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Outline

The goal is to introduce the fundamentals of probabilistic, model-based 
tracking for computer vision

• Background

• Basic algorithms

• Kalman filter

• Particle filter

• Sequential importance sampling

• MAP/ML

• Annealed “particle filter”
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Problem

Tracking is the process of inferring information given a sequence of 
observations over time

What might we infer?

• Shape (e.g., size, curvature)

• Appearance (e.g., colour, texture)

• State (e.g., position or orientation)

• Dynamics (e.g., accelerating, stopped, etc)
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Problem

Tracking is the process of inferring information given a sequence of 
observations over time

What are our observations?

• RGB images (e.g., standard cameras)

• Depth images (e.g., Kinect, Time-of-flight sensors)

• Transformations of the above (e.g., colour or gradient histograms, edges, 
feature points and descriptors, object detections, etc)
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Problem

Tracking is the process of inferring information given a sequence of 
observations over time

What makes it hard?

• Observations are often noisy, misleading, indirect, cluttered, incomplete 

• Data association is not always clear

• Problem is often inherently ambiguous, ie, no single right answer
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Basics of Probability

Let    and   be continuous random variables

Probability density function           describes the density of probability at 
a point and is also called the probability distribution of 

Will often refer to           as the “probability of a” but this is not quite 
accurate, really mean the “probability density of a”.

PDFs must satisfy:

Joint probability density function               is the probability density of 
both random variables taking on a particular value.

Conditional probability density function              is the probability density 
of one random variable given that the value of the other random variable is 
known.

a b

p(a)

�
p(a)da = 1p(a) ≥ 0

p(a)

p(a, b)

p(a|b)

a
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Basics of Probability

Some properties that we’ll use a lot:

Factorization:

Bayes’ Rule:

Marginalization:

Independence: if, and only if,    and    are independent then

p(a, b) = p(a)p(b)

a b

p(a) =

�
p(a, b)db

p(a|b) = p(b|a)p(a)
p(b)

p(a, b) = p(a|b)p(b) = p(b|a)p(a)
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Basics of Probability

If variables are discrete, the same properties hold with small modifications

Probability function            where

Marginalization:

p(a) �

a

p(a) = 10 ≤ p(a) ≤ 1

p(a) =
�

b

p(a, b)

8Tuesday, February 12, 2013



Basics of Probability

The expected value of a function of a random variable is the average value

Some common uses for expectation

Mean

(Co-)variance
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Probabilistic Formulation of Tracking

Denote the state at time t as 

•       might be the position and orientation of an object, the pose of a human 
body, the current appearance model of an object, etc

For convenience we’ll denote a sequence of states from time 1 to t as

x1:t = (x1, . . . ,xt)

xt

xt
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Probabilistic Formulation of Tracking

Denote the observation at time t as 

• Observations could include an entire image, filter responses (e.g., 
gradients), optical flow, feature points, detector responses, etc

Similarly we’ll denote a sequence of observations from time 1 to t as

zt

z1:t = (z1, . . . , zt)
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Probabilistic Formulation of Tracking

We can now define what we’re fundamentally interested in

The posterior distribution at time t is the conditional probability 
distribution of the states given the observations

Sometimes we don’t need the full posterior.  Instead we look at the 
filtering distribution at time t which is the probability of the most recent 
state given the observations up to that time

p(x1:t|z1:t)

p(xt|z1:t) =
�

· · ·
�

p(x1:t|z1:t)dxt−1 · · ·dx1
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Probabilistic Formulation of Tracking

Given these distributions we can answer the key tracking questions:

• What is the most likely state?

• What does the average state look like?

• Are there multiple, similarly probable states?

max
xt

p(xt|z1:t)

E[xt|z1:t] =
�

xtp(xt|z1:t)dxt

∂

∂xt
p(xt|z1:t) = 0
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Probabilistic Formulation of Tracking

We can ask similar questions about the motion (i.e., sequence of states):

• What is the most likely motion?

• What does the average motion look like?

• Are there multiple, similarly probable motions?

E[x1:t|z1:t] =
�

x1:tp(x1:t|z1:t)dxt

max
x1:t

p(x1:t|z1:t)

∂

∂x1:t
p(x1:t|z1:t) = 0
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Probabilistic Formulation of Tracking

Lets be more specific about what the problem at hand is

Probabilistic tracking is the problem of (efficiently) computing the posterior 
(or filtering) distribution at each time t

Problem: what exactly is the posterior distribution? 
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Defining the Posterior

We can apply Bayes’ rule to the posterior to express it in terms of:

The likelihood measures the how well the observations match the state.

The prior expresses how likely the states are without observations.

The evidence is a normalizing factor which doesn’t depend on the states.

p(x1:t|z1:t) =
p(z1:t|x1:t)p(x1:t)

p(z1:t)

likelihood

evidence

prior
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Defining the Posterior: Model Assumptions

To construct a likelihood and prior, we make some assumptions

The prior (or motion model) is assumed to be a first-order Markov model 
where the past is independent of the future given the present

p(xt|x1:t−1) = p(xt|xt−1)

Using this assumption we can rewrite the prior

= p(x1)
�t

i=2 p(xi|xi−1)

p(x1:t) = p(xt|x1:t−1)p(x1:t−1) (factorization)

= p(xt|xt−1)p(x1:t−1) (first-order Markov)
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Defining the Posterior: Model Assumptions

To construct a likelihood and prior, we make some assumptions

The observations are conditionally independent given the states

p(z1:t|x1:t) =
t�

i=1

p(zi|xi)
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Defining the Posterior: Model Assumptions

These assumptions serve three purposes

1. The prior can be easily specified with a single step motion model

2. The likelihood can be easily specified with a single observation model

3. The posterior and filtering distributions can be written in a computationally 
convenient, recursive form

p(zt|xt)

p(xt|xt−1)
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Defining the Posterior: Recursive form

(Bayes’ rule)p(x1:t|z1:t) =
p(z1:t|x1:t)p(x1:t)

p(z1:t)

∝ p(z1:t|x1:t)p(x1:t)

=

�
t�

i=1

p(zi|xi)

�
p(x1)

t�

i=2

p(xi|xi−1)

∝ p(zt|xt)p(xt|xt−1)p(x1:t−1|z1:t−1)

(assumptions)

(recursion)

