Stereo

Raquel Urtasun

TTI Chicago

Feb 7, 2013

Today's Readings

- Chapter 11 of Szeliski's book

Let's look into stereo reconstruction

Stereo

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

[Source: N. Snavely]
Raquel Urtasun (TTI-C)

Stereo

- Stereo matching is the process of taking two or more images and estimating a 3D model of the scene by finding matching pixels in the images and converting their 2D positions into 3D depths
- We perceived depth based on the difference in appearance of the right and left eye.

Stereo

- Stereo matching is the process of taking two or more images and estimating a 3D model of the scene by finding matching pixels in the images and converting their 2D positions into 3D depths
- We perceived depth based on the difference in appearance of the right and left eye.

Stereo

Given two images from different viewpoints

- The depth is proportional to the inverse of the disparity
- How can we compute the depth of each point in the image?

Stereo

Given two images from different viewpoints

- The depth is proportional to the inverse of the disparity
- How can we compute the depth of each point in the image?
- Based on how much each pixel moves between the two images
[Source: N. Snavely]

Stereo

Given two images from different viewpoints

- The depth is proportional to the inverse of the disparity
- How can we compute the depth of each point in the image?
- Based on how much each pixel moves between the two images
[Source: N. Snavely]

Epipolar Geometry

- Pixel in one image \mathbf{x}_{0} projects to an epipolar line segment in the other image
- The segment is bounded at one end by the projection of the original viewing ray at infinity \mathbf{p}_{∞} and at the other end by the projection of the original camera center \mathbf{c}_{0} into the second camera, which is known as the epipole \mathbf{e}_{1}.

Epipolar Geometry

- Pixel in one image \mathbf{x}_{0} projects to an epipolar line segment in the other image
- The segment is bounded at one end by the projection of the original viewing ray at infinity \mathbf{p}_{∞} and at the other end by the projection of the original camera center \mathbf{c}_{0} into the second camera, which is known as the epipole \mathbf{e}_{1}.

Epipolar Geometry

- If we project the epipolar line in the second image back into the first, we get another line (segment), this time bounded by the other corresponding epipole e_{0}
- Extending both line segments to infinity, we get a pair of corresponding epipolar lines, which are the intersection of the two image planes with the epipolar plane that passes through both camera centers \mathbf{c}_{0} and \mathbf{c}_{1} as well as the point of interest p

Epipolar Geometry

- If we project the epipolar line in the second image back into the first, we get another line (segment), this time bounded by the other corresponding epipole e_{0}
- Extending both line segments to infinity, we get a pair of corresponding epipolar lines, which are the intersection of the two image planes with the epipolar plane that passes through both camera centers \mathbf{c}_{0} and \mathbf{c}_{1} as well as the point of interest \mathbf{p}

Epipolar Plane

[Source: Ramani]

Rectification

- The epipolar geometry depends on the relative pose and calibration of the cameras
- This can be computed using the fundamental matrix

Rectification

- The epipolar geometry depends on the relative pose and calibration of the cameras
- This can be computed using the fundamental matrix
- Once this is computed, we can use the epipolar lines to restrict the search space to a 1D search

Rectification

- The epipolar geometry depends on the relative pose and calibration of the cameras
- This can be computed using the fundamental matrix
- Once this is computed, we can use the epipolar lines to restrict the search space to a 1D search
- Rectification, the process of transforming the image so that the search is along horizontal line

Rectification

- The epipolar geometry depends on the relative pose and calibration of the cameras
- This can be computed using the fundamental matrix
- Once this is computed, we can use the epipolar lines to restrict the search space to a 1D search
- Rectification, the process of transforming the image so that the search is along horizontal line

Epipolar Geometry

Two images captured by a purely horizontal translating camera (rectified stereo pair)

- The disparity for pixel $\left(x_{1}, y_{1}\right)$ is $\left(x_{2}-x_{1}\right)$ if the images are rectified
- This is a one dimensional search for each pixel

Epipolar Geometry

Two images captured by a purely horizontal translating camera (rectified stereo pair)

- The disparity for pixel $\left(x_{1}, y_{1}\right)$ is $\left(x_{2}-x_{1}\right)$ if the images are rectified
- This is a one dimensional search for each pixel
- Very challenging to estimate the correspondences
[Source: N. Snavely]

Epipolar Geometry

Two images captured by a purely horizontal translating camera (rectified stereo pair)

- The disparity for pixel $\left(x_{1}, y_{1}\right)$ is $\left(x_{2}-x_{1}\right)$ if the images are rectified
- This is a one dimensional search for each pixel
- Very challenging to estimate the correspondences
[Source: N. Snavely]

Fundamental Matrix

- Projective geometry depends only on the cameras internal parameters and relative pose of cameras (and not the 3D scene)
- Fundamental matrix F encapsulates this geometry

Fundamental Matrix

- Projective geometry depends only on the cameras internal parameters and relative pose of cameras (and not the 3D scene)
- Fundamental matrix \mathbf{F} encapsulates this geometry

Computation of Fundamental Matrix

- We will show that for any pair of corresponding points in both images

$$
\mathbf{x}_{0}^{T} \mathbf{F} \mathbf{x}_{1}=0
$$

- F can be computed from correspondences between image points alone
- No knowledge of camera internal parameters required

Computation of Fundamental Matrix

- We will show that for any pair of corresponding points in both images

$$
\mathbf{x}_{0}^{T} \mathbf{F} \mathbf{x}_{1}=0
$$

- F can be computed from correspondences between image points alone
- No knowledge of camera internal parameters required
- No knowledge of relative pose required

Computation of Fundamental Matrix

- We will show that for any pair of corresponding points in both images

$$
\mathbf{x}_{0}^{T} \mathbf{F} \mathbf{x}_{1}=0
$$

- F can be computed from correspondences between image points alone
- No knowledge of camera internal parameters required
- No knowledge of relative pose required

