Computer Vision: Panorama

Raquel Urtasun

TTI Chicago
Feb 5, 2013

What did we see in class last week?

Image Alignment Algorithm

Given images A and B
(1) Compute image features for A and B
(2) Match features between A and B
(3) Compute homography between A and B using least squares on set of matches

Is there a problem with this?
[Source: N. Snavely]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(4) Select points consistent with model

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(4) Select points consistent with model
(5) Repeat hypothesize and verify loop

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(4) Select points consistent with model
(5) Repeat hypothesize and verify loop

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(9) Select points consistent with model
(0) Repeat hypothesize and verify loop
© Choose model with largest set of inliers

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(4) Select points consistent with model
(0) Repeat hypothesize and verify loop
(0 Choose model with largest set of inliers

[Source: R. Raguram]

Hough Transform Algorithm

With the parameterization $x \cos \theta+y \sin \theta=r$

- Let $r \in[-R, R]$ and $\theta \in[0, \pi)$
- For each edge point $\left(x_{i}, y_{i}\right)$, calculate: $\hat{r}=x_{i} \cos \hat{\theta}+y_{i} \sin \hat{\theta} \quad \forall \hat{\theta} \in[0, \pi)$
- Increase accumulator $A(\hat{r}, \hat{\theta})=A(\hat{r}, \hat{\theta})+1$

- Threshold the accumulator values to get parameters for detected lines [Source: M. Kazhdan]

Modeling projection

The coordinate system

- We will use the pinhole model as an approximation
- Put the optical center (Center Of Projection) at the origin

Modeling projection

The coordinate system

- We will use the pinhole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP. Why?

Modeling projection

The coordinate system

- We will use the pinhole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP. Why?
- The camera looks down the negative z axis, for right-handed-coordinates
[Source: N. Snavely]

Modeling projection

The coordinate system

- We will use the pinhole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP. Why?
- The camera looks down the negative z axis, for right-handed-coordinates
[Source: N. Snavely]

Modeling projection

Projection Equations

- Compute intersection with PP of ray from (x, y, z) to COP. How?
- Derived using similar triangles

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

Modeling projection

Projection Equations

- Compute intersection with PP of ray from (x, y, z) to COP. How?
- Derived using similar triangles

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

- Get the projection by throwing the last coordinate
[Source: N. Snavely]

Modeling projection

Projection Equations

- Compute intersection with PP of ray from (x, y, z) to COP. How?
- Derived using similar triangles

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

- Get the projection by throwing the last coordinate
[Source: N. Snavely]

Perspective

3D World

Perspective Projection

Variants of Orthographic

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines
- But line through focal point projects to a point. Why?

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines
- But line through focal point projects to a point. Why?
- Planes \rightarrow planes

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines
- But line through focal point projects to a point. Why?
- Planes \rightarrow planes
- But plane through focal point projects to line. Why?
[Source: N. Snavely]

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines
- But line through focal point projects to a point. Why?
- Planes \rightarrow planes
- But plane through focal point projects to line. Why?
[Source: N. Snavely]

Camera Parameters

How many numbers do we need to describe a camera?

- We need to describe its pose in the world

Camera Parameters

How many numbers do we need to describe a camera?

- We need to describe its pose in the world
- We need to describe its internal parameters

Camera Parameters

How many numbers do we need to describe a camera?

- We need to describe its pose in the world
- We need to describe its internal parameters
- How many then?
[Source: N. Snavely]

Camera Parameters

How many numbers do we need to describe a camera?

- We need to describe its pose in the world
- We need to describe its internal parameters
- How many then?
[Source: N. Snavely]

Projection Equations

- The projection matrix models the cumulative effect of all intrinsic and extrinsic parameters

$$
\mathbf{X}=\left[\begin{array}{c}
a x \\
a y \\
a
\end{array}\right]=\mathbf{P}\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- It can be computed as

Projection Equations

- The projection matrix models the cumulative effect of all intrinsic and extrinsic parameters

$$
\mathbf{X}=\left[\begin{array}{c}
a x \\
a y \\
a
\end{array}\right]=\mathbf{P}\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- It can be computed as

$$
\mathbf{P}=\underbrace{\left[\begin{array}{ccc}
-f \cdot s_{x} & 0 & x_{c}^{\prime} \\
0 & -f \cdot s_{y} & y_{c}^{\prime} \\
0 & 0 & 1
\end{array}\right]}_{\text {intrinsics }} \underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\text {projection }} \underbrace{\left[\begin{array}{cc}
\mathbf{R}_{3 \times 3} & 0_{3 \times 1} \\
0_{1 \times 3} & 1
\end{array}\right]}_{\text {rotation }} \underbrace{\left[\begin{array}{cc}
\mathbf{I}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\
0_{1 \times 3} & 1
\end{array}\right]}_{\text {translation }}
$$

