source: N. Snavely]

Two images captured by a purely horizontal translating camera (*rectified* stereo pair)

- The disparity for pixel (x_1, y_1) is $(x_2 x_1)$ if the images are rectified
- This is a one dimensional search for each pixel
- Very challenging to estimate the correspondences

[Source: N. Snavely]

Fundamental Matrix

- Projective geometry depends only on the cameras internal parameters and relative pose of cameras (and not the 3D scene)
- Fundamental matrix **F** encapsulates this geometry

Fundamental Matrix

- Projective geometry depends only on the cameras internal parameters and relative pose of cameras (and not the 3D scene)
- Fundamental matrix F encapsulates this geometry

Computation of Fundamental Matrix

- We will show that for any pair of corresponding points in both images $\mathbf{x}_0^T \mathbf{F} \mathbf{x}_1 = \mathbf{0}$
- F can be computed from correspondences between image points alone
- No knowledge of camera internal parameters required

Computation of Fundamental Matrix

• We will show that for any pair of corresponding points in both images

$$\mathbf{x}_0^T \mathbf{F} \mathbf{x}_1 = \mathbf{0}$$

- F can be computed from correspondences between image points alone
- No knowledge of camera internal parameters required
- No knowledge of relative pose required

Computation of Fundamental Matrix

• We will show that for any pair of corresponding points in both images

$$\mathbf{x}_0^T \mathbf{F} \mathbf{x}_1 = 0$$

- F can be computed from correspondences between image points alone
- No knowledge of camera internal parameters required
- No knowledge of relative pose required

- Take x in camera P and find scene point X on ray of x in camera P
- Find the image x' of X in camera P'

- Take x in camera P and find scene point X on ray of x in camera P
- Find the image x' of X in camera P'
- Find epipole e' as image of C in camera P', e' = P'C

- Take x in camera P and find scene point X on ray of x in camera P
- Find the image x' of X in camera P'
- Find epipole \mathbf{e}' as image of \mathbf{C} in camera \mathbf{P}' , $\mathbf{e}' = \mathbf{P}'\mathbf{C}$
- Find epipolar line I' from e' to x' in P' as function of x: $I' = e' \times x'$

- Take x in camera P and find scene point X on ray of x in camera P
- Find the image x' of X in camera P'
- Find epipole \mathbf{e}' as image of \mathbf{C} in camera \mathbf{P}' , $\mathbf{e}' = \mathbf{P}'\mathbf{C}$
- Find epipolar line l' from e' to x' in P' as function of x: $l' = e' \times x'$
- \mathbf{x}' and \mathbf{x} are related via homography: $\mathbf{x}' = H_{\pi}\mathbf{x}$

- Take x in camera P and find scene point X on ray of x in camera P
- Find the image x' of X in camera P'
- Find epipole \mathbf{e}' as image of \mathbf{C} in camera \mathbf{P}' , $\mathbf{e}' = \mathbf{P}'\mathbf{C}$
- Find epipolar line I' from e' to x' in P' as function of x: $I' = e' \times x'$
- \mathbf{x}' and \mathbf{x} are related via homography: $\mathbf{x}' = H_{\pi}\mathbf{x}$
- $\mathbf{l}' = \mathbf{e}' \times \mathbf{x}' = \mathbf{e}' \times H_{\pi} \mathbf{x} = \mathbf{F} \mathbf{x}$

- Take x in camera P and find scene point X on ray of x in camera P
- Find the image x' of X in camera P'
- Find epipole \mathbf{e}' as image of \mathbf{C} in camera \mathbf{P}' , $\mathbf{e}' = \mathbf{P}'\mathbf{C}$
- Find epipolar line I' from e' to x' in P' as function of x: $I' = e' \times x'$
- \mathbf{x}' and \mathbf{x} are related via homography: $\mathbf{x}' = H_{\pi}\mathbf{x}$
- $\mathbf{I}' = \mathbf{e}' \times \mathbf{x}' = \mathbf{e}' \times H_{\pi}\mathbf{x} = \mathbf{F}\mathbf{x}$
- The fundamental matrix **F** is defined $\mathbf{I}' = \mathbf{F}\mathbf{x}$