Fundamental Matrix and Projective Geometry

- Take \mathbf{x} in camera \mathbf{P} and find scene point \mathbf{X} on ray of \mathbf{x} in camera \mathbf{P}
- Find the image x^{\prime} of \mathbf{X} in camera \mathbf{P}^{\prime}

Fundamental Matrix and Projective Geometry

- Take \mathbf{x} in camera \mathbf{P} and find scene point \mathbf{X} on ray of \mathbf{x} in camera \mathbf{P}
- Find the image \mathbf{x}^{\prime} of \mathbf{X} in camera \mathbf{P}^{\prime}
- Find epipole e^{\prime} as image of C in camera $\mathbf{P}^{\prime}, e^{\prime}=P^{\prime} C$

Fundamental Matrix and Projective Geometry

- Take \mathbf{x} in camera \mathbf{P} and find scene point \mathbf{X} on ray of \mathbf{x} in camera \mathbf{P}
- Find the image \mathbf{x}^{\prime} of \mathbf{X} in camera \mathbf{P}^{\prime}
- Find epipole \mathbf{e}^{\prime} as image of \mathbf{C} in camera $\mathbf{P}^{\prime}, \mathbf{e}^{\prime}=\mathbf{P}^{\prime} \mathbf{C}$
- Find epipolar line I^{\prime} from e^{\prime} to x^{\prime} in \mathbf{P}^{\prime} as function of $x: I^{\prime}=e^{\prime} \times x^{\prime}$

Fundamental Matrix and Projective Geometry

- Take \mathbf{x} in camera \mathbf{P} and find scene point \mathbf{X} on ray of \mathbf{x} in camera \mathbf{P}
- Find the image \mathbf{x}^{\prime} of \mathbf{X} in camera \mathbf{P}^{\prime}
- Find epipole \mathbf{e}^{\prime} as image of \mathbf{C} in camera $\mathbf{P}^{\prime}, \mathbf{e}^{\prime}=\mathbf{P}^{\prime} \mathbf{C}$
- Find epipolar line \mathbf{I}^{\prime} from \mathbf{e}^{\prime} to \mathbf{x}^{\prime} in \mathbf{P}^{\prime} as function of \mathbf{x} : $\mathbf{I}^{\prime}=\mathbf{e}^{\prime} \times \mathbf{x}^{\prime}$
- x^{\prime} and x are related via homography: $x^{\prime}=H_{\pi} x$

Fundamental Matrix and Projective Geometry

- Take \mathbf{x} in camera \mathbf{P} and find scene point \mathbf{X} on ray of \mathbf{x} in camera \mathbf{P}
- Find the image \mathbf{x}^{\prime} of \mathbf{X} in camera \mathbf{P}^{\prime}
- Find epipole \mathbf{e}^{\prime} as image of \mathbf{C} in camera $\mathbf{P}^{\prime}, \mathbf{e}^{\prime}=\mathbf{P}^{\prime} \mathbf{C}$
- Find epipolar line \mathbf{I}^{\prime} from \mathbf{e}^{\prime} to \mathbf{x}^{\prime} in \mathbf{P}^{\prime} as function of \mathbf{x} : $\mathbf{I}^{\prime}=\mathbf{e}^{\prime} \times \mathbf{x}^{\prime}$
- \mathbf{x}^{\prime} and \mathbf{x} are related via homography: $\mathbf{x}^{\prime}=H_{\pi} \mathbf{x}$
- $\mathrm{I}^{\prime}=\mathrm{e}^{\prime} \times \mathrm{x}^{\prime}=\mathrm{e}^{\prime} \times H_{\pi} \mathrm{x}=\mathrm{Fx}$

Fundamental Matrix and Projective Geometry

- Take \mathbf{x} in camera \mathbf{P} and find scene point \mathbf{X} on ray of \mathbf{x} in camera \mathbf{P}
- Find the image \mathbf{x}^{\prime} of \mathbf{X} in camera \mathbf{P}^{\prime}
- Find epipole \mathbf{e}^{\prime} as image of \mathbf{C} in camera $\mathbf{P}^{\prime}, \mathbf{e}^{\prime}=\mathbf{P}^{\prime} \mathbf{C}$
- Find epipolar line \mathbf{I}^{\prime} from \mathbf{e}^{\prime} to \mathbf{x}^{\prime} in \mathbf{P}^{\prime} as function of $\mathbf{x}: \mathbf{I}^{\prime}=\mathbf{e}^{\prime} \times \mathbf{x}^{\prime}$
- \mathbf{x}^{\prime} and \mathbf{x} are related via homography: $\mathbf{x}^{\prime}=H_{\pi} \mathbf{x}$
- $\mathbf{I}^{\prime}=\mathbf{e}^{\prime} \times \mathbf{x}^{\prime}=\mathbf{e}^{\prime} \times H_{\pi} \mathbf{x}=\mathbf{F} \mathbf{x}$
- The fundamental matrix F is defined $\mathrm{I}^{\prime}=\mathrm{Fx}$

Fundamental Matrix and Projective Geometry

- Take \mathbf{x} in camera \mathbf{P} and find scene point \mathbf{X} on ray of \mathbf{x} in camera \mathbf{P}
- Find the image \mathbf{x}^{\prime} of \mathbf{X} in camera \mathbf{P}^{\prime}
- Find epipole \mathbf{e}^{\prime} as image of \mathbf{C} in camera $\mathbf{P}^{\prime}, \mathbf{e}^{\prime}=\mathbf{P}^{\prime} \mathbf{C}$
- Find epipolar line \mathbf{I}^{\prime} from \mathbf{e}^{\prime} to \mathbf{x}^{\prime} in \mathbf{P}^{\prime} as function of \mathbf{x} : $\mathbf{I}^{\prime}=\mathbf{e}^{\prime} \times \mathbf{x}^{\prime}$
- \mathbf{x}^{\prime} and \mathbf{x} are related via homography: $\mathbf{x}^{\prime}=H_{\pi} \mathbf{x}$
- $\mathbf{I}^{\prime}=\mathbf{e}^{\prime} \times \mathbf{x}^{\prime}=\mathbf{e}^{\prime} \times H_{\pi} \mathbf{x}=\mathbf{F} \mathbf{x}$
- The fundamental matrix \mathbf{F} is defined $\mathbf{I}^{\prime}=\mathbf{F x}$
- x^{\prime} belongs to I^{\prime}, so $\mathrm{x}^{\prime T} \mathrm{I}^{\prime}=0$, so $\mathrm{x}^{\prime T} \mathrm{Fx}=0$

