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Today’s Readings

Chapter 11 of Szeliski’s book
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Let’s look into stereo reconstruction
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Stereo

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923 

[Source: N. Snavely]
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Stereo

Stereo matching is the process of taking two or more images and
estimating a 3D model of the scene by finding matching pixels in the
images and converting their 2D positions into 3D depths

We perceived depth based on the difference in appearance of the right and
left eye.
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Stereo

Given two images from different viewpoints

The depth is proportional to the inverse of the disparity

How can we compute the depth of each point in the image?

Based on how much each pixel moves between the two images

[Source: N. Snavely]
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Epipolar Geometry

Pixel in one image x0 projects to an epipolar line segment in the other
image

The segment is bounded at one end by the projection of the original viewing
ray at infinity p∞ and at the other end by the projection of the original
camera center c0 into the second camera, which is known as the epipole e1.
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Epipolar Geometry

If we project the epipolar line in the second image back into the first, we get
another line (segment), this time bounded by the other corresponding
epipole e0

Extending both line segments to infinity, we get a pair of corresponding
epipolar lines, which are the intersection of the two image planes with the
epipolar plane that passes through both camera centers c0 and c1 as well
as the point of interest p
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Epipolar Plane

[Source: Ramani]
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Rectification

The epipolar geometry depends on the relative pose and calibration of the
cameras

This can be computed using the fundamental matrix

Once this is computed, we can use the epipolar lines to restrict the search
space to a 1D search

Rectification, the process of transforming the image so that the search is
along horizontal line
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Epipolar Geometry
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The disparity for pixel (x1, y1) is (x2 − x1) if the images are rectified

This is a one dimensional search for each pixel

Very challenging to estimate the correspondences

[Source: N. Snavely]
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Fundamental Matrix

Projective geometry depends only on the cameras internal parameters and
relative pose of cameras (and not the 3D scene)

Fundamental matrix F encapsulates this geometry
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Computation of Fundamental Matrix

We will show that for any pair of corresponding points in both images

xT0 Fx1 = 0

F can be computed from correspondences between image points alone

No knowledge of camera internal parameters required

No knowledge of relative pose required

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 13 / 119



Computation of Fundamental Matrix

We will show that for any pair of corresponding points in both images

xT0 Fx1 = 0

F can be computed from correspondences between image points alone

No knowledge of camera internal parameters required

No knowledge of relative pose required

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 13 / 119



Computation of Fundamental Matrix

We will show that for any pair of corresponding points in both images

xT0 Fx1 = 0

F can be computed from correspondences between image points alone

No knowledge of camera internal parameters required

No knowledge of relative pose required

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 13 / 119



Fundamental Matrix and Projective Geometry
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Take x in camera P and find scene point X on ray of x in camera P

Find the image x′ of X in camera P′

Find epipole e′ as image of C in camera P′, e′ = P′C

Find epipolar line l′ from e′ to x′ in P′ as function of x: l′ = e′ × x′

x′ and x are related via homography: x′ = Hπx

l′ = e′ × x′ = e′ × Hπx = Fx

The fundamental matrix F is defined l′ = Fx

x′ belongs to l′, so x′T l′ = 0, so x′TFx = 0
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Finding the Fundamental Matrix from known Projections

Take x in camera P and find one scene point on ray from C to x

Point X = P+x satisfies x = PX with P+ = PT (PPT )−1 so
PX = PPT (PPT )−1x = x

Image of this point in camera P′ is x′ = P′X = P′P+x

Image of C in camera P′ is epipole e′ = P′C

Epipolar line of x in P′ is

l′ = (e′)× (P′P+x)

l′ = Fx defines the fundamental matrix

F = (P′C)× (P′P+)
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Properties of the fundamental matrix

Matrix 3× 3 since x′TFx = 0

Let F be the fundamental matrix of camera pair (P,P′), the fundamental
matrix of camera pair (P′,P) is F′ = FT

This is true since xTF′x′ = 0 implies x′TF′Tx = 0, so F′ = FT

Epipolar line of x is l′ = Fx

Epipolar line of x′ is l = FTx′

Epipole e′ is left null space of F, and e is right null space.