Posterior distribution:

previous posterior
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Defining the Posterior: Recursive form

Filtering distribution:

∝
�

p(zt|xt)p(xt|xt−1)p(x1:t−1|z1:t−1)dx1:t−1

p(xt|z1:t) =
�

p(x1:t|z1:t)dx1:t−1 (marginalization)

= p(zt|xt)

�
p(xt|x1:t−1)p(x1:t−1|z1:t−1)dx1:t−1

(first-order Markov)

= p(zt|xt)

�
p(x1:t|z1:t−1)dx1:t−1 (factorization)

(marginalization)= p(zt|xt)p(xt|z1:t−1)

prediction distribution
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Defining the Posterior: Recursive form

The prediction distribution is the distribution of the next state given the 
previous observations

p(xt|z1:t−1) =

�
p(xt−1,xt|z1:t−1)dxt−1

=

�
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1
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Defining the Posterior: Recursive form

The recursive form is important theoretically and computationally:

• All information contained in past observations is represented in the 
previous posterior distribution

• Given only the previous posterior distribution and a new observation, we 
should be able to compute the next posterior distribution

Without it we would potentially need to reference all the past observations to 
create the next posterior distribution
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Defining the Posterior: Filtering vs Smoothing

There are two different tasks to consider with temporal observations

Filtering is what we’ve mostly been talking about, looking at the 
distribution of the current state given the past (online)

Smoothing looks at the distribution of the current state given both the 
past and the future (batch)

The smoothing distribution is

p(xτ |z1:t) ∝
p(zτ |xτ )p(xτ |z1:τ−1)p(xτ |zτ+1:t)

p(xτ )
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Defining the Posterior: Filtering vs Smoothing

There are two different tasks to consider with temporal observations

Filtering is what we’ve mostly been talking about, looking at the 
distribution of the current state given the past (online)

Smoothing looks at the distribution of the current state given both the 
past and the future (batch)

We’re going to focus on filtering
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Defining the Posterior: Likelihoods

There are many different kinds of likelihoods that have been used in computer 
vision for tracking

We can’t cover them all here but just to give you some idea:

• Feature points

• Image templates or detector responses

• Histograms of colour, gradients, etc

• Image edges

• Background subtraction

• ...

Constructing the “right” likelihood for a tracking problem is probably one of 
the most important pieces but it’s also one of the hardest
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Defining the Posterior: Motion Models

While there are a large number of likelihoods, the number of (commonly used) 
motion models are much smaller and we’ll talk about the most common

Before we talk about specific examples, lets go over why motion models are 
important

• Observations can be noisy or misleading

• Posteriors often have multiple, equally likely, modes or explanations

A good motion model (or prior) helps a tracker choose between competing 
explanations and observations when they’re not helpful
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Defining the Posterior: Motion Models

What makes a good motion model?

Two main qualities:

• Generic - applicable to a wide number of tasks, actions, subjects, etc

• Informative - provides good information about good and bad motions

Bearing this in mind, lets look at some commonly used motion models
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Defining the Posterior: Motion Models

For simplicity assume that       is the 2D position of an object in the image

The simplest model is Brownian motion, ie, random Gaussian noise

In other terms

xt

xt = xt−1 + η η ∼ N (0,Σ)

p(xt|xt−1) = |2πΣ|−0.5 exp

�
−1

2
(xt − xt−1)

TΣ−1(xt − xt−1)

�
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Defining the Posterior: Motion Models

Brownian motion is fairly generic, only assuming that the current and previous 
positions are nearby

It’s also very “jerky”, more than we really expect motion to be, making it 
relatively uninformative
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Defining the Posterior: Motion Models

Other common motion models tend to be higher order, that is, they look at 
motion over several frames

But this violates the first-order Markov assumption!

Can always “stack” the state to include some history:

yt =





xt

xt−1
...

xt−p
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Defining the Posterior: Motion Models

Other motion models:

Constant Velocity:

Damped Spring:

Auto-Regressive:
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Defining the Posterior: Motion Models

Models for more complex motions (or states) can be learned or, in some 
cases, built from first principles

• To learn a motion model, can effectively treat it as regression problem

• When tracking 3D motion, can use physics to derive motion models
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Inference: Kalman Filter

Now that we have a posterior (in terms of a likelihood and motion model), the 
task of tracking is to effectively compute and use this posterior

Unfortunately, computing and analyzing a general posterior is hard so we 
typically use approximations

However, these is one case where the posterior can be computed easily in 
closed form
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Inference: Kalman Filter

Assume the entire model is Gauss-Linear

That is, the motion model is linear plus Gaussian noise and the observations 
are linear in the state plus Gaussian noise
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Inference: Kalman Filter

The transition and observation densities can be written as

where
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Inference: Kalman Filter

Then it can be shown that the prediction distribution is also Gaussian
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Inference: Kalman Filter

Using that, the posterior at the next time is:
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Inference: Kalman Filter

The form of the means and variances are given below for reference (try to 
derive them on your own)
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Inference: Kalman Filter

Kalman filter in computer vision

• Lane following [Dickmanns and Graefe, “Dynamic Monocular Machine 
Vision” 1988]

• Monocular 3D motion estimation [Broida et al, “Recursive 3D 
Estimation from a Monocular Image Sequence” 1990]

Dickmanns & Graefe: Dynamic Monocular Machine Vision 225 

ally, and if two pictures of such a scene are taken 
within a few milliseconds they will normally be very 
similar to each other. 

In order to understand how the temporal conti- 
nuity of natural scenes can facilitate dynamic vi- 
sion, assume that a first TV image of such a scene 
has just been interpreted. It is then rather easy to 
interpret the immediately following image, as the 
differences between the two are very small. This 
observation has important consequences for the de- 
sign of a real-time vision system. It means that the 
task of dynamic scene interpretation becomes eas- 
ier if the time spent on each image is reduced, and 
that the task becomes more difficult if the system is 
slower. Therefore, the cycle time of the low level 
vision subsystem should ideally be less than one 
frame period of the TV signal used, making it pos- 
sible to evaluate every single image as it is delivered 
by the camera. (The higher levels of the vision sys- 
tem which operate on symbolic descriptions of the 
scene may use longer cycle times, depending on the 
dynamics of the machine to be controlled and of the 
objects in the scene.) 