Fundamental Matrix and Projective Geometry

- Take \mathbf{x} in camera \mathbf{P} and find scene point \mathbf{X} on ray of \mathbf{x} in camera \mathbf{P}
- Find the image \mathbf{x}^{\prime} of \mathbf{X} in camera \mathbf{P}^{\prime}
- Find epipole \mathbf{e}^{\prime} as image of \mathbf{C} in camera $\mathbf{P}^{\prime}, \mathbf{e}^{\prime}=\mathbf{P}^{\prime} \mathbf{C}$
- Find epipolar line \mathbf{I}^{\prime} from \mathbf{e}^{\prime} to \mathbf{x}^{\prime} in \mathbf{P}^{\prime} as function of \mathbf{x} : $\mathbf{I}^{\prime}=\mathbf{e}^{\prime} \times \mathbf{x}^{\prime}$
- \mathbf{x}^{\prime} and \mathbf{x} are related via homography: $\mathbf{x}^{\prime}=H_{\pi} \mathbf{x}$
- $\mathbf{I}^{\prime}=\mathbf{e}^{\prime} \times \mathbf{x}^{\prime}=\mathbf{e}^{\prime} \times H_{\pi} \mathbf{x}=\mathbf{F} \mathbf{x}$
- The fundamental matrix \mathbf{F} is defined $\mathbf{I}^{\prime}=\mathbf{F x}$
- \mathbf{x}^{\prime} belongs to \mathbf{I}^{\prime}, so $\mathbf{x}^{\prime T} \mathbf{I}^{\prime}=0$, so $\mathbf{x}^{\prime \top} \mathbf{F} \mathbf{x}=0$

Finding the Fundamental Matrix from known Projections

- Take \mathbf{x} in camera \mathbf{P} and find one scene point on ray from \mathbf{C} to \mathbf{x}
- Point $\mathbf{X}=\mathrm{P}^{+} \mathrm{x}$ satisfies $\mathrm{x}=\mathrm{PX}$ with $\mathrm{P}^{+}=\mathrm{P}^{T}\left(\mathrm{PP}^{T}\right)^{-1}$ so $\mathbf{P X}=\mathbf{P} \mathbf{P}^{T}\left(\mathbf{P P}^{T}\right)^{-1} \mathbf{x}=\mathrm{x}$

Finding the Fundamental Matrix from known Projections

- Take \mathbf{x} in camera \mathbf{P} and find one scene point on ray from \mathbf{C} to \mathbf{x}
- Point $\mathbf{X}=\mathbf{P}^{+} \mathbf{x}$ satisfies $\mathbf{x}=\mathbf{P X}$ with $\mathbf{P}^{+}=\mathbf{P}^{T}\left(\mathbf{P P}^{T}\right)^{-1}$ so $\mathbf{P X}=\mathbf{P P}^{T}\left(\mathbf{P P}^{T}\right)^{-1} \mathbf{x}=\mathbf{x}$
- Image of this point in camera \mathbf{P}^{\prime} is $\mathrm{x}^{\prime}=\mathrm{P}^{\prime} \mathbf{X}=\mathrm{P}^{\prime} \mathrm{P}^{+} \mathrm{x}$

Finding the Fundamental Matrix from known Projections

- Take \mathbf{x} in camera \mathbf{P} and find one scene point on ray from \mathbf{C} to \mathbf{x}
- Point $\mathbf{X}=\mathbf{P}^{+} \mathbf{x}$ satisfies $\mathbf{x}=\mathbf{P X}$ with $\mathbf{P}^{+}=\mathbf{P}^{T}\left(\mathbf{P P}^{T}\right)^{-1}$ so $\mathbf{P X}=\mathbf{P P}^{T}\left(\mathbf{P P}^{T}\right)^{-1} \mathbf{x}=\mathbf{x}$
- Image of this point in camera \mathbf{P}^{\prime} is $\mathbf{x}^{\prime}=\mathbf{P}^{\prime} \mathbf{X}=\mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x}$
- Image of \mathbf{C} in camera \mathbf{P}^{\prime} is epipole $\mathbf{e}^{\prime}=\mathbf{P}^{\prime} \mathbf{C}$

Finding the Fundamental Matrix from known Projections

- Take \mathbf{x} in camera \mathbf{P} and find one scene point on ray from \mathbf{C} to \mathbf{x}
- Point $\mathbf{X}=\mathbf{P}^{+} \mathbf{x}$ satisfies $\mathbf{x}=\mathbf{P X}$ with $\mathbf{P}^{+}=\mathbf{P}^{T}\left(\mathbf{P P}^{T}\right)^{-1}$ so $\mathbf{P X}=\mathbf{P} \mathbf{P}^{T}\left(\mathbf{P P}^{T}\right)^{-1} \mathbf{x}=\mathbf{x}$
- Image of this point in camera \mathbf{P}^{\prime} is $\mathbf{x}^{\prime}=\mathbf{P}^{\prime} \mathbf{X}=\mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x}$
- Image of \mathbf{C} in camera \mathbf{P}^{\prime} is epipole $\mathbf{e}^{\prime}=\mathbf{P}^{\prime} \mathbf{C}$
- Epipolar line of x in P^{\prime} is

$$
\mathbf{I}^{\prime}=\left(\mathbf{e}^{\prime}\right) \times\left(\mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x}\right)
$$