- Take x in camera P and find scene point X on ray of x in camera P
- Find the image x' of X in camera P'
- Find epipole \mathbf{e}' as image of \mathbf{C} in camera \mathbf{P}' , $\mathbf{e}' = \mathbf{P}'\mathbf{C}$
- Find epipolar line I' from e' to x' in P' as function of x: $I' = e' \times x'$
- \mathbf{x}' and \mathbf{x} are related via homography: $\mathbf{x}' = H_{\pi}\mathbf{x}$
- $\mathbf{I}' = \mathbf{e}' \times \mathbf{x}' = \mathbf{e}' \times H_{\pi}\mathbf{x} = \mathbf{F}\mathbf{x}$
- The fundamental matrix **F** is defined $\mathbf{I}' = \mathbf{F}\mathbf{x}$
- \mathbf{x}' belongs to \mathbf{l}' , so $\mathbf{x'}^T \mathbf{l}' = 0$, so $\mathbf{x'}^T \mathbf{F} \mathbf{x} = 0$

- Take x in camera P and find scene point X on ray of x in camera P
- Find the image \boldsymbol{x}' of \boldsymbol{X} in camera \boldsymbol{P}'
- Find epipole \mathbf{e}' as image of \mathbf{C} in camera \mathbf{P}' , $\mathbf{e}' = \mathbf{P}'\mathbf{C}$
- Find epipolar line I' from e' to x' in P' as function of x: $I' = e' \times x'$
- \mathbf{x}' and \mathbf{x} are related via homography: $\mathbf{x}' = H_{\pi}\mathbf{x}$

•
$$\mathbf{I}' = \mathbf{e}' \times \mathbf{x}' = \mathbf{e}' \times H_{\pi}\mathbf{x} = \mathbf{F}\mathbf{x}$$

- The fundamental matrix **F** is defined $\mathbf{I}' = \mathbf{F}\mathbf{x}$
- \mathbf{x}' belongs to \mathbf{I}' , so $\mathbf{x'}^T \mathbf{I}' = 0$, so $\mathbf{x'}^T \mathbf{F} \mathbf{x} = 0$

Finding the Fundamental Matrix from known Projections

- Take x in camera P and find one scene point on ray from C to x
- Point $\mathbf{X} = \mathbf{P}^+ \mathbf{x}$ satisfies $\mathbf{x} = \mathbf{P}\mathbf{X}$ with $\mathbf{P}^+ = \mathbf{P}^T (\mathbf{P}\mathbf{P}^T)^{-1}$ so $\mathbf{P}\mathbf{X} = \mathbf{P}\mathbf{P}^T (\mathbf{P}\mathbf{P}^T)^{-1} \mathbf{x} = \mathbf{x}$

Finding the Fundamental Matrix from known Projections

• Take x in camera P and find one scene point on ray from C to x

• Point $\mathbf{X} = \mathbf{P}^+ \mathbf{x}$ satisfies $\mathbf{x} = \mathbf{P}\mathbf{X}$ with $\mathbf{P}^+ = \mathbf{P}^T (\mathbf{P}\mathbf{P}^T)^{-1}$ so $\mathbf{P}\mathbf{X} = \mathbf{P}\mathbf{P}^T (\mathbf{P}\mathbf{P}^T)^{-1} \mathbf{x} = \mathbf{x}$

• Image of this point in camera \mathbf{P}' is $\mathbf{x}' = \mathbf{P}'\mathbf{X} = \mathbf{P}'\mathbf{P}^+\mathbf{x}$

• Take x in camera P and find one scene point on ray from C to x

- Point $\mathbf{X} = \mathbf{P}^+ \mathbf{x}$ satisfies $\mathbf{x} = \mathbf{P}\mathbf{X}$ with $\mathbf{P}^+ = \mathbf{P}^T (\mathbf{P}\mathbf{P}^T)^{-1}$ so $\mathbf{P}\mathbf{X} = \mathbf{P}\mathbf{P}^T (\mathbf{P}\mathbf{P}^T)^{-1} \mathbf{x} = \mathbf{x}$
- Image of this point in camera \mathbf{P}' is $\mathbf{x}' = \mathbf{P}'\mathbf{X} = \mathbf{P}'\mathbf{P}^+\mathbf{x}$
- Image of C in camera P' is epipole e' = P'C