Another important aspect on which to base the 
architecture of hardware for dynamic vision for mo- 
tion control is the desired output of the system: it is 
the behavior of a visually controlled machine, and 
not, as often in traditional static image processing, 
either another image or a fairly complete, perhaps 
even verbal, description of the image. 

The appropriate behavior of a vision controlled 
machine typically depends on the presence and lo- 
cation,, or absence of certain objects in its environ- 
ment. The vision task is then clearly goal directed, 
the first subtask being to locate features in the im- 
age which are indicative of the presence and loca- 
tion of important objects. It seems obvious that 
such features in many typical situations occupy 
only a small fraction of the total area of each image 
(Figure 1). It suffices then to process only those 
areas of each image which actually contain relevant 
features. 

In dynamic scene interpretation the location of 
all important features is usually known in advance 
and with fairly good precision from the interpreta- 
tion of previous images. This means that, when in- 
terpreting the next image in the sequence, the 
search space in which the feature of interest should 
be looked for is small, and the feature can be redis- 
covered rather quickly if the search is indeed fo- 
cused on this small search space. This leads to the 
probably most important point in the design of hard- 
ware for real-time vision: since nearly all the rele- 
vant information in the image is contained in a lim- 
ited number of small regions the combined size of 

Figure 1. Small regions of an image contain almost all 
information relevant for motion control. 

which is only a small fraction (often less than 10%) 
of the whole image, much will be gained if all the 
available computing power can be concentrated on 
those regions. Moreover, since each region may 
contain a different type of feature, it is important to 
be able to use different algorithms in each region. 

This shows that a conventional image processing 
system which is designed to treat all pixels in an 
image in the same way does not have the proper 
structure for dynamic vision. The same is true for 
some massively parallel computers of the single in- 
struction, multiple data (SIMD) type. Because 
these machines, too, must treat all pixels of an im- 
age in the same manner, they may waste 90% or 
more of their computing power on processing parts 
of the image which are known in advance to contain 
no relevant information. In the worst case, addi- 
tional computing power is needed to delete all the 
irrelevant data which are produced in the process. 

The concept of processing only a limited number 
of well defined regions within an image is also the 
key to a natural division of the problem into sub- 
tasks which can be executed  in parallel on a 
coarsely grained multiprocessor system. Each par- 
allel processor in such a system can be assigned one 
relevant region, and it can locate--independently of 
all other processors--the associated features in that 
region. Such a system not only has a very clear 
structure (one region--one group of features--one 
subtask--one processor), but it can also be very 
efficient, since the parallel processors do not have 
to spend time synchronizing or coordinating each 
other. 

An important key to this concept is that the size, 
shape, and location of each region may be varied 

Y ’  

Fig. 6. First and fourth frames of real image sequence 

component due to the positioning of the camera. The 
object image size (i.e., the size of the tire) is about 2 
in at the start of the sequence, and about 3 in at the 
end. The total rotation was about 4 rad and the total 
translation about 45 in. The photographs were digitized 
to a resolution of 50 pixels/in. Two previously chosen 
reference points were located on all the images, and 
the distances of the feature points from them were 
measured on a Sun workstation. A simple geometrical 
transformation was used to reference all measurements 
to the coordinate axes in the first image. This was 
done to reduce errors due to small camera movements 
during imaging, and the positioning of the photographs 
during scanning. Feature point correspondences 
were obtained manually by inspection. The focal 
length of the imaging system was not known, and was 
assumed to be unity. This has the effect of scaling the 
translation and structure parameters up or down, but 
is not a serious problem since the latter can only be 
determined up to a scale factor. 

As mentioned before, the actual state values are 
not known to us, so it is not possible to display the 
errors in the state estimate. Instead, the actual and 
the estimated trajectories of the feature points are 
shown in Fig. 7. The filter should ideally “lock on” to 
the motion of the target within the first few frames, 
and should track it efficiently in spite of small errors in 
measurement and modeling. Fig. 7 seems to confirm 
that the IEKF is doing a reasonably good job of 
tracking the moving object. However, in certain cases 
this might be misleading, since it is possible that two 
or more entirely different sets of motion parameters 
could give rise to similar image point trajectories. 
This is discussed further in the next section. Ideally, 
“ground truth” measurements using reliable measuring 
devices should be used to verify the IEKF state 
estimates. 

0.5 - 

0.4 - 

0.3 - 

0.2 ~ 

0.1 - 

* -actual : o - estimated 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Fig. 7. Actual and estimated image point trajectories. 

C. Selecting the IEKF Parameters 

In order to run the IEKF, the following parameters 
have to be supplied in addition to the image point 
measurements: 1) initial estimate 9, 2) initial error 
covariance P(O), 3) plant noise covariance matrices 
Q k ,  and 4) measurement (observation) noise 
covariances matrices Rk. 

is to run a batch estimation algorithm on the first 
few frames. Details of the batch algorithm used 
in this implementation are given in the Appendix. 
For the particular motion parameters chosen in the 
simulations, the batch algorithm required about 250 
iterations to converge. For Cases 1 and 2, only a crude 
initial guess was desired, and hence the batch algorithm 
was forcibly terminated after about 75 iterations. 
For Case 3, final output of the batch algorithm after 
convergence was used. In all three cases, the first 
10 frames were used for obtaining the initial state 
estimate. For the real image sequence, the initial guess 
was obtained by running a batch estimation algorithm 
on the first 14 frames for about 150 iterations. 