Finding the Fundamental Matrix from known Projections

- Take \mathbf{x} in camera \mathbf{P} and find one scene point on ray from \mathbf{C} to \mathbf{x}
- Point $\mathbf{X}=\mathbf{P}^{+} \mathbf{x}$ satisfies $\mathbf{x}=\mathbf{P X}$ with $\mathbf{P}^{+}=\mathbf{P}^{T}\left(\mathbf{P P}^{T}\right)^{-1}$ so $\mathbf{P X}=\mathbf{P} \mathbf{P}^{T}\left(\mathbf{P P}^{\top}\right)^{-1} \mathbf{x}=\mathbf{x}$
- Image of this point in camera \mathbf{P}^{\prime} is $\mathbf{x}^{\prime}=\mathbf{P}^{\prime} \mathbf{X}=\mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x}$
- Image of \mathbf{C} in camera \mathbf{P}^{\prime} is epipole $\mathbf{e}^{\prime}=\mathbf{P}^{\prime} \mathbf{C}$
- Epipolar line of \mathbf{x} in \mathbf{P}^{\prime} is

$$
\mathbf{I}^{\prime}=\left(\mathbf{e}^{\prime}\right) \times\left(\mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x}\right)
$$

- $\mathrm{I}^{\prime}=\mathrm{Fx}$ defines the fundamental matrix

Finding the Fundamental Matrix from known Projections

- Take \mathbf{x} in camera \mathbf{P} and find one scene point on ray from \mathbf{C} to \mathbf{x}
- Point $\mathbf{X}=\mathbf{P}^{+} \mathbf{x}$ satisfies $\mathbf{x}=\mathbf{P X}$ with $\mathbf{P}^{+}=\mathbf{P}^{T}\left(\mathbf{P P}^{T}\right)^{-1}$ so $\mathbf{P X}=\mathbf{P P}^{T}\left(\mathbf{P P}^{T}\right)^{-1} \mathbf{x}=\mathbf{x}$
- Image of this point in camera \mathbf{P}^{\prime} is $\mathbf{x}^{\prime}=\mathbf{P}^{\prime} \mathbf{X}=\mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x}$
- Image of \mathbf{C} in camera \mathbf{P}^{\prime} is epipole $\mathbf{e}^{\prime}=\mathbf{P}^{\prime} \mathbf{C}$
- Epipolar line of \mathbf{x} in \mathbf{P}^{\prime} is

$$
\mathbf{I}^{\prime}=\left(\mathbf{e}^{\prime}\right) \times\left(\mathbf{P}^{\prime} \mathbf{P}^{+} \mathbf{x}\right)
$$

- $\mathbf{I}^{\prime}=\mathbf{F x}$ defines the fundamental matrix

$$
\mathbf{F}=\left(\mathbf{P}^{\prime} \mathbf{C}\right) \times\left(\mathbf{P}^{\prime} \mathbf{P}^{+}\right)
$$

Properties of the fundamental matrix

- Matrix 3×3 since $\mathbf{x}^{\prime T} \mathbf{F x}=0$
- Let \mathbf{F} be the fundamental matrix of camera pair $\left(\mathbf{P}, \mathbf{P}^{\prime}\right)$, the fundamental matrix of camera pair $\left(\mathbf{P}^{\prime}, \mathbf{P}\right)$ is $\mathbf{F}^{\prime}=F^{\top}$

Properties of the fundamental matrix

- Matrix 3×3 since $\mathbf{x}^{\prime T} \mathbf{F x}=0$
- Let \mathbf{F} be the fundamental matrix of camera pair $\left(\mathbf{P}, \mathbf{P}^{\prime}\right)$, the fundamental matrix of camera pair $\left(\mathbf{P}^{\prime}, \mathbf{P}\right)$ is $\mathbf{F}^{\prime}=F^{T}$
- This is true since $\mathrm{x}^{\top} \mathrm{F}^{\prime} \mathrm{x}^{\prime}=0$ implies $\mathrm{x}^{\prime T} \mathrm{~F}^{\prime T} \mathrm{x}=0$, so $\mathrm{F}^{\prime}=\mathrm{F}^{T}$

Properties of the fundamental matrix

- Matrix 3×3 since $\mathbf{x}^{\prime T} \mathbf{F x}=0$
- Let \mathbf{F} be the fundamental matrix of camera pair $\left(\mathbf{P}, \mathbf{P}^{\prime}\right)$, the fundamental matrix of camera pair $\left(\mathbf{P}^{\prime}, \mathbf{P}\right)$ is $\mathbf{F}^{\prime}=F^{T}$
- This is true since $\mathbf{x}^{T} \mathbf{F}^{\prime} \mathbf{x}^{\prime}=0$ implies $\mathbf{x}^{\prime T} \mathbf{F}^{\prime T} \mathbf{x}=0$, so $\mathbf{F}^{\prime}=\mathbf{F}^{T}$
- Epipolar line of x is $\mathrm{I}^{\prime}=\mathrm{Fx}$

Properties of the fundamental matrix

- Matrix 3×3 since $\mathbf{x}^{\prime T} \mathbf{F x}=0$
- Let \mathbf{F} be the fundamental matrix of camera pair $\left(\mathbf{P}, \mathbf{P}^{\prime}\right)$, the fundamental matrix of camera pair $\left(\mathbf{P}^{\prime}, \mathbf{P}\right)$ is $\mathbf{F}^{\prime}=F^{T}$
- This is true since $\mathbf{x}^{T} \mathbf{F}^{\prime} \mathbf{x}^{\prime}=0$ implies $\mathbf{x}^{\prime T} \mathbf{F}^{\prime T} \mathbf{x}=0$, so $\mathbf{F}^{\prime}=\mathbf{F}^{T}$
- Epipolar line of \mathbf{x} is $\mathbf{I}^{\prime}=\mathbf{F x}$
- Epipolar line of \mathbf{x}^{\prime} is $\mathbf{I}=\mathbf{F}^{\top} \mathbf{x}^{\prime}$