• Take x in camera P and find one scene point on ray from C to x

- Point $\mathbf{X} = \mathbf{P}^+ \mathbf{x}$ satisfies $\mathbf{x} = \mathbf{P}\mathbf{X}$ with $\mathbf{P}^+ = \mathbf{P}^T (\mathbf{P}\mathbf{P}^T)^{-1}$ so $\mathbf{P}\mathbf{X} = \mathbf{P}\mathbf{P}^T (\mathbf{P}\mathbf{P}^T)^{-1} \mathbf{x} = \mathbf{x}$
- Image of this point in camera \mathbf{P}' is $\mathbf{x}' = \mathbf{P}'\mathbf{X} = \mathbf{P}'\mathbf{P}^+\mathbf{x}$
- Image of C in camera \mathbf{P}' is epipole $\mathbf{e}' = \mathbf{P}'\mathbf{C}$
- Epipolar line of x in P' is

$$\mathbf{I}' = (\mathbf{e}') \times (\mathbf{P}'\mathbf{P}^+\mathbf{x})$$

• Take \mathbf{x} in camera \mathbf{P} and find one scene point on ray from \mathbf{C} to \mathbf{x}

- Point $\mathbf{X} = \mathbf{P}^+ \mathbf{x}$ satisfies $\mathbf{x} = \mathbf{P}\mathbf{X}$ with $\mathbf{P}^+ = \mathbf{P}^T (\mathbf{P}\mathbf{P}^T)^{-1}$ so $\mathbf{P}\mathbf{X} = \mathbf{P}\mathbf{P}^T (\mathbf{P}\mathbf{P}^T)^{-1} \mathbf{x} = \mathbf{x}$
- Image of this point in camera \mathbf{P}' is $\mathbf{x}' = \mathbf{P}'\mathbf{X} = \mathbf{P}'\mathbf{P}^+\mathbf{x}$
- Image of C in camera \mathbf{P}' is epipole $\mathbf{e}' = \mathbf{P}'\mathbf{C}$
- Epipolar line of x in P' is

$$\mathbf{I}'=(\mathbf{e}')\times(\mathbf{P}'\mathbf{P}^+\mathbf{x})$$

• I' = Fx defines the fundamental matrix

$$\mathbf{F} = (\mathbf{P}'\mathbf{C}) \times (\mathbf{P}'\mathbf{P}^+)$$

• Take \mathbf{x} in camera \mathbf{P} and find one scene point on ray from \mathbf{C} to \mathbf{x}

- Point $\mathbf{X} = \mathbf{P}^+ \mathbf{x}$ satisfies $\mathbf{x} = \mathbf{P}\mathbf{X}$ with $\mathbf{P}^+ = \mathbf{P}^T (\mathbf{P}\mathbf{P}^T)^{-1}$ so $\mathbf{P}\mathbf{X} = \mathbf{P}\mathbf{P}^T (\mathbf{P}\mathbf{P}^T)^{-1} \mathbf{x} = \mathbf{x}$
- Image of this point in camera \mathbf{P}' is $\mathbf{x}' = \mathbf{P}'\mathbf{X} = \mathbf{P}'\mathbf{P}^+\mathbf{x}$
- Image of C in camera \mathbf{P}' is epipole $\mathbf{e}' = \mathbf{P}'\mathbf{C}$
- Epipolar line of x in P' is

$$\mathbf{I}' = (\mathbf{e}') imes (\mathbf{P}'\mathbf{P}^+\mathbf{x})$$

• $\mathbf{I}' = \mathbf{F}\mathbf{x}$ defines the fundamental matrix

$$\mathbf{F} = (\mathbf{P}'\mathbf{C}) imes (\mathbf{P}'\mathbf{P}^+)$$

- Matrix 3×3 since $\mathbf{x'}^T \mathbf{F} \mathbf{x} = 0$
- Let F be the fundamental matrix of camera pair (P, P'), the fundamental matrix of camera pair (P', P) is F' = F^T