- No standard definition of intrinsics and extrinsics

Projection Equations

- The projection matrix models the cumulative effect of all intrinsic and extrinsic parameters

$$
\mathbf{X}=\left[\begin{array}{c}
a x \\
a y \\
a
\end{array}\right]=\mathbf{P}\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- It can be computed as

$$
\mathbf{P}=\underbrace{\left[\begin{array}{ccc}
-f \cdot s_{x} & 0 & x_{c}^{\prime} \\
0 & -f \cdot s_{y} & y_{c}^{\prime} \\
0 & 0 & 1
\end{array}\right]}_{\text {intrinsics }} \underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\text {projection }} \underbrace{\left[\begin{array}{cc}
\mathbf{R}_{3 \times 3} & 0_{3 \times 1} \\
0_{1 \times 3} & 1
\end{array}\right]}_{\text {rotation }} \underbrace{\left[\begin{array}{cc}
\mathbf{I}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\
0_{1 \times 3} & 1
\end{array}\right]}_{\text {translation }}
$$

- No standard definition of intrinsics and extrinsics

Extrinsics

How do we get the camera to canonical form?

[Source: N. Snavely]

Extrinsics

How do we get the camera to canonical form?

[Source: N. Snavely]

Extrinsics

How do we get the camera to canonical form?

[Source: N. Snavely]

Extrinsics

How do we get the camera to canonical form?

[Source: N. Snavely]

Perspective Projection

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{ccc}
\text { (convertinate sysstem to to pixel coordinates) }
\end{array}\right.}_{\underset{\text { (intrinsics) }}{\left[\begin{array}{ccc}
-f & 0 & 0 \\
0 & -f & 0 \\
0 & 0 & 1
\end{array}\right]}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \begin{array}{l}
\text { in reys in camera } \\
\text { in general, } \mathbf{K}=\left[\begin{array}{ccc}
-f & s & c_{x} \\
0 & -\alpha f & c_{y} \\
0 & 0 & 1
\end{array}\right] \\
\substack{\text { (upper triangular } \\
\text { matrix) }}
\end{array}
\end{aligned}
$$

α : aspect ratio (1 unless pixels are not square)
S : skew (0 unless pixels are shaped like rhombi/parallelograms)
: principal point $((0,0)$ unless optical axis doesn't intersect projection plane at origin)

- Simplifications used in practice
[Source: N. Snavely]

Today's Readings

- Chapter 9 of Szeliski's book

Let's look at panoramas again

Can we use homography to create a 360 panorama?

[Source: N Snavely]

Can we use homography to create a 360 panorama?

- Idea: projecting images onto a common plane

[Source: N Snavely]

Creating Panoramas

- Before we can register and align images, we need mathematical relationships that map pixel coordinates from one image to another
- A variety of such parametric motion models are possible from

Creating Panoramas

- Before we can register and align images, we need mathematical relationships that map pixel coordinates from one image to another
- A variety of such parametric motion models are possible from
- simple 2D transforms

Creating Panoramas

- Before we can register and align images, we need mathematical relationships that map pixel coordinates from one image to another
- A variety of such parametric motion models are possible from
- simple 2D transforms
- planar perspective models

Creating Panoramas

- Before we can register and align images, we need mathematical relationships that map pixel coordinates from one image to another
- A variety of such parametric motion models are possible from
- simple 2D transforms
- planar perspective models
- 3D camera rotations

Creating Panoramas

- Before we can register and align images, we need mathematical relationships that map pixel coordinates from one image to another
- A variety of such parametric motion models are possible from
- simple 2D transforms
- planar perspective models
- 3D camera rotations
- lens distortions

Creating Panoramas

- Before we can register and align images, we need mathematical relationships that map pixel coordinates from one image to another
- A variety of such parametric motion models are possible from
- simple 2D transforms
- planar perspective models
- 3D camera rotations
- lens distortions
- mapping to non-planar (e.g., cylindrical) surfaces

Creating Panoramas

- Before we can register and align images, we need mathematical relationships that map pixel coordinates from one image to another
- A variety of such parametric motion models are possible from
- simple 2D transforms
- planar perspective models
- 3D camera rotations
- lens distortions
- mapping to non-planar (e.g., cylindrical) surfaces

(a) translation [2 dof]

(b) affine [6 dof]

(c) perspective $[8 \mathrm{dof}]$

(d) 3D rotation [3+ dof]
- Deciding which model is a model selection problem.