Properties of the fundamental matrix

- Matrix 3×3 since $\mathbf{x}^{\prime T} \mathbf{F x}=0$
- Let \mathbf{F} be the fundamental matrix of camera pair $\left(\mathbf{P}, \mathbf{P}^{\prime}\right)$, the fundamental matrix of camera pair $\left(\mathbf{P}^{\prime}, \mathbf{P}\right)$ is $\mathbf{F}^{\prime}=F^{T}$
- This is true since $\mathbf{x}^{T} \mathbf{F}^{\prime} \mathbf{x}^{\prime}=0$ implies $\mathbf{x}^{\prime T} \mathbf{F}^{\prime T} \mathbf{x}=0$, so $\mathbf{F}^{\prime}=\mathbf{F}^{T}$
- Epipolar line of \mathbf{x} is $\mathbf{I}^{\prime}=\mathbf{F x}$
- Epipolar line of \mathbf{x}^{\prime} is $\mathbf{I}=\mathbf{F}^{T} \mathbf{x}^{\prime}$
- Epipole \mathbf{e}^{\prime} is left null space of \mathbf{F}, and \mathbf{e} is right null space.

Properties of the fundamental matrix

- Matrix 3×3 since $\mathbf{x}^{\prime T} \mathbf{F x}=0$
- Let \mathbf{F} be the fundamental matrix of camera pair $\left(\mathbf{P}, \mathbf{P}^{\prime}\right)$, the fundamental matrix of camera pair $\left(\mathbf{P}^{\prime}, \mathbf{P}\right)$ is $\mathbf{F}^{\prime}=F^{T}$
- This is true since $\mathbf{x}^{T} \mathbf{F}^{\prime} \mathbf{x}^{\prime}=0$ implies $\mathbf{x}^{\prime T} \mathbf{F}^{\prime T} \mathbf{x}=0$, so $\mathbf{F}^{\prime}=\mathbf{F}^{T}$
- Epipolar line of \mathbf{x} is $\mathbf{I}^{\prime}=\mathbf{F x}$
- Epipolar line of \mathbf{x}^{\prime} is $\mathbf{I}=\mathbf{F}^{T} \mathbf{x}^{\prime}$
- Epipole \mathbf{e}^{\prime} is left null space of \mathbf{F}, and \mathbf{e} is right null space.
- All epipolar lines I^{\prime} contains epipole e^{\prime}, so $e^{\prime^{T}} I^{\prime}=0$, i.e. $e^{\prime T} F x=0$ for all \mathbf{x}, therefore $\mathbf{e}^{\prime T} \mathbf{F}=0$

Properties of the fundamental matrix

- Matrix 3×3 since $\mathbf{x}^{\prime T} \mathbf{F x}=0$
- Let \mathbf{F} be the fundamental matrix of camera pair $\left(\mathbf{P}, \mathbf{P}^{\prime}\right)$, the fundamental matrix of camera pair $\left(\mathbf{P}^{\prime}, \mathbf{P}\right)$ is $\mathbf{F}^{\prime}=F^{T}$
- This is true since $\mathbf{x}^{T} \mathbf{F}^{\prime} \mathbf{x}^{\prime}=0$ implies $\mathbf{x}^{\prime T} \mathbf{F}^{\prime T} \mathbf{x}=0$, so $\mathbf{F}^{\prime}=\mathbf{F}^{T}$
- Epipolar line of \mathbf{x} is $\mathbf{I}^{\prime}=\mathbf{F x}$
- Epipolar line of \mathbf{x}^{\prime} is $\mathbf{I}=\mathbf{F}^{T} \mathbf{x}^{\prime}$
- Epipole \mathbf{e}^{\prime} is left null space of \mathbf{F}, and \mathbf{e} is right null space.
- All epipolar lines \mathbf{I}^{\prime} contains epipole e^{\prime}, so $\mathbf{e}^{T} \mathbf{I}^{\prime}=0$, i.e. $\mathbf{e}^{\prime T} \mathbf{F} \mathbf{x}=0$ for all \mathbf{x}, therefore $\mathbf{e}^{\prime T} \mathbf{F}=0$
- \mathbf{F} is of rank 2 because $\mathrm{F}=\mathrm{e}^{\prime} \times\left(\mathrm{P}^{\prime} \mathbf{P}^{+}\right)$and $\mathrm{e}^{\prime} \times$ is of rank 2

Properties of the fundamental matrix

- Matrix 3×3 since $\mathbf{x}^{\prime T} \mathbf{F x}=0$
- Let \mathbf{F} be the fundamental matrix of camera pair $\left(\mathbf{P}, \mathbf{P}^{\prime}\right)$, the fundamental matrix of camera pair $\left(\mathbf{P}^{\prime}, \mathbf{P}\right)$ is $\mathbf{F}^{\prime}=F^{T}$
- This is true since $\mathbf{x}^{T} \mathbf{F}^{\prime} \mathbf{x}^{\prime}=0$ implies $\mathbf{x}^{\prime T} \mathbf{F}^{\prime T} \mathbf{x}=0$, so $\mathbf{F}^{\prime}=\mathbf{F}^{T}$
- Epipolar line of \mathbf{x} is $\mathbf{I}^{\prime}=\mathbf{F x}$
- Epipolar line of \mathbf{x}^{\prime} is $\mathbf{I}=\mathbf{F}^{\top} \mathbf{x}^{\prime}$
- Epipole \mathbf{e}^{\prime} is left null space of \mathbf{F}, and \mathbf{e} is right null space.
- All epipolar lines \mathbf{I}^{\prime} contains epipole e^{\prime}, so $\mathbf{e}^{T} \mathbf{I}^{\prime}=0$, i.e. $\mathbf{e}^{\prime T} \mathbf{F} \mathbf{x}=0$ for all \mathbf{x}, therefore $\mathbf{e}^{\prime T} \mathbf{F}=0$
- \mathbf{F} is of rank 2 because $\mathbf{F}=\mathbf{e}^{\prime} \times\left(\mathbf{P}^{\prime} \mathbf{P}^{+}\right)$and $\mathbf{e}^{\prime} \times$ is of rank 2
- \mathbf{F} has 7 degrees of freedom, there are 9 elements, but scaling is not important and $\operatorname{det}(\mathbf{F})=0$ removes one degree of freedom