- Matrix 3×3 since $\mathbf{x'}^T \mathbf{F} \mathbf{x} = 0$
- Let F be the fundamental matrix of camera pair (P, P'), the fundamental matrix of camera pair (P', P) is F' = F^T
- This is true since $\mathbf{x}^T \mathbf{F}' \mathbf{x}' = 0$ implies $\mathbf{x}'^T \mathbf{F}'^T \mathbf{x} = 0$, so $\mathbf{F}' = \mathbf{F}^T$

- Matrix 3×3 since $\mathbf{x'}^T \mathbf{F} \mathbf{x} = 0$
- Let F be the fundamental matrix of camera pair (P, P'), the fundamental matrix of camera pair (P', P) is F' = F^T
- This is true since $\mathbf{x}^T \mathbf{F}' \mathbf{x}' = 0$ implies $\mathbf{x}'^T \mathbf{F}'^T \mathbf{x} = 0$, so $\mathbf{F}' = \mathbf{F}^T$
- Epipolar line of \mathbf{x} is $\mathbf{I}' = \mathbf{F}\mathbf{x}$

- Matrix 3×3 since $\mathbf{x'}^T \mathbf{F} \mathbf{x} = 0$
- Let F be the fundamental matrix of camera pair (P, P'), the fundamental matrix of camera pair (P', P) is F' = F^T
- This is true since $\mathbf{x}^T \mathbf{F}' \mathbf{x}' = 0$ implies $\mathbf{x}'^T \mathbf{F}'^T \mathbf{x} = 0$, so $\mathbf{F}' = \mathbf{F}^T$
- Epipolar line of \mathbf{x} is $\mathbf{I}' = \mathbf{F}\mathbf{x}$
- Epipolar line of \mathbf{x}' is $\mathbf{I} = \mathbf{F}^T \mathbf{x}'$

- Matrix 3×3 since $\mathbf{x'}^T \mathbf{F} \mathbf{x} = 0$
- Let F be the fundamental matrix of camera pair (P, P'), the fundamental matrix of camera pair (P', P) is F' = F^T
- This is true since $\mathbf{x}^T \mathbf{F}' \mathbf{x}' = 0$ implies $\mathbf{x}'^T \mathbf{F}'^T \mathbf{x} = 0$, so $\mathbf{F}' = \mathbf{F}^T$
- Epipolar line of \mathbf{x} is $\mathbf{I}' = \mathbf{F}\mathbf{x}$
- Epipolar line of \mathbf{x}' is $\mathbf{I} = \mathbf{F}^T \mathbf{x}'$
- Epipole e' is left null space of F, and e is right null space.

- Matrix 3×3 since $\mathbf{x'}^T \mathbf{F} \mathbf{x} = 0$
- Let F be the fundamental matrix of camera pair (P, P'), the fundamental matrix of camera pair (P', P) is F' = F^T
- This is true since $\mathbf{x}^T \mathbf{F}' \mathbf{x}' = 0$ implies $\mathbf{x}'^T \mathbf{F}'^T \mathbf{x} = 0$, so $\mathbf{F}' = \mathbf{F}^T$
- Epipolar line of \mathbf{x} is $\mathbf{I}' = \mathbf{F}\mathbf{x}$
- Epipolar line of \mathbf{x}' is $\mathbf{I} = \mathbf{F}^T \mathbf{x}'$
- Epipole e' is left null space of F, and e is right null space.
- All epipolar lines I' contains epipole e', so e'^TI' = 0, i.e. e'^TFx = 0 for all x, therefore e'^TF = 0

- Matrix 3×3 since $\mathbf{x'}^T \mathbf{F} \mathbf{x} = 0$
- Let F be the fundamental matrix of camera pair (P, P'), the fundamental matrix of camera pair (P', P) is F' = F^T
- This is true since $\mathbf{x}^T \mathbf{F}' \mathbf{x}' = 0$ implies $\mathbf{x}'^T \mathbf{F}'^T \mathbf{x} = 0$, so $\mathbf{F}' = \mathbf{F}^T$
- Epipolar line of \mathbf{x} is $\mathbf{I}' = \mathbf{F}\mathbf{x}$
- Epipolar line of \mathbf{x}' is $\mathbf{I} = \mathbf{F}^T \mathbf{x}'$
- Epipole e' is left null space of F, and e is right null space.
- All epipolar lines I' contains epipole e', so e'^TI' = 0, i.e. e'^TFx = 0 for all x, therefore e'^TF = 0
- **F** is of rank 2 because $\mathbf{F} = \mathbf{e}' \times (\mathbf{P}'\mathbf{P}^+)$ and $\mathbf{e}' \times$ is of rank 2