The uniqueness of the batch solution depends 
mainly on the number of feature points, the number 
of frames, and the motion parameters. This issue is 
addressed in detail in [19]. As expected, the batch 
solution is found to be more reliable as the number of 
feature points and the number of frames increase; but 
it is also dependent on the amount of motion between 
frames. It is observed that multiple batch solutions are 
obtained only when there is some genuine ambiguity in 
the motion. For instance, if the frame rate is very high 
compared with the motion velocities, the motion is 
likely to be ambiguous given a fixed number of frames. 
This was observed, for instance, in the real image 
experiment when only the first 8 frames, instead of the 
first 14, were used to obtain the batch solution. Fig. 8 
shows the image plane trajectories reconstructed from 
the 8-frame batch solution, which should be compared 
with the actual image plane trajectories in Fig. 7. It can 

The easiest way to obtain a good initial estimate 

650 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 24, NO. 4 JULY 1990 

T 
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Inference: Beyond the Kalman Filter

Most tracking problems in computer vision don’t fit nicely into a Gauss-Linear 
model

• Non-linear observations (e.g., perspective projection)

• Non-Gaussian observation noise (e.g., detection failures, false detections, 
appearance changes)

• Non-linear dynamics (e.g., human motion)

Kalman filter does not (directly) apply to these situations
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Inference: Beyond the Kalman Filter

Approximate versions of the Kalman Filter have been derived for non-linear 
dynamics

Extended Kalman Filter (EKF): Approximate the non-linear dynamics with 
a local linearization of the dynamics (i.e., set A to be the Jacobian of the 
non-linear dynamics)

Unscented Kalman Filter (UKF): Instead of linearizing the dynamics, draw 
a number of samples, simulate the dynamics, and compute the mean and 
covariance of the new points

Both the EKF and the UKF have problems when the dynamics are not close 
to linear
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Inference: Beyond the Kalman Filter

The Kalman Filter has one fundamental flaw for computer vision problems

Posteriors in computer vision are almost never 
unimodal (much less Gaussian)!
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Inference: Non-Gaussian Posteriors

image 3D model
(camera view)

3D model
(top view)

Many 3D configurations may be consistent with a given image.

[courtesy of Cristian Sminchisescu]
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Inference: Non-Gaussian Posteriors
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Inference: Non-Gaussian Posteriors

So if we care about representing the posterior properly, we need an inference 
algorithm which can handle non-Gaussian distributions

But if we end up picking the most likely state at the end of the day, do we 
really need to worry about representing the full posterior?

YES: tracking (filtering) is a recursive process.  
If we fail to represent important details now, 

tracking may fail later!
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Inference: Particle Filter

A particle filter performs inference by approximating the distribution with a 
(weighted) set of points and makes very few assumptions about the model

In it’s simplest form it requires two things from the model:

• Draw samples from the motion model

• Evaluate the likelihood function 
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Inference: Particle Filter

A particle filter maintains a set of samples (or particles) which approximate 
the posterior distribution

If we can draw a set of samples                          where 

The Monte Carlo approximation allows us to compute
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Inference: Particle Filter

We don’t know how to draw samples from                      in general

A particle filter uses importance sampling where samples are drawn from 
the importance distribution             and weighted to correct the difference

That is

Where the weights are the ratio of the distributions
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Inference: Particle Filter

Expectation with these weighted samples
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Inference: Particle Filter

A set of properly weighted samples can also be thought of as a more direct 
approximation to the posterior

This is important because of the prediction distribution
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Inference: Particle Filter

Here is a simple version of a particle filter (aka, the Condensation algorithm 
[Isard and Blake, IJCV 1998]):

1) Given the filtering distribution at the previous time represented by a set 
of weighted samples                                     and a new observation 

2) For                        draw samples from the prediction distribution and 
weight them by the likelihood

a) Pick particle j with probability 

b) Sample a new state from the motion model

c) Evaluate the likelihood of the new sample to get its weight

3) Normalize the weights 
w(i)

t =
��N

j=1 w
(j)
t

�−1
w(i)

t

w(j)
t−1

i = 1, . . . , N

ŵ(i)
t = p(zt|x(i)

t )

x(i)
t ∼ p(xt|x(j)

t−1)

St = {x(j)
t , w(j)

t }Nj=1
zt
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Inference: Particle Filter

Lets take a closer look at what’s happening here

Consider the following posterior:

Condensation—Conditional Density Propagation for Visual Tracking 9

Figure 3. Factored sampling: a set of points s(n), the centres of the blobs in the figure, is sampled randomly from a prior density p(x). Each
sample is assigned a weight πi (depicted by blob area) in proportion to the value of the observation density p(z | x = s(n)). The weighted
point-set then serves as a representation of the posterior density p(x | z), suitable for sampling. The one-dimensional case illustrated here extends
naturally to the practical case that the density is defined over several position and shape variables.

n ∈ {1, . . . , N } is chosen with probability πn , where

πn =
pz

(

s(n)
)

∑N
j=1 pz

(

s( j)
)

and

pz(x) = p(z | x),

the conditional observation density. The value x′ = xn
chosen in this fashion has a distribution which approx-
imates the posterior p(x | z) increasingly accurately as
N increases (Fig. 3).
Note that posterior mean properties E[g(x) | z] can

be generated directly from the samples {s(n)}byweight-
ing with pz(x) to give:

E[g(x) | z] ≈
∑N

n=1 g
(

s(n)
)

pz
(

s(n)
)

∑N
n=1 pz

(

s(n)
)

. (7)

For example, themean can be estimated using g(x) = x
(illustrated in Fig. 4) and the variance using g(x) =
xxT . In the case that p(x) is a spatial Gauss-Markov
process, Gibbs sampling from p(x) has been used
to generate the random variates {s(1), . . . , s(N )}. Oth-
erwise, for low-dimensional parameterisations as in
this paper, standard, direct methods can be used for
Gaussians2 (Press et al., 1988). Note that, in the case
that the density p(z | x) is normal, the mean obtained
by factored sampling is consistent with an estimate ob-
tained more conventionally, and efficiently, from linear
least squares estimation. For multi-modal distributions
which cannot be approximated as normal, so that linear

estimators are unusable, estimates of mean x by fac-
tored sampling continue to apply.