Creating Panoramas

- Before we can register and align images, we need mathematical relationships that map pixel coordinates from one image to another
- A variety of such parametric motion models are possible from
- simple 2D transforms
- planar perspective models
- 3D camera rotations
- lens distortions
- mapping to non-planar (e.g., cylindrical) surfaces

(a) translation [2 dof]

(b) affine [6 dof]

(c) perspective $[8 \mathrm{dof}]$

(d) 3 D rotation $[3+\mathrm{dof}]$
- Deciding which model is a model selection problem.

Simple Motion Model

- Consists of 2D rotation and translation
- In a panography, images are translated, rotated and scaled.
- We saw the case of linear transformations, where we used least squares
- To be more robust we employed RANSAC or Hough transform

Estimating the Motion

- Consider, the problem of estimating a rigid Euclidean 2D transformation (translation plus rotation) between two sets of points.
- If we parameterize this transformation by the translation $\left(t_{x} ; t_{y}\right)$ and the rotation angle θ, the Jacobian of this transformation, depends on the current value of θ.
- Is this problematic?

Transform	Matrix	Parameters \boldsymbol{p}	Jacobian \boldsymbol{J}
translation	$\left[\begin{array}{lll}1 & 0 & t_{x} \\ 0 & 1 & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}\right)$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Minimizing the non-linear least-squares

- Iteratively update $\Delta \mathbf{p}$ to the current parameter estimate $\Delta \mathbf{p}$ by minimizing

$$
E_{N L S}(\Delta \mathbf{p})=\sum_{i}\left\|f\left(x_{i} ; \mathbf{p}+\Delta \mathbf{p}\right)-x_{i}^{\prime}\right\|_{2}^{2}
$$

- We can approximate this by

$$
E_{N L S}(\Delta \mathbf{p}) \approx \sum_{i}\left\|J\left(x_{i} ; p\right) \Delta p-r_{i}^{\prime}\right\|_{2}^{2}
$$

Minimizing the non-linear least-squares

- Iteratively update $\Delta \mathbf{p}$ to the current parameter estimate $\Delta \mathbf{p}$ by minimizing

$$
E_{N L S}(\Delta \mathbf{p})=\sum_{i}\left\|f\left(x_{i} ; \mathbf{p}+\Delta \mathbf{p}\right)-x_{i}^{\prime}\right\|_{2}^{2}
$$

- We can approximate this by

$$
E_{N L S}(\Delta \mathbf{p}) \approx \sum_{i}\left\|\mathbf{J}\left(x_{i} ; \mathbf{p}\right) \Delta \mathbf{p}-r_{i}^{\prime}\right\|_{2}^{2}
$$

- Expanding this we have

$$
E_{N L S}(\triangle p) \approx \triangle_{p}^{\top} A \Delta p-2 \Delta p^{\top} b+c
$$

with $\mathbf{A}=\sum_{i} \mathbf{J}^{\top} \mathbf{J}$ the Hessian and

$$
\mathbf{b}=\sum_{i} \mathbf{J}^{T}\left(x_{i}\right) \mathbf{r}_{i}
$$

is a Jacobian-weighted sum of residual vectors

Minimizing the non-linear least-squares

- Iteratively update $\Delta \mathbf{p}$ to the current parameter estimate $\Delta \mathbf{p}$ by minimizing

$$
E_{N L S}(\Delta \mathbf{p})=\sum_{i}\left\|f\left(x_{i} ; \mathbf{p}+\Delta \mathbf{p}\right)-x_{i}^{\prime}\right\|_{2}^{2}
$$

- We can approximate this by

$$
E_{N L S}(\Delta \mathbf{p}) \approx \sum_{i}\left\|\mathbf{J}\left(x_{i} ; \mathbf{p}\right) \Delta \mathbf{p}-r_{i}^{\prime}\right\|_{2}^{2}
$$

- Expanding this we have

$$
E_{N L S}(\Delta \mathbf{p}) \approx \Delta_{\mathbf{p}}^{T} \mathbf{A} \Delta \mathbf{p}-2 \Delta \mathbf{p}^{T} \mathbf{b}+c
$$

with $\mathbf{A}=\sum_{i} \mathbf{J}^{\boldsymbol{T}} \mathbf{J}$ the Hessian and

$$
\mathbf{b}=\sum_{i} \mathbf{J}^{T}\left(x_{i}\right) \mathbf{r}_{i}
$$

is a Jacobian-weighted sum of residual vectors

Minimizing the non-linear least-squares

- The parameters are pulled in the direction of the prediction error with strength proportional to the Jacobian
- Once \mathbf{A} and \mathbf{b} are computed, one solves for $\Delta \boldsymbol{p}$ by solving

$$
(\mathbf{A}+\lambda \operatorname{diag}(\mathbf{A})) \Delta \mathbf{p}=\mathbf{b}
$$

with λ a damping parameter

Minimizing the non-linear least-squares

- The parameters are pulled in the direction of the prediction error with strength proportional to the Jacobian
- Once \mathbf{A} and \mathbf{b} are computed, one solves for $\Delta \mathbf{p}$ by solving

$$
(\mathbf{A}+\lambda \operatorname{diag}(\mathbf{A})) \Delta \mathbf{p}=\mathbf{b}
$$

with λ a damping parameter

- Thus the algorithm looks like
repeat

1. Compute \mathbf{A} and \mathbf{b} at current solution
2. Solve for $\Delta \mathbf{p}$,
3. $\mathrm{p} \leftarrow \mathrm{p}+\Delta \mathrm{p}$
end