- Matrix 3×3 since $\mathbf{x'}^T \mathbf{F} \mathbf{x} = 0$
- Let F be the fundamental matrix of camera pair (P, P'), the fundamental matrix of camera pair (P', P) is F' = F^T
- This is true since $\mathbf{x}^T \mathbf{F}' \mathbf{x}' = 0$ implies $\mathbf{x}'^T \mathbf{F}'^T \mathbf{x} = 0$, so $\mathbf{F}' = \mathbf{F}^T$
- Epipolar line of \mathbf{x} is $\mathbf{I}' = \mathbf{F}\mathbf{x}$
- Epipolar line of \mathbf{x}' is $\mathbf{I} = \mathbf{F}^T \mathbf{x}'$
- Epipole e' is left null space of F, and e is right null space.
- All epipolar lines I' contains epipole e', so e'^TI' = 0, i.e. e'^TFx = 0 for all x, therefore e'^TF = 0
- **F** is of rank 2 because $\mathbf{F} = \mathbf{e}' \times (\mathbf{P}'\mathbf{P}^+)$ and $\mathbf{e}' \times$ is of rank 2
- F has 7 degrees of freedom, there are 9 elements, but scaling is not important and det(F) = 0 removes one degree of freedom

- Matrix 3×3 since $\mathbf{x'}^T \mathbf{F} \mathbf{x} = 0$
- Let F be the fundamental matrix of camera pair (P, P'), the fundamental matrix of camera pair (P', P) is F' = F^T
- This is true since $\mathbf{x}^T \mathbf{F}' \mathbf{x}' = 0$ implies $\mathbf{x}'^T \mathbf{F}'^T \mathbf{x} = 0$, so $\mathbf{F}' = \mathbf{F}^T$
- Epipolar line of \mathbf{x} is $\mathbf{I}' = \mathbf{F}\mathbf{x}$
- Epipolar line of \mathbf{x}' is $\mathbf{I} = \mathbf{F}^T \mathbf{x}'$
- Epipole e' is left null space of F, and e is right null space.
- All epipolar lines I' contains epipole e', so e'^TI' = 0, i.e. e'^TFx = 0 for all x, therefore e'^TF = 0
- **F** is of rank 2 because $\mathbf{F} = \mathbf{e}' \times (\mathbf{P}'\mathbf{P}^+)$ and $\mathbf{e}' \times$ is of rank 2
- F has 7 degrees of freedom, there are 9 elements, but scaling is not important and det(F) = 0 removes one degree of freedom

Pensils of Epipolar Lines

Mapping between epipolar lines (Homography)

 Define x as intersection between line I and a line k (that doesn't pass through e)

$$\begin{aligned} \mathbf{x} &= \mathbf{k} \times \mathbf{I} \\ \mathbf{I}' &= \mathbf{F} \mathbf{x} = \mathbf{F} (\mathbf{k} \times \mathbf{I}) \end{aligned}$$

We can also write

$$I' = Fx = F(e \times I)$$

and similarly

$$\mathbf{I} = \mathbf{F}^{\mathcal{T}} \mathbf{x}' = \mathbf{F}^{\mathcal{T}} (\mathbf{e}' \times \mathbf{I}')$$

Raquel Urtasun (TTI-C)

- Select world coordinates as camera coordinates of first camera, select focal length = 1, and count pixels from the principal point. Then $\mathbf{P} = [\mathbf{I}_3, \mathbf{0}]$
- $\bullet~$ Then P = [SF|e'] with S any skew-symmetric matrix is a solution
- How do we prove this?

$$\mathbf{x'}^T \mathbf{F} \mathbf{x} = \mathbf{X}^T \mathbf{P'}^T \mathbf{F} \mathbf{P} \mathbf{X}$$