4. The CONDENSATION Algorithm

The Condensation algorithm is based on factored
sampling but extended to apply iteratively to successive
images in a sequence. The same sampling strategy
has been developed elsewhere (Gordon, et al., 1993;
Kitagawa, 1996), presented as developments ofMonte-
Carlo methods. Jump-diffusion tracking (Miller et al.,
1995) may also be related to the approach described
here.
Given that the process at each time-step is a self-

contained iteration of factored sampling, the out-
put of an iteration will be a weighted, time-stamped
sample-set, denoted {s(n)t , n = 1, . . . , N }withweights
π

(n)
t , representing approximately the conditional state-
density p(xt |Zt ) at time t . How is this sample-set
obtained? Clearly, the process must begin with a prior
density and the effective prior for time-step t should
be p(xt |Zt−1). This prior is of course multi-modal in
general and no functional representation of it is avail-
able. It is derived from the sample set representation
{(s(n)t−1, π

(n)
t−1), n = 1, . . . , N } of p(xt−1 |Zt−1), the

output from the previous time-step, to which predic-
tion (5) must then be applied.
The iterative process as applied to sample-sets, de-

picted in Fig. 5, mirrors the continuous diffusion pro-
cess in Fig. 2. At the top of the diagram, the out-
put from time-step t − 1 is the weighted sample-set
{(s(n)t−1, π

(n)
t−1), n = 1, . . . , N }. The aim is to maintain,

at successive time-steps, sample sets of fixed size N ,
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10 Isard and Blake

Figure 4. Sample-set representation of shape distributions: the sample-set representation of probability distributions, illustrated in one dimen-
sion in Fig. 3, is illustrated here (a) as it applies to the distribution of a multi-dimensional curve parameter x. Each sample s(n) is shown as a
curve (of varying position and shape) with a thickness proportional to the weight πn . The weighted mean of the sample set (b) serves as an
estimator of the distribution mean.

Figure 5. One time-step in the Condensation algorithm: Each of the three steps—drift-diffuse-measure—of the probabilistic propagation
process of Fig. 2 is represented by steps in the Condensation algorithm.

Inference: Particle Filter

Randomly
select particles

Sample from 
motion dynamics p(zt|xt)

Weight particles 
by likelihood

St
[Isard and Blake, 1998]
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Inference: Particle Filter

[Isard and Blake, 1998]

Condensation—Conditional Density Propagation for Visual Tracking 17

Figure 10. Tracking with multi-modal state-density: an approximate depiction of the state-density is shown, computed by smoothing the
distribution of point masses s(1)t , s(2)t , . . . in theCondensation algorithm. The density is, of course, multi-dimensional; its projection onto the
horizontal translation axis is shown here. The initial distribution is roughly Gaussian but this rapidly evolves to acquire peaks corresponding to
each of the three people in the scene. The right-most peak drifts leftwards, following the moving person, coalescing with and separating from
the other two peaks as it moves. Having specified a tracker for one person we effectively have, for free, a multi-person tracker, owing to the
innate ability of the Condensation algorithm to maintain multiple hypotheses.

uncluttered background, tracked by a Kalman filter
contour-tracker with default dynamics to record 140
fields (2.8 s) of tracked head positions, the most that
could be tracked before losing lock. Those 140 fields
were sufficient to learn a bootstrapmotionmodelwhich
then allowed the Kalman filter to track the training data
for 800 fields (16 s) before loss of lock. The motion
model obtained from these 800fieldswas used in exper-
iments with the Condensation tracker and applied
to the test data, now including clutter.
Figure 11 shows some stills from the test sequence,

with a trail of preceding head positions to indicate mo-
tion. The motion is primarily translation, with some
horizontal shear apparent as the dancer turns her head.
Representing the state density with N = 100 samples
at each time-step proves just sufficient for successful
tracking. As in the previous example, a prior density
can be computed as the steady state of themotionmodel
and, in this case, that yields a prior for position that
spreads across most of the image area, as might be

expected given the range of the dance. Such a broad
distribution cannot effectively be represented by just
N = 100 samples. One alternative is to increase N in
the early stages of tracking, and this is done in a later
experiment. Alternatively, the prior can be based on
a narrower distribution whose centre is positioned by
hand over the object at time 0, and that iswhatwas done
here. Observation parameters were µ = 24, σ = 7
with M = 18 normals.
Figure 12 shows the motion of the centroid of the

estimated head position as tracked both by the Con-
densation algorithm and by a Kalman filter using
the same motion model. TheCondensation tracker
correctly estimated head position throughout the se-
quence, but after about 40 fields (0.80 s), the Kalman
filter was distracted by clutter, never to recover.
Given that there is only one moving person in this

experiment, unlike the previous one in which there
were three, it might seem that a unimodal repre-
sentation of the state density should suffice. This is
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Inference: Particle Filter
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Inference: Particle Filter

Particle filters theoretically can perform inference on any model so long as we 
can sample from the motion model, evaluate the likelihood and use enough 
particles

So, how many particles do we need?  How do we know if we have enough?

First, how many particles are needed to accurately represent a posterior

Imagine a Gaussian distribution with a full covariance matrix, need more 
than      independent samples to get a non-degenerate estimate of the 
covariance

What if we have multiple modes?

What if we have “heavy tails”?

What if we have a uniform distribution?

d2
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Inference: Particle Filter

The number of particles needed to represent a distribution depends on the 
entropy (kind of like the volume) of the distribution, not the dimensionality of 
the parameters

Bad news is that entropy typically scales linearly with the number of 
dimensions and the number of particles needed scales exponentially with the 
entropy

But this is just how many particles are needed to represent a distribution, it’s 
actually a lower bound on how many are needed for a particle filter
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Inference: Particle Filter

The problem is that the prediction distribution may be far away from the 
likelihood

Samples will never come close to the likelihood or the true posterior!

59Tuesday, February 12, 2013



Inference: Particle Filter

Or the prediction distribution may be broad and the likelihood very peaky
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Inference: Particle Filter

Unfortunately, this is all too common in computer vision

This is from a likelihood function in human pose estimationVideo-Based People Tracking 11
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Fig. 6 Appearance likelihood. The behavior of the appearance likelihood described by Equation
(8) is illustrated. Similarly to Figure 4 a true pose, consistent with the pose of the subject illustrated
in Figure 3, is taken and the probability of that pose as a function of varying a single degree of free-
dom in the state are illustrated in (a) and (c); as before in (a) the entire body is shifted up and down
(along the Z-axis), in (d) along the optical axis of the camera. In (b) and (d) poses corresponding to
the strongest peak in the likelihood of (a) and (c) respectively are illustrated. Notice that due to the
strong separation between foreground and background in this image sequence, appearance likeli-
hood performs similarly to the background likelihood model (illustrated in Figure 4); in sequences
where foreground and background contain similar colors appearance likelihoods tend to produce
superior performance.