Properties of the fundamental matrix

- Matrix 3×3 since $\mathbf{x}^{\prime T} \mathbf{F x}=0$
- Let \mathbf{F} be the fundamental matrix of camera pair $\left(\mathbf{P}, \mathbf{P}^{\prime}\right)$, the fundamental matrix of camera pair $\left(\mathbf{P}^{\prime}, \mathbf{P}\right)$ is $\mathbf{F}^{\prime}=F^{T}$
- This is true since $\mathbf{x}^{T} \mathbf{F}^{\prime} \mathbf{x}^{\prime}=0$ implies $\mathbf{x}^{T} \mathbf{F}^{\prime T} \mathbf{x}=0$, so $\mathbf{F}^{\prime}=\mathbf{F}^{T}$
- Epipolar line of \mathbf{x} is $\mathbf{I}^{\prime}=\mathbf{F x}$
- Epipolar line of \mathbf{x}^{\prime} is $\mathbf{I}=\mathbf{F}^{T} \mathbf{x}^{\prime}$
- Epipole \mathbf{e}^{\prime} is left null space of \mathbf{F}, and \mathbf{e} is right null space.
- All epipolar lines \mathbf{I}^{\prime} contains epipole e^{\prime}, so $\mathbf{e}^{\prime T} \mathbf{I}^{\prime}=0$, i.e. $\mathbf{e}^{\prime T} \mathbf{F x}=0$ for all \mathbf{x}, therefore $\mathbf{e}^{\prime T} \mathbf{F}=0$
- \mathbf{F} is of rank 2 because $\mathbf{F}=\mathbf{e}^{\prime} \times\left(\mathbf{P}^{\prime} \mathbf{P}^{+}\right)$and $\mathbf{e}^{\prime} \times$ is of rank 2
- \mathbf{F} has 7 degrees of freedom, there are 9 elements, but scaling is not important and $\operatorname{det}(\mathbf{F})=0$ removes one degree of freedom

Pensils of Epipolar Lines

[Source: Ramani]

Mapping between epipolar lines (Homography)

- Define \mathbf{x} as intersection between line \mathbf{I} and a line \mathbf{k} (that doesn't pass through e)

$$
\begin{aligned}
& \mathbf{x}=\mathbf{k} \times \mathbf{I} \\
& \mathbf{I}^{\prime}=\mathbf{F} \mathbf{x}=\mathbf{F}(\mathbf{k} \times \mathbf{I})
\end{aligned}
$$

- We can also write

$$
\mathbf{I}^{\prime}=\mathbf{F} \mathbf{x}=\mathbf{F}(\mathbf{e} \times \mathbf{I})
$$

- and similarly

$$
\mathbf{I}=\mathbf{F}^{T} \mathbf{x}^{\prime}=\mathbf{F}^{T}\left(\mathbf{e}^{\prime} \times \mathbf{I}^{\prime}\right)
$$

[Source: Ramani]

Retrieving Camera Matrices from F

- Select world coordinates as camera coordinates of first camera, select focal length $=1$, and count pixels from the principal point. Then $\mathbf{P}=\left[\mathbf{I}_{3}, 0\right]$
- Then $\mathbf{P}=\left[\mathbf{S F} \mid \mathbf{e}^{\prime}\right]$ with \mathbf{S} any skew-symmetric matrix is a solution
- How do we prove this?

$$
\mathbf{x}^{\prime T} \mathbf{F} \mathbf{x}=\mathbf{X}^{T} \mathbf{P}^{\prime T} \mathbf{F P X}
$$

- The middle part is skew symmetric

$$
\mathbf{P}^{\prime T} \mathbf{F P}=\left[\mathbf{S F} \mid \mathbf{e}^{\prime}\right]^{T} F\left[\mathbf{I}_{3} \mid 0\right]
$$

The middle part is skew symmetric

$$
\mathbf{P}^{\prime T} \mathbf{F} \mathbf{P}=\left[\mathbf{S F} \mid \mathbf{e}^{\prime}\right]^{T} \mathbf{F}\left[\mathbf{I}_{3} \mid 0\right]=\left[\begin{array}{cc}
\mathbf{F}^{T} \mathbf{S}^{T} \mathbf{F} & 0_{3} \\
\mathbf{e}^{\prime} \mathbf{F} & 0
\end{array}\right]
$$

- $\mathbf{e}^{\prime T} \mathbf{F}=0$ because \mathbf{e}^{\prime} is left null space of \mathbf{F}
- $\mathbf{F}^{\top} \mathbf{S}^{\top} \mathbf{F}$ is skew-symmetric for any \mathbf{F} and any skew-symmetric \mathbf{S}

$$
\mathbf{P}^{\prime T} \mathbf{F P}=\left[\mathbf{S F} \mid \mathbf{e}^{\prime}\right]^{T} \mathbf{F}\left[\mathbf{I}_{3} \mid 0\right]=\left[\begin{array}{cc}
\mathbf{F}^{T} \mathbf{S}^{T} \mathbf{F} & 0_{3} \\
0 & 0
\end{array}\right]
$$

Retrieving Camera Matrices from F

- Select world coordinates as camera coordinates of first camera, select focal length $=1$, and count pixels from the principal point. Then $\mathbf{P}=\left[\mathbf{I}_{3}, 0\right]$
- Then $\mathbf{P}=\left[\mathbf{S F} \mid \mathbf{e}^{\prime}\right]$ with \mathbf{S} any skew-symmetric matrix is a solution
- How do we proof this?

$$
\mathbf{x}^{\prime T} \mathbf{F} \mathbf{x}=\mathbf{X}^{T} \mathbf{P}^{\prime T} \mathbf{F P X}
$$