• The middle part is skew symmetric

$$\mathbf{P'}^{\mathsf{T}}\mathbf{F}\mathbf{P} = [\mathbf{S}\mathbf{F}|\mathbf{e}']^{\mathsf{T}}F[\mathbf{I}_3|0]$$

$$\mathbf{P'}^{T}\mathbf{F}\mathbf{P} = [\mathbf{S}\mathbf{F}|\mathbf{e}']^{T}\mathbf{F}[\mathbf{I}_{3}|0] = \begin{bmatrix} \mathbf{F}^{T}\mathbf{S}^{T}\mathbf{F} & \mathbf{0}_{3} \\ \mathbf{e'}^{T}\mathbf{F} & \mathbf{0} \end{bmatrix}$$

- $\mathbf{e}'^T \mathbf{F} = 0$ because \mathbf{e}' is left null space of \mathbf{F}
- $\mathbf{F}^{\mathsf{T}} \mathbf{S}^{\mathsf{T}} \mathbf{F}$ is skew-symmetric for any \mathbf{F} and any skew-symmetric \mathbf{S}

$$\mathbf{P}^{\prime T} \mathbf{F} \mathbf{P} = [\mathbf{S} \mathbf{F} | \mathbf{e}^{\prime}]^{T} \mathbf{F} [\mathbf{I}_{3} | 0] = \begin{bmatrix} \mathbf{F}^{T} \mathbf{S}^{T} \mathbf{F} & \mathbf{0}_{3} \\ 0 & 0 \end{bmatrix}$$

Retrieving Camera Matrices from F

- Select world coordinates as camera coordinates of first camera, select focal length = 1, and count pixels from the principal point. Then $\mathbf{P} = [\mathbf{I}_3, \mathbf{0}]$
- Then $\mathbf{P} = [\mathbf{SF}|\mathbf{e}']$ with \mathbf{S} any skew-symmetric matrix is a solution
- How do we proof this?

$$\mathbf{x'}^T \mathbf{F} \mathbf{x} = \mathbf{X}^T \mathbf{P}'^T \mathbf{F} \mathbf{P} \mathbf{X}$$

• The middle part is skew symmetric

$$\mathbf{P'}^{T}\mathbf{F}\mathbf{P} = [\mathbf{S}\mathbf{F}|\mathbf{e}']^{T}\mathbf{F}[\mathbf{I}_{3}|\mathbf{0}]$$

• For any skew-symmetric matrix ${\boldsymbol{S}}'$ and any ${\boldsymbol{X}}$

$$\mathbf{X}^T \mathbf{S}' \mathbf{X} = 0$$

• A good choice is $\boldsymbol{S} = [\boldsymbol{e}']_{\times}$, therefore

$$\mathbf{P}' = [(\mathbf{e}' \times \mathbf{F}), \mathbf{e}']$$

• $[\mathbf{a}']_{\times}$ is defined as:

$$[\mathbf{a}]_{\times} = \begin{bmatrix} 0 & -\mathbf{a}_3 & \mathbf{a}_2 \\ \mathbf{a}_3 & 0 & -\mathbf{a}_1 \\ -\mathbf{a}_2 & \mathbf{a}_1 & 0 \end{bmatrix}$$

• $\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_{\times} \mathbf{b} = (\mathbf{a}^T [\mathbf{b}]_{\times})^T$
• $[\mathbf{a}]_{\times} \mathbf{a} = 0$

Essential Matrix

• Specialization of fundamental matrix for calibrated cameras and normalized coordinates

 $\mathbf{x} = \mathbf{P}\mathbf{X}$

- Normalized coordinates $\mathbf{x}_0 = \mathbf{K}^{-1} \mathbf{x}$
- Consider pair of normalized cameras

$$\mathbf{P} = [\mathbf{I}|\mathbf{0}], \ \mathbf{P}' = [\mathbf{R}|\mathbf{T}]$$

• Then we compute

$$\mathbf{F} = [\mathbf{P}'\mathbf{C}]_{\times}\mathbf{P}'\mathbf{P}^+$$

with

$$\begin{bmatrix} \mathbf{P}'\mathbf{C} \end{bmatrix} = \begin{bmatrix} \mathbf{R} | \mathbf{T} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{T} \end{bmatrix}$$
$$\mathbf{P}^{+} = \begin{bmatrix} \mathbf{I}_{3} \\ \mathbf{0}_{3}^{T} \end{bmatrix} \qquad \mathbf{P}'\mathbf{P}^{+} = \mathbf{R} \qquad \rightarrow \mathbf{F} = \mathbf{T} \times \mathbf{R} = \mathbf{E}$$