3.4 Edges and Gradient Based Features

Unfortunately foreground and background appearance models have several prob-
lems. In general they have difficulty handling large changes in appearance such as
those caused by varying illumination and clothing. Additionally, near boundaries
they can become inaccurate since most foreground models do not capture the shad-
ing variations that occur near edges, and the pixels near the boundary are a mixture
of foreground and background colors due to limited camera resolution. For this rea-
son, and to be relatively invariant to lighting and small errors in surface geometry, it
has been common to use edge-based likelihoods (e.g., Wachter and Nagel (1999)).
These models assume that the projected edges of the person should correspond to
some local structure in image intensity.
Perhaps the simplest approach to the use of edge information is the Chamfer

distance (Barrow, Tenenbaum, Bolles, and Wolf, 1977). or the Hausdorff distance
(Huttenlocher, Klanderman, and Rucklidge, 1993). Edges are first extracted from the
observed image using standard edge detection methods (Forsyth and Ponce, 2003)
and a distance map is computed where d(x) is the squared Euclidean distance from
pixel x to the nearest edge pixel. The outline of the subject in the image is computed
and the boundary is sampled at a set of points {bi}Mi=1. In the case of Chamfer
matching the likelihood function is

p(d |s) = exp

(

−
1
M

M

!
i=1

d(bi)

)

. (9)

Chamfer matching is fast, as the distance map need only be computed once and is
evaluated only at edge points. Additionally, it is robust to changes in illumination
and other appearance changes of the subject. However it can be difficult to obtain

Video-Based People Tracking 11
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Fig. 6 Appearance likelihood. The behavior of the appearance likelihood described by Equation
(8) is illustrated. Similarly to Figure 4 a true pose, consistent with the pose of the subject illustrated
in Figure 3, is taken and the probability of that pose as a function of varying a single degree of free-
dom in the state are illustrated in (a) and (c); as before in (a) the entire body is shifted up and down
(along the Z-axis), in (d) along the optical axis of the camera. In (b) and (d) poses corresponding to
the strongest peak in the likelihood of (a) and (c) respectively are illustrated. Notice that due to the
strong separation between foreground and background in this image sequence, appearance likeli-
hood performs similarly to the background likelihood model (illustrated in Figure 4); in sequences
where foreground and background contain similar colors appearance likelihoods tend to produce
superior performance.

3.4 Edges and Gradient Based Features

Unfortunately foreground and background appearance models have several prob-
lems. In general they have difficulty handling large changes in appearance such as
those caused by varying illumination and clothing. Additionally, near boundaries
they can become inaccurate since most foreground models do not capture the shad-
ing variations that occur near edges, and the pixels near the boundary are a mixture
of foreground and background colors due to limited camera resolution. For this rea-
son, and to be relatively invariant to lighting and small errors in surface geometry, it
has been common to use edge-based likelihoods (e.g., Wachter and Nagel (1999)).
These models assume that the projected edges of the person should correspond to
some local structure in image intensity.
Perhaps the simplest approach to the use of edge information is the Chamfer

distance (Barrow, Tenenbaum, Bolles, and Wolf, 1977). or the Hausdorff distance
(Huttenlocher, Klanderman, and Rucklidge, 1993). Edges are first extracted from the
observed image using standard edge detection methods (Forsyth and Ponce, 2003)
and a distance map is computed where d(x) is the squared Euclidean distance from
pixel x to the nearest edge pixel. The outline of the subject in the image is computed
and the boundary is sampled at a set of points {bi}Mi=1. In the case of Chamfer
matching the likelihood function is

p(d |s) = exp

(

−
1
M

M

!
i=1

d(bi)

)

. (9)

Chamfer matching is fast, as the distance map need only be computed once and is
evaluated only at edge points. Additionally, it is robust to changes in illumination
and other appearance changes of the subject. However it can be difficult to obtain
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Inference: Particle Filter

How can we know if this happens?

If we have N weighted samples, how do we know if they’re any good?

The effective sample size is an estimate of the number of independent 
samples

Neff ≈ 1
�N

j=1(w
(j))2

If the weights are equal, i.e.,                      , then 

If one weight is large and the rest are small then 

w(j) = N−1 Neff = N

Neff ≈ 1
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Inference: Particle Filter

So, how many particles should you use?

As many as you can afford!

What if it still doesn’t work?

Improve the model (i.e., reduce its entropy)

Broaden the prediction distribution by changing the motion model

Or...
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Inference: Sequential Importance Sampling

The simple particle filter is an example of what’s called a Sequential 
Importance Sampling algorithm

The more general class of algorithms will give us more flexibility

To see the connection, consider importance sampling from the posterior

p(x1:t|z1:t) ∝
�

t�

i=1

p(zi|xi)

�
p(x1:t)
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Inference: Sequential Importance Sampling

If the importance distribution used is the prior

To draw a sample         from the prior:

1) Draw sample from the initial distribution

2) For                       sample from the motion model

x1:t ∼ p(x1:t)

x(i)
1:t

x(i)
1 ∼ p(x1)

τ = 2, . . . , t

x(i)
τ ∼ p(xτ |x(i)

τ−1)
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Inference: Sequential Importance Sampling

The importance weights when using the prior

w(x1:t) =
p(x1:t|z1:t)
p(x1:t)

∝

��t
i=1 p(zi|xi)

�
p(x1:t)

p(x1:t)

=
t�

i=1

p(zi|xi)
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Inference: Sequential Importance Sampling

So to draw an importance sample and compute it’s weight

1) Draw sample from the initial distribution

2) Evaluate the initial weight 

3) For                      

x(i)
1 ∼ p(x1)

τ = 2, . . . , t

x(i)
τ ∼ p(xτ |x(i)

τ−1)

w(i)
1 = p(z1|x(i)

1 )

w(i)
τ = w(i)

τ−1p(zτ |x(i)
τ )
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Inference: Sequential Importance Sampling

So given a set of weighted importance samples at time t-1

Updating with a new observation is easy, for each sample j

1) 

2)

As t increases the number of effective samples decreases, potentially very 
quickly.  This is know as the problem of particle depletion.

St−1 = {x(j)
t−1, w

(j)
t−1}Nj=1

x(j)
t ∼ p(xt|x(j)

t−1)

w(j)
t = w(j)

t−1p(zt|x
(j)
t )
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Inference: Sequential Importance Sampling

To avoid particle depletion SIS can incorporate resampling

Given a set of particles                                      we can create a new set

For 

1) Sample index j with probability 

2)                    , 

If the original set was properly weighted, the new set                                      
is properly weighted as well

St = {x(j)
t , w(j)

t }Nj=1

i = 1, . . . , N̂

w(j)
t

ŵ(i)
t = N̂−1x̂(i)

t = x(j)
t

Ŝt = {x̂(j)
t , ŵ(j)

t }N̂j=1
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Inference: Sequential Importance Sampling

To get the simple particle filter (the Condensation algorithm), perform SIS with 
resampling at every every step (check this yourself!)