- The middle part is skew symmetric

$$
\mathbf{P}^{\prime T} \mathbf{F P}=\left[\mathbf{S F} \mid \mathbf{e}^{\prime}\right]^{T} \mathbf{F}\left[\mathbf{I}_{3} \mid 0\right]
$$

- For any skew-symmetric matrix \mathbf{S}^{\prime} and any \mathbf{X}

$$
\mathbf{X}^{T} \mathbf{S}^{\prime} \mathbf{X}=0
$$

- A good choice is $\mathbf{S}=\left[\mathbf{e}^{\prime}\right]_{\times}$, therefore

$$
\mathbf{P}^{\prime}=\left[\left(\mathbf{e}^{\prime} \times \mathbf{F}\right), \mathbf{e}^{\prime}\right]
$$

Notation $[\mathrm{a}]_{\times}$

- $\left[\mathbf{a}^{\prime}\right]_{\times}$is defined as:

$$
[\mathbf{a}]_{\times}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]
$$

- $\mathbf{a} \times \mathbf{b}=[\mathbf{a}]_{\times} \mathbf{b}=\left(\mathbf{a}^{T}[\mathbf{b}]_{\times}\right)^{T}$
- $[\mathbf{a}]_{\times} \mathbf{a}=0$

Essential Matrix

- Specialization of fundamental matrix for calibrated cameras and normalized coordinates

$$
\mathbf{x}=\mathbf{P X}
$$

- Normalized coordinates $\mathbf{x}_{0}=\mathbf{K}^{-1} \mathbf{x}$
- Consider pair of normalized cameras

$$
\mathbf{P}=[\mathbf{l} \mid 0], \quad \mathbf{P}^{\prime}=[\mathbf{R} \mid \mathbf{T}]
$$

- Then we compute

$$
\mathbf{F}=\left[\mathbf{P}^{\prime} \mathbf{C}\right]_{\times} \mathbf{P}^{\prime} \mathbf{P}^{+}
$$

with

$$
\begin{gathered}
{\left[\mathbf{P}^{\prime} \mathbf{C}\right]=[\mathbf{R} \mid \mathbf{T}]\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=[\mathbf{T}]} \\
\mathbf{P}^{+}=\left[\begin{array}{l}
\mathbf{I}_{3} \\
0_{3}^{T}
\end{array}\right] \quad \mathbf{P}^{\prime} \mathbf{P}^{+}=\mathbf{R} \quad \rightarrow \mathbf{F}=\mathbf{T} \times \mathbf{R}=\mathbf{E}
\end{gathered}
$$

Essential Matrix and Fundamental Matrix

- The defining equation for essential matrix is

$$
\mathbf{x}_{0}^{\prime} \mathbf{E x}_{0}=0
$$

with $\mathbf{x}_{0}=\mathbf{K}^{-1} \mathbf{x}$ and $\mathbf{x}_{0}^{\prime}=\mathbf{K}^{\prime-1} \mathbf{x}^{\prime}$

- Therefore

$$
\mathbf{x}^{\prime T} \mathbf{K}^{\prime-T} \mathbf{E K}^{-1} \mathbf{x}=0
$$

- Since $\mathbf{x}^{\prime} \mathbf{F} \mathbf{x}=0$ then

$$
\mathbf{E}=\mathbf{K}^{\prime T} \mathbf{F K}
$$

Computing Fundamental Matrix from correspondences

- For any pair of correspondence points you have an equation

$$
\mathbf{x}_{i}^{\prime} \mathbf{F} \mathbf{x}_{i}=0
$$

with $(x, y, 1)$ and $\left(x^{\prime}, y^{\prime}, 1\right)$

- solve the linear system for N matches
- How? do it in the board
- How many points do you need?
- There are 8 unknowns, use the 8 -point algorithm
- How do we make this robust?

Stereo with ideal geometry

- Optical axes are parallel and separated by baseline b
- Line connecting lens centers is perpendicular to the optical axis, and the x axis is parallel to that line
- 3D coordinate system is a cyclopean system centered between the cameras
[Source: Ramani]

Stereo imaging

- The coordinates of a point are (X, Y, Z) in the cyclopean coordinate system
- The coordinates of the point in the left camera coordinate system are

$$
\left(X_{L}, Y_{L}, Z_{L}\right)=(X-b / 2, Y, Z)
$$

and in the right camera coordinate system are

$$
\left(X_{R}, Y_{R}, Z_{R}\right)=(X+b / 2, Y, Z)
$$

- The x image coordinates of the projection in both cameras are

$$
x_{L}=\left(X+\frac{b}{2}\right) \frac{f}{Z} \quad x_{R}=\left(X-\frac{b}{2}\right) \frac{f}{Z}
$$

- Subtracting the second equation from the first, and solving for Z we obtain:

$$
Z=\frac{b \cdot f}{x_{L}-x_{R}}=\frac{b \cdot f}{d}
$$

with d the disparity

Stereo imaging

- Subtracting the second equation from the first, and solving for Z we obtain:

$$
Z=\frac{b \cdot f}{x_{L}-x_{R}}=\frac{b \cdot f}{d}
$$

with d the disparity

- We can also solve for X and Y

$$
X=\frac{b\left(x_{L}+x_{R}\right)}{2\left(x_{L}-x_{R}\right)}=\frac{b\left(x_{L}+x_{R}\right)}{2 d} \quad Y=\frac{b \cdot y}{x_{L}-x_{R}}=\frac{b \cdot y}{d}
$$

- d is call the disparity and is always negative

Properties of Disparity

- Distance is inversely proportional to absolute value of the disparity
- Disparity of 0 corresponds to points that are infinitely far away from the cameras
- Disparity typically in integers (some methods use subpixel accuracy)
- Thus a disparity measurement in the image just constrains distance to lie in a given range
- Disparity is directly proportional to b
- the larger b, the further we can accurately range
- but as b increases, the images decrease in common field of view
[Source: Ramani]

Range vs Disparity

[Source: Ramani]