• The defining equation for essential matrix is

$$\mathbf{x}_o'\mathbf{E}\mathbf{x}_0=0$$

with
$$\mathbf{x}_0 = \mathbf{K}^{-1}\mathbf{x}$$
 and $\mathbf{x}_0' = \mathbf{K}'^{-1}\mathbf{x}'$

• Therefore

$$\mathbf{x}^{\prime T} \mathbf{K}^{\prime - T} \mathbf{E} \mathbf{K}^{-1} \mathbf{x} = 0$$

• Since $\mathbf{x}'\mathbf{F}\mathbf{x} = 0$ then

 $\mathbf{E} = \mathbf{K}'^T \mathbf{F} \mathbf{K}$

• For any pair of correspondence points you have an equation

$$\mathbf{x}_i'\mathbf{F}\mathbf{x}_i = 0$$

with (x, y, 1) and (x', y', 1)

- solve the linear system for N matches
- How? do it in the board
- How many points do you need?
- There are 8 unknowns, use the 8-point algorithm
- How do we make this robust?

Stereo with ideal geometry

- Optical axes are parallel and separated by **baseline** b
- Line connecting lens centers is perpendicular to the optical axis, and the x axis is parallel to that line
- 3D coordinate system is a cyclopean system centered between the cameras

Stereo imaging

- The coordinates of a point are (X, Y, Z) in the cyclopean coordinate system
- The coordinates of the point in the left camera coordinate system are

$$(X_L, Y_L, Z_L) = (X - b/2, Y, Z)$$

and in the right camera coordinate system are

$$(X_R, Y_R, Z_R) = (X + b/2, Y, Z)$$

• The x image coordinates of the projection in both cameras are

$$x_L = (X + \frac{b}{2})\frac{f}{Z} \qquad x_R = (X - \frac{b}{2})\frac{f}{Z}$$

• Subtracting the second equation from the first, and solving for Z we obtain:

$$Z = \frac{b \cdot f}{x_L - x_R} = \frac{b \cdot f}{d}$$

with d the disparity

• Subtracting the second equation from the first, and solving for Z we obtain:

$$Z = \frac{b \cdot f}{x_L - x_R} = \frac{b \cdot f}{d}$$

with d the disparity

• We can also solve for X and Y

$$X = \frac{b(x_L + x_R)}{2(x_L - x_R)} = \frac{b(x_L + x_R)}{2d} \qquad Y = \frac{b \cdot y}{x_L - x_R} = \frac{b \cdot y}{d}$$

• d is call the disparity and is always negative

• Distance is inversely proportional to absolute value of the disparity

- Disparity of 0 corresponds to points that are infinitely far away from the cameras
- Disparity typically in integers (some methods use subpixel accuracy)
- Thus a disparity measurement in the image just constrains distance to lie in a given range
- Disparity is directly proportional to b
 - the larger b, the further we can accurately range
 - but as *b* increases, the images decrease in common field of view

Range vs Disparity

- A scene point, P, visible in both cameras gives rise to a pair of image points called a **conjugate pair**
- the conjugate of a point in the left (right) image must lie on the same image row (line) in the right (left) image because the two have the same y coordinate
- this line is called the **conjugate line**.
- for our simple image geometry, all conjugate lines are parallel to the x axis

- Difficult in practice to
 - have the optical axes parallel
 - have the baseline perpendicular to the optical axes
- we might want to tilt the cameras towards one another to have more overlap in the images
- Calibration problem finding the transformation between the two cameras

General Stereo Algorithm

- Assume relative orientation of cameras is known
- An image point (*x_L*, *y_L*) in the left coordinate system is the image of some point on a ray through the origin of the left camera coordinate system, thus

$$X_L = x_L s$$
 $Y_L = y_L s$ $Z_L = fs$

• In the right image system, the coordinates of points on this ray are:

$$X_{R} = (r_{11}x_{L} + r_{12}y_{L} + r_{13}f)s + u$$

$$Y_{R} = (r_{21}x_{L} + r_{22}y_{L} + r_{23}f)s + v$$

$$Z_{R} = (r_{31}x_{L} + r_{32}y_{L} + r_{33}f)s + w$$

• Why?