So what does the SIS perspective give us?

• We don’t have to resample at every step, just take each particle, sample 
from the motion model and multiply the weight by the likelihood

• More importantly, we can use a different importance distribution
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Inference: Sequential Importance Sampling

Here is a (more) general version of a particle filter based on these ideas

1) If desired (eg, based on ESS) resample the particle set

2) For each particle j in set 

a)

b) 

3) Normalize the weights 

St−1 = {x(j)
t−1, w

(j)
t−1}Nj=1

x(j)
t ∼ q(xt|x(j)

t−1, zt)

w�(j)
t = w(j)

t−1

p(zt|x(j)
t )p(x(j)

t |x(j)
t−1)

q(xt|x(j)
t−1, zt)

w(j)
t = w�(j)

t

�
N�

i=1

w�(i)
t

�
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Inference: Sequential Importance Sampling

How do we set the importance/proposal distribution?

If                                                     then we’re back to the basic algorithm

Ideally, we’d like                                                                but this generally 
won’t be something we can sample from (if it was we’d be done!)

For specific problems we can often exploit domain knowledge to make 
better proposal distributions (eg, object detections, background blobs, etc)

q(xt|x(j)
t−1, zt) = p(x(j)

t |x(j)
t−1)

q(xt|x(j)
t−1, zt) ∝ p(zt|xt)p(xt|x(j)

t−1)
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Inference: Sequential Importance Sampling

Other particle filter/SIS variations:

Rao-Blackwellized Particle Filter: Reduce posterior entropy by 
analytically integrating out state variables  [Khan et al, CVPR 2004]

Auxiliary Particle Filter: Peek ahead at the observation in order to build a 
better proposal distribution  [Pitt and Shephard, JASA 1999]

SIS with MCMC: Use MCMC sampling to improve the particle set at each 
iteration [Liu and Chen, JASA 1998; Choo and Fleet, ICCV 2001]
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MAP Tracking

There are many other tracking algorithms people have explored which are 
non-probabilistic

They focus on finding the maxima of the filtering distribution at each time, 
given the maxima at the previous time

xMAP
t = argmax

xt

p(xt|xMAP
t−1 , z1:t)

= argmax
xt

p(zt|xt)p(xt|xMAP
t−1 )

These algorithms basically constitute different ways to maximize a function
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MAP Tracking

Here is an example of a gradient based optimization MAP tracker which uses 
a detailed model of hand shape and appearance

[de la Gorce et al, PAMI 2010]
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MAP Tracking

Some algorithms that have been used successfully

• Gradient based local optimization

• Iterative-least squares local optimization

• Particle-swarm optimization

• Annealed “particle filter”
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Annealed Particle Filter

The annealed particle filter is a particle filter-like algorithm, however it’s 
sample set is not properly weighted

This is more than a theoretical problem: it can result in unexpected tracking 
failures when the likelihood function is ambiguous or misleading

However, it is one of the most popular algorithms in (generative) human pose 
tracking
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Annealed Particle Filter

The APF begins the with basic particle filtering algorithm:

1) Given the filtering distribution at the previous time represented by a set 
of weighted samples                                     and a new observation 

2) For                        draw samples from the prediction distribution and 
weight them by the likelihood

a) Pick particle j with probability 

b) Sample a new state from the motion model

w(j)
t−1

i = 1, . . . , N

St = {x(j)
t , w(j)

t }Nj=1
zt

x(i,0)
t ∼ p(xt|x(i)

t−1)
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Annealed Particle Filter

Then APF then iterates a process of diffusion and reweighting using an 
annealed version of the likelihood function

The diffusion distribution is typically a Gaussian

For 

For                       ,  

Normalize the weights and resample the particle set

For                       , 

For                        

l = 1, . . . , L

i = 1, . . . , N

i = 1, . . . , N

Tl(x|x�) = N (x|x�,Σl)

x(i,l)
t ∼ Tl(xt|x(i,l−1)

t )

w(i,l)
t =

�
p(zt|x(i,l−1)

t )
�αl

i = 1, . . . , N

w(i)
t = p(zt|x(i,L)

t )

x(i)
t = x(i,L)

t
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Annealed Particle Filter

This annealing process first 
smooths out the likelihood function 
and gradually roughens it, making 
it easier to search

As the annealing proceeds, the 
samples converge to a local mode

w3
(    )X

(    )X

(    )X

(    )Xw2

w1

w0

St,3

St,3
π

St,2

St,1
π

St,0
π
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St,2
π

St,1

X

X

X

X

Figure 2: Illustration of the annealed particle filter with M = 3.With a multi-layered search
the sparse particle set is able to migrate gradually towards the global maximum without being
distracted by local maxima. The final set provides a good indication of the weighting
function’s global maximum.

In the case of traditional annealing, the temperature acts like a barrier, restricting
the movement of samples: the cooler the temperature, the fewer the number of samples
with a low function value (energy) that will be generated. In the context of a
particle set, a high survival rate corresponds to an even spread probability mass, while
a low one suggests the mass is concentrated in a few particles. Hence decreasing the
survival rate has the same effect as cooling the temperature in traditional annealing.
Now is clearly a monotonic decreasing function of . At a given layer, we

therefore adjust the value of to change the value of so that
approaches a desired value. This is trivially done by searching over (using the
value from the previous time step as the starting point) to find the value that
solves the equation

desired

10

[Deutscher and Reid, 2005]
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Annealed Particle Filter

The APF is typically run with fewer particles than the PF, but has a similar cost 
due to the annealing process

Because (in its original form) it only anneals the likelihood function, the motion 
model is effectively meaningless and the estimated states can make very 
large jumps

This can be fixed by incorporating the motion model into the weighting, e.g., 

The APF can also be altered to properly weight the particles [Gall et al, JMIV 
2007]

w(i,l)
t =



p(zt|x(i,l−1)
t )

N�

j=1

w(i)
t−1p(x

(i,l−1)
t |x(j)

t−1)




αl
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Annealed Particle Filter

The APF has had the most success in human motion estimation from multiple 
cameras (typically at least 4 with wide baseline)

[Gall et al, IJCV 2010]

82Tuesday, February 12, 2013



Challenges: High-dimensional pose 

People have many degrees of freedom, comprising an articulated 

skeleton overlaid with soft tissue and deformable clothing.
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Challenges: Appearance, size and shape 

People come in all shapes and sizes, with highly variable appearance.
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Challenges: Noisy and missing data 

Ambiguities in pose are commonplace, e.g., due to: 
background clutter, apparent similarity of parts, 

occlusions, loose clothing …
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Challenges: Depth and reflection ambiguities

image 3D model
(camera view)

3D model
(top view)

Many 3D configurations may be consistent with a given image.