All epipolar lines l′ contains epipole e′, so e′T l′ = 0, i.e. e′TFx = 0 for all x,
therefore e′TF = 0

F is of rank 2 because F = e′ × (P′P+) and e′× is of rank 2

F has 7 degrees of freedom, there are 9 elements, but scaling is not
important and det(F) = 0 removes one degree of freedom
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Pensils of Epipolar Lines

[Source: Ramani]
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Mapping between epipolar lines (Homography)

Define x as intersection between line l and a line k (that doesn’t pass
through e)

x = k× l

l′ = Fx = F(k× l)

We can also write
l′ = Fx = F(e× l)

and similarly
l = FTx′ = FT (e′ × l′)

[Source: Ramani]
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Retrieving Camera Matrices from F

Select world coordinates as camera coordinates of first camera, select focal
length = 1, and count pixels from the principal point. Then P = [I3, 0]

Then P = [SF|e′] with S any skew-symmetric matrix is a solution

How do we prove this?

x′
T

Fx = XTP′TFPX

The middle part is skew symmetric

P′TFP = [SF|e′]TF [I3|0]
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The middle part is skew symmetric

P′TFP = [SF|e′]TF[I3|0] =

[
FTSTF 03

e′TF 0

]

e′TF = 0 because e′ is left null space of F

FTSTF is skew-symmetric for any F and any skew-symmetric S

P′TFP = [SF|e′]TF[I3|0] =

[
FTSTF 03

0 0

]
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length = 1, and count pixels from the principal point. Then P = [I3, 0]

Then P = [SF|e′] with S any skew-symmetric matrix is a solution

How do we proof this?

x′
T

Fx = XTP′TFPX

The middle part is skew symmetric

P′TFP = [SF|e′]TF[I3|0]

For any skew-symmetric matrix S′ and any X

XTS′X = 0

A good choice is S = [e′]×, therefore

P′ = [(e′ × F), e′]
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Notation [a]×

[a′]× is defined as:

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


a× b = [a]×b =

(
aT [b]×

)T
[a]×a = 0
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Essential Matrix

Specialization of fundamental matrix for calibrated cameras and normalized
coordinates

x = PX

Normalized coordinates x0 = K−1x

Consider pair of normalized cameras

P = [I|0], P′ = [R|T]

Then we compute
F = [P′C]×P′P+

with

[P′C] = [R|T]


0
0
0
1

 = [T]

P+ =

[
I3
0T
3

]
P′P+ = R → F = T× R = E
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Essential Matrix and Fundamental Matrix

The defining equation for essential matrix is

x′oEx0 = 0

with x0 = K−1x and x′0 = K′−1x′

Therefore
x′TK′−TEK−1x = 0

Since x′Fx = 0 then
E = K′TFK
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Computing Fundamental Matrix from correspondences

For any pair of correspondence points you have an equation

x′iFxi = 0

with (x , y , 1) and (x ′, y ′, 1)

solve the linear system for N matches

How? do it in the board

How many points do you need?

There are 8 unknowns, use the 8-point algorithm

How do we make this robust?
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Stereo with ideal geometry

Optical axes are parallel and separated by baseline b

Line connecting lens centers is perpendicular to the optical axis, and the x
axis is parallel to that line

3D coordinate system is a cyclopean system centered between the cameras

[Source: Ramani]
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Stereo imaging

The coordinates of a point are (X ,Y ,Z ) in the cyclopean coordinate system

The coordinates of the point in the left camera coordinate system are

(XL,YL,ZL) = (X − b/2,Y ,Z )

and in the right camera coordinate system are

(XR ,YR ,ZR) = (X + b/2,Y ,Z )

The x image coordinates of the projection in both cameras are

xL = (X +
b

2
)
f

Z
xR = (X − b

2
)
f

Z

Subtracting the second equation from the first, and solving for Z we obtain:

Z =
b · f

xL − xR
=

b · f
d

with d the disparity
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Stereo imaging

Subtracting the second equation from the first, and solving for Z we obtain:

Z =
b · f

xL − xR
=

b · f
d

with d the disparity

We can also solve for X and Y

X =
b(xL + xR)

2(xL − xR)
=

b(xL + xR)

2d
Y =

b · y
xL − xR

=
b · y
d

d is call the disparity and is always negative
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Properties of Disparity

Distance is inversely proportional to absolute value of the disparity

Disparity of 0 corresponds to points that are infinitely far away from
the cameras
Disparity typically in integers (some methods use subpixel accuracy)
Thus a disparity measurement in the image just constrains distance to
lie in a given range

Disparity is directly proportional to b

the larger b, the further we can accurately range
but as b increases, the images decrease in common field of view

[Source: Ramani]
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Range vs Disparity

[Source: Ramani]
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More on stereo

A scene point, P, visible in both cameras gives rise to a pair of image points
called a conjugate pair

the conjugate of a point in the left (right) image must lie on the same image
row (line) in the right (left) image because the two have the same y
coordinate

this line is called the conjugate line.

for our simple image geometry, all conjugate lines are parallel to the x axis

[Source: Ramani]
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More practical scenario