• These points project on the right camera onto

$$x_R = f \frac{X_R}{Z_R}$$
 $y_R = f \frac{Y_R}{Z_R}$

[Source: Ramani]

Raquel Urtasun (TTI-C)

• In the right image system, the coordinates of points on this ray are:

$$\begin{aligned} X_R &= (r_{11}x_L + r_{12}y_L + r_{13}f)s + u &= as + u \\ Y_R &= (r_{21}x_L + r_{22}y_L + r_{23}f)s + v &= bs + v \\ Z_R &= (r_{31}x_L + r_{32}y_L + r_{33}f)s + w &= cs + w \end{aligned}$$

Then

$$\frac{x_R}{f} = \frac{as + u}{cs + w} \qquad \frac{y_R}{f} = \frac{bs + u}{cs + w}$$

- This is a straight line connecting the point
 - (u/w, v/w) which occurs for s = 0 and is the image of the left camera center in the right camera coordinate system to
 - (a/c, b/c) which occurs as s approaches infinity, the vanishing point for the ray

General Stereo Geometry

- Point P lies somewhere on the ray (line) from p_L through O_L
- from the left image alone, we do not know where on this ray P lies
- perspective projection of a line is a line
- The first point on the line that might correspond to P is O_L , any point closer to the left image than O_L could not be seen
- the perspective projection of O_L in the right camera is the point o_R^L
- The last point on line that might correspond to P is the point infinitely far away along the ray
- its image is the vanishing point of the ray in the right camera, d_R
- any other possible location for P will project to a point in R on the line joining o_R^L to d_R .

General Stereo Geometry

- Given any point, *p_L*, in the left image of a stereo pair, its conjugate point must appear on a line in the right image
- all of the conjugate lines for all of the points in the left image must pass through a common point in the right image
 - this is image of the left lens center in the right image
 - this point lies on the line of sight for every point in the left image
 - the conjugate lines must all contain (i.e., pass through) the image of this point
 - This point is called an **epipole**.
- The conjugate line for p_L must also pass through the vanishing point in the right image for the line of sight through p_L

General Stereo Geometry

- The points O_L , p_L , and o_L^R are three noncollinear points, so they form a plane,
- The intersection of this plane with the right image plane is the conjugate line of p_L , and this would be the image of any line on this plane
- Let p'_L be some other point on the line joining p_L and o_L^R ,
- the line of sight through p'_L to P' lies on the plane since two points on that line (p_L and o^R_L lie on the plane
- Thus, the conjugate line for p'_L must be the same line as the conjugate line for p_L , or **for any other point** on the line containing p_L and o_L^R
- We use this epipolar lines for matching

- transforming a stereo pair taken under general conditions into the ideal configuration
- Involves a rotation of one image so that the optical axes of the two image coordinate systems are parallel
- Simplifies computational structure of stereo matching algorithm
- But requires interpolation to create rotated image and can create a large rectified image if the rotation angles are large.

Rectification

• Given a point, p, in the left image, find its conjugate point in the right image

- What constraints simplify this problem?
 - Epipolar constraint need only search for the conjugate point on the epipolar line
 - Disparity sign constraint need only search the epipolar line to the right of the vanishing point in the right image of the ray through p in the left coordinate system
 - Continuity constraint if we are looking at a continuous surface, images of points along a given epipolar line will be ordered the same way
 - Disparity gradient constraint disparity changes slowly over most of the image (Exceptions occur at and near occluding boundaries)

- Foreshortening effects
- A square match window in one image will be distorted in the other if disparity is not constant (complicates correlation)
- Variations in intensity between images due to: noise, specularities, shape-from-shading differences
- Occlusion: points visible in one image and not the other
- Coincidence of edge and epipolar line orientation

- Photogrammetry: Creation of digital elevation models from high resolution aerial imagery
- Visual navigation: Obstacle detection
- Creating models for graphics applications: For objects difficult to design using CAD systems