[courtesy of Cristian Sminchisescu]
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Kinematic models in tracking

 Motion Model:  damped 2nd order Markov model with Beta process 
noise and joint angle limits

 Observations:  steerable pyramid coefficients (image edges) 

 Inference:  hybrid Monte Carlo particle filter

[Poon & Fleet 2001]
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Kinematic models in tracking

[Urtasun, Fleet, Hertzmann & Fua, 2005]

 Motion Model:  non-linear latent model of the pose manifold, with 2nd 
order Gauss-Markov model for temporal evolution

 Observations:  tracked 2D patches on body (WSL tracker) 

 Inference:  MAP estimation (hill climbing)
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Physics-based models

Physics-based motion models naturally account for:
 balance and body lean (e.g., on hills)
 sudden accelerations (e.g., collisions)
 static contact (e.g., avoiding footskate) 
 variations in style due to changes in speed and mass distribution 

(e.g., carrying an object)
…

Goal: use dynamics to model key physical properties of motion 
for 3D people tracking
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[Kawada Industries HRP-2, Robodex 2003]

Physics-based models: Humanoid Robots

Active control strategies used with 
humanoid robots: 

 energetically inefficient (highly geared, 
low center of mass, …)

 tedious to design and implement 
ZMP-based stability criteria

Usually produce characteristically 
inhuman motion.
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Physics-based models: Computer animation

Learning physics-based models 
from mocap data using space-time 
optimization:

 high-dimensional models   
(stiffness, damping, muscle 
preferences, …)

 challenging optimization
 generalization

[Liu, Hertzmann & Popovic, 2006]
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Physics-based models: Passive dynamics

Passive dynamic robotic walkers have been built which exhibit human-
like gaits, with similar efficiency.

[McGeer 1990] [Collins & Ruina 2005]
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The Anthropomorphic Walker

Anthropomorphic Walker
 2D model with rigid bodies for the 

torso and each leg
 forces can be added with a spring 

between the legs and an impulsive 
toe-off

[McGeer 1990; Kuo 2001/02]

Im
pu

lse

Key Properties:
when powered, exhibits a human-like preferred speed-step 

length relationship
 invariant to total mass and leg length (approximately)
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A physics-based model of human motion

To use the anthropomorphic walker for tracking we need
 equations of motions,
 a prior distribution of spring stiffness and impulse which produce 

natural 2D motions,
 a 3D pose model consistent with the underlying dynamics, and
 a likelihood function to relate the 3D pose model to the image.
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 Contact: instantaneous change in velocity due 
to (inelastic) contact with ground:

 Equations of motion:

Dynamics of the anthropomorphic walker

Equations of motion govern the dynamics of leg orientations and ground 
contact, given lengths and relative masses:

spring forceforces due to 
gravity and 
constraints

 Generalized coordinates:

Given initial conditions and control 
parameters, the equations of motion are 
integrated to find the time-varying pose.

generalized mass 
matrix

acceleration

post-contact 
velocity

pre-contact 
velocity

impulse
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Simulation

Simulation with constant stiffness and impulse
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Control

Using optimization, parameters            and initial state            can 
be found which generate cyclic motions at different speeds     and 
step lengths

Speed: 6.7 km/hr;  Step length: 0.875mSpeed: 5.4 km/hr;  Step length: 0.875mSpeed: 4.0 km/hr;  Step length: 0.875mSpeed: 4.0 km/hr;  Step length: 0.625mSpeed: 2.7 km/hr;  Step length: 0.875mSpeed: 2.7 km/hr;  Step length: 0.625mSpeed: 2.7 km/hr;  Step length: 0.375m
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Spring Constant Impulse Magnitude

speed
step length

speed
step length

In tracking, the dynamics parameters are unknown and a simple 
prior, based on these optimizations, is used.

Stochastic Control
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3D kinematic model

Kinematic parameters include the relative 
orientations of torso, thigh, knee and 
ankle.

the dynamical model constrains contact 
of stance foot, the two thigh angles

other parameters modeled as smooth, 
second-order Markov processes.

limb lengths are assumed to be static
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Sequential Monte Carlo inference:

Sampling from the transition density

Bayesian people tracking

Image observations:

likelihood posteriortransition

dynamics pose

State:

Resample when the effective number of samples becomes small

  sample control
 parameters

simulate dynamics sample kinematics, 
given dynamics

Posterior distribution:
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Measurement / Observations

Optical FlowForeground Model Background Model
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Foreground / Background Model
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Calibration and initialization

Camera calibrated with respect to ground plane.
Gravity assumed to be normal to the ground.
Body position, pose and dynamics coarsely hand-initialized.
Excluding likelihood evaluations, runs at ~15 fps (5000 particles)
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Experiment 1: Changing speed

Input data.
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Experiment 1: Changing speed
Speed and support transfer versus time.
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Experiment 1: Changing speed

Approximate MAP trajectory

(half speed)
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Experiment 1: Changing speed

Approximate MAP trajectory in 3D

(half speed)
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Experiment 2: Occlusion

Input data.
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Experiment 2: Occlusion

Approximate MAP trajectory

(half speed)
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Experiment 2: Occlusion

Posterior distribution over marker locations on 3D model.

(half speed)
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Experiment 2: Occlusion

Posterior distribution over marker locations on 3D model.

(half speed)
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Experiment 3: Turning with changes in speed

Approximate MAP trajectory
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Experiment 3: Turning with changes in speed

Approximate MAP trajectory in 3D
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