More on stereo

- A scene point, P, visible in both cameras gives rise to a pair of image points called a conjugate pair
- the conjugate of a point in the left (right) image must lie on the same image row (line) in the right (left) image because the two have the same y coordinate
- this line is called the conjugate line.
- for our simple image geometry, all conjugate lines are parallel to the x axis
[Source: Ramani]

More practical scenario

- Difficult in practice to
- have the optical axes parallel
- have the baseline perpendicular to the optical axes
- we might want to tilt the cameras towards one another to have more overlap in the images
- Calibration problem - finding the transformation between the two cameras

General Stereo Algorithm

- Assume relative orientation of cameras is known
- An image point $\left(x_{L}, y_{L}\right)$ in the left coordinate system is the image of some point on a ray through the origin of the left camera coordinate system, thus

$$
X_{L}=x_{L} s \quad Y_{L}=y_{L} s \quad Z_{L}=f_{S}
$$

- In the right image system, the coordinates of points on this ray are:

$$
\begin{aligned}
& x_{R}=\left(r_{11} x_{L}+r_{12} y_{L}+r_{13} f\right) s+u \\
& Y_{R}=\left(r_{21} x_{L}+r_{22} y_{L}+r_{23} f\right) s+v \\
& Z_{R}=\left(r_{31} x_{L}+r_{32} y_{L}+r_{33} f\right) s+w
\end{aligned}
$$

- Why?
- These points project on the right camera onto

$$
x_{R}=f \frac{X_{R}}{Z_{R}} \quad y_{R}=f \frac{Y_{R}}{Z_{R}}
$$

[Source: Ramani]

General stereo

- In the right image system, the coordinates of points on this ray are:

$$
\begin{aligned}
& X_{R}=\left(r_{11} x_{L}+r_{12} y_{L}+r_{13} f\right) s+u=a s+u \\
& Y_{R}=\left(r_{21} x_{L}+r_{22} y_{L}+r_{23} f\right) s+v=b s+v \\
& Z_{R}=\left(r_{31} x_{L}+r_{32} y_{L}+r_{33} f\right) s+w=c s+w
\end{aligned}
$$

- Then

$$
\frac{x_{R}}{f}=\frac{a s+u}{c s+w} \quad \frac{y_{R}}{f}=\frac{b s+u}{c s+w}
$$

- This is a straight line connecting the point
- (u/w,v/w) which occurs for $s=0$ and is the image of the left camera center in the right camera coordinate system to
- $(a / c, b / c)$ which occurs as s approaches infinity,the vanishing point for the ray
[Source: Ramani]

General Stereo Geometry

[Source: Ramani]

General Stereo

- Point P lies somewhere on the ray (line) from p_{L} through O_{L}
- from the left image alone, we do not know where on this ray P lies
- perspective projection of a line is a line
- The first point on the line that might correspond to P is O_{L}, any point closer to the left image than O_{L} could not be seen
- the perspective projection of O_{L} in the right camera is the point o_{R}^{L}
- The last point on line that might correspond to P is the point infinitely far away along the ray
- its image is the vanishing point of the ray in the right camera, d_{R}
- any other possible location for P will project to a point in R on the line joining o_{R}^{L} to d_{R}.
[Source: Ramani]

General Stereo Geometry

[Source: Ramani]

General Stereo

- Given any point, p_{L}, in the left image of a stereo pair, its conjugate point must appear on a line in the right image
- all of the conjugate lines for all of the points in the left image must pass through a common point in the right image
- this is image of the left lens center in the right image
- this point lies on the line of sight for every point in the left image
- the conjugate lines must all contain (i.e., pass through) the image of this point
- This point is called an epipole.
- The conjugate line for p_{L} must also pass through the vanishing point in the right image for the line of sight through p_{L}

General Stereo Geometry

[Source: Ramani]

More on geometry

- The points O_{L}, p_{L}, and o_{L}^{R} are three noncollinear points, so they form a plane,
- The intersection of this plane with the right image plane is the conjugate line of p_{L}, and this would be the image of any line on this plane
- Let p_{L}^{\prime} be some other point on the line joining p_{L} and o_{L}^{R},
- the line of sight through p_{L}^{\prime} to P^{\prime} lies on the plane since two points on that line (p_{L} and o_{L}^{R} lie on the plane
- Thus, the conjugate line for p_{L}^{\prime} must be the same line as the conjugate line for p_{L}, or for any other point on the line containing p_{L} and o_{L}^{R}
- We use this epipolar lines for matching
[Source: Ramani]

Rectification

- transforming a stereo pair taken under general conditions into the ideal configuration
- Involves a rotation of one image so that the optical axes of the two image coordinate systems are parallel
- Simplifies computational structure of stereo matching algorithm
- But requires interpolation to create rotated image and can create a large rectified image if the rotation angles are large.
[Source: Ramani]

Rectification

[Source: Ramani]

Stereo correspondence problem

- Given a point,p, in the left image, find its conjugate point in the right image
- What constraints simplify this problem?
- Epipolar constraint - need only search for the conjugate point on the epipolar line
- Disparity sign constraint - need only search the epipolar line to the right of the vanishing point in the right image of the ray through p in the left coordinate system
- Continuity constraint - if we are looking at a continuous surface, images of points along a given epipolar line will be ordered the same way
- Disparity gradient constraint - disparity changes slowly over most of the image (Exceptions occur at and near occluding boundaries)
[Source: Ramani]

Why is the correspondence problem hard

- Foreshortening effects
- A square match window in one image will be distorted in the other if disparity is not constant (complicates correlation)
- Variations in intensity between images due to: noise, specularities, shape-from-shading differences
- Occlusion: points visible in one image and not the other
- Coincidence of edge and epipolar line orientation

Applications of Stereo

- Photogrammetry: Creation of digital elevation models from high resolution aerial imagery
- Visual navigation: Obstacle detection
- Creating models for graphics applications: For objects difficult to design using CAD systems
[Source: Ramani]