Difficult in practice to

have the optical axes parallel
have the baseline perpendicular to the optical axes

we might want to tilt the cameras towards one another to have more overlap
in the images

Calibration problem - finding the transformation between the two cameras
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General Stereo Algorithm

Assume relative orientation of cameras is known

An image point (xL, yL) in the left coordinate system is the image of some
point on a ray through the origin of the left camera coordinate system, thus

XL = xLs YL = yLs ZL = fs

In the right image system, the coordinates of points on this ray are:

XR = (r11xL + r12yL + r13f )s + u

YR = (r21xL + r22yL + r23f )s + v

ZR = (r31xL + r32yL + r33f )s + w

Why?

These points project on the right camera onto

xR = f
XR

ZR
yR = f

YR

ZR

[Source: Ramani]
Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 33 / 119



General stereo

In the right image system, the coordinates of points on this ray are:

XR = (r11xL + r12yL + r13f )s + u = as + u

YR = (r21xL + r22yL + r23f )s + v = bs + v

ZR = (r31xL + r32yL + r33f )s + w = cs + w

Then
xR
f

=
as + u

cs + w

yR
f

=
bs + u

cs + w

This is a straight line connecting the point

(u/w , v/w) which occurs for s = 0 and is the image of the left camera
center in the right camera coordinate system to
(a/c , b/c) which occurs as s approaches infinity,the vanishing point for
the ray

[Source: Ramani]
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General Stereo Geometry

[Source: Ramani]
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General Stereo

Point P lies somewhere on the ray (line) from pL through OL

from the left image alone, we do not know where on this ray P lies

perspective projection of a line is a line

The first point on the line that might correspond to P is OL, any point
closer to the left image than OL could not be seen

the perspective projection of OL in the right camera is the point oL
R

The last point on line that might correspond to P is the point infinitely far
away along the ray

its image is the vanishing point of the ray in the right camera, dR

any other possible location for P will project to a point in R on the line
joining oL

R to dR .

[Source: Ramani]
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General Stereo Geometry

[Source: Ramani]
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General Stereo

Given any point, pL, in the left image of a stereo pair, its conjugate point
must appear on a line in the right image

all of the conjugate lines for all of the points in the left image must pass
through a common point in the right image

this is image of the left lens center in the right image
this point lies on the line of sight for every point in the left image
the conjugate lines must all contain (i.e., pass through) the image of
this point
This point is called an epipole.

The conjugate line for pL must also pass through the vanishing point in the
right image for the line of sight through pL
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General Stereo Geometry

[Source: Ramani]

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 39 / 119



More on geometry

The points OL, pL, and oR
L are three noncollinear points, so they form a

plane,

The intersection of this plane with the right image plane is the conjugate
line of pL, and this would be the image of any line on this plane

Let p′L be some other point on the line joining pL and oR
L ,

the line of sight through p′L to P ′ lies on the plane since two points on that
line (pL and oR

L lie on the plane

Thus, the conjugate line for p′L must be the same line as the conjugate line
for pL, or for any other point on the line containing pL and oR

L

We use this epipolar lines for matching

[Source: Ramani]
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Rectification

transforming a stereo pair taken under general conditions into the ideal
configuration

Involves a rotation of one image so that the optical axes of the two image
coordinate systems are parallel

Simplifies computational structure of stereo matching algorithm

But requires interpolation to create rotated image and can create a large
rectified image if the rotation angles are large.

[Source: Ramani]
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Rectification

[Source: Ramani]
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Stereo correspondence problem

Given a point,p, in the left image, find its conjugate point in the right image

What constraints simplify this problem?

Epipolar constraint - need only search for the conjugate point on the
epipolar line
Disparity sign constraint - need only search the epipolar line to the
right of the vanishing point in the right image of the ray through p in
the left coordinate system
Continuity constraint - if we are looking at a continuous surface, images
of points along a given epipolar line will be ordered the same way
Disparity gradient constraint - disparity changes slowly over most of
the image (Exceptions occur at and near occluding boundaries)

[Source: Ramani]

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 43 / 119



Why is the correspondence problem hard

Foreshortening effects

A square match window in one image will be distorted in the other if
disparity is not constant (complicates correlation)

Variations in intensity between images due to: noise, specularities,
shape-from-shading differences

Occlusion: points visible in one image and not the other

Coincidence of edge and epipolar line orientation
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Applications of Stereo

Photogrammetry: Creation of digital elevation models from high resolution
aerial imagery

Visual navigation: Obstacle detection

Creating models for graphics applications: For objects difficult to design
using CAD systems

[Source: Ramani]
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