Minimizing the non-linear least-squares

- The parameters are pulled in the direction of the prediction error with strength proportional to the Jacobian
- Once \mathbf{A} and \mathbf{b} are computed, one solves for $\Delta \mathbf{p}$ by solving

$$
(\mathbf{A}+\lambda \operatorname{diag}(\mathbf{A})) \Delta \mathbf{p}=\mathbf{b}
$$

with λ a damping parameter

- Thus the algorithm looks like repeat

1. Compute \mathbf{A} and \mathbf{b} at current solution
2. Solve for $\Delta \mathbf{p}$,
3. $\mathbf{p} \leftarrow \mathbf{p}+\Delta \mathbf{p}$
end

- How to initialize?

Minimizing the non-linear least-squares

- The parameters are pulled in the direction of the prediction error with strength proportional to the Jacobian
- Once \mathbf{A} and \mathbf{b} are computed, one solves for $\Delta \mathbf{p}$ by solving

$$
(\mathbf{A}+\lambda \operatorname{diag}(\mathbf{A})) \Delta \mathbf{p}=\mathbf{b}
$$

with λ a damping parameter

- Thus the algorithm looks like
repeat

1. Compute \mathbf{A} and \mathbf{b} at current solution
2. Solve for $\Delta \mathbf{p}$,
3. $\mathbf{p} \leftarrow \mathbf{p}+\Delta \mathbf{p}$
end

- How to initialize?

Initialization

- For the case of our 2D translation+rotation, we end up with a 3×3 set of normal equations in the unknowns $\delta t_{x}, \delta t_{y}, \delta \theta$
- An initial guess for translation can be obtained by fitting a four-parameter similarity transform in ($t_{x} ; t_{y} ; c ; s$) and then setting $\theta=\tan ^{-1}(s / c)$.

Initialization

- For the case of our 2D translation+rotation, we end up with a 3×3 set of normal equations in the unknowns $\delta t_{x}, \delta t_{y}, \delta \theta$
- An initial guess for translation can be obtained by fitting a four-parameter similarity transform in ($t_{x} ; t_{y} ; c ; s$) and then setting $\theta=\tan ^{-1}(s / c)$.
- An alternative approach is to estimate the translation parameters using the centroids of the 2D points and to then estimate the rotation angle using polar coordinates

Initialization

- For the case of our 2D translation+rotation, we end up with a 3×3 set of normal equations in the unknowns $\delta t_{x}, \delta t_{y}, \delta \theta$
- An initial guess for translation can be obtained by fitting a four-parameter similarity transform in ($t_{x} ; t_{y} ; c ; s$) and then setting $\theta=\tan ^{-1}(s / c)$.
- An alternative approach is to estimate the translation parameters using the centroids of the 2D points and to then estimate the rotation angle using polar coordinates

Planar Perspective Motion

- The mapping between two camera viewing a common plane can be described with a 3×3 homography.
- Consider \mathbf{M}_{10}, the matrix that arises from mapping a pixel in one image to a 3D point and then back onto the second image

$$
\hat{\mathbf{x}}_{1} \sim \hat{\mathbf{p}}_{1} \hat{\mathbf{p}}_{0}^{-1} \hat{\mathbf{x}}_{0}=\mathbf{M}_{10} \hat{\mathbf{x}}_{0}
$$

Planar Perspective Motion

- The mapping between two camera viewing a common plane can be described with a 3×3 homography.
- Consider \mathbf{M}_{10}, the matrix that arises from mapping a pixel in one image to a 3D point and then back onto the second image

$$
\hat{\mathbf{x}}_{1} \sim \hat{\mathbf{P}}_{1} \hat{\mathbf{P}}_{0}^{-1} \hat{\mathbf{x}}_{0}=\mathbf{M}_{10} \hat{\mathbf{x}}_{0}
$$

- When the last row of the $\hat{\mathbf{P}}_{0}$ matrix is replaced with a plane equation $\hat{\mathbf{n}}_{0} \cdot \mathbf{p}+c_{0}$ and points are assumed to lie on this plane, i.e., their disparity is $d=0$ we can ignore the last column of M_{10} and also its last row, since we do not care about the final z-buffer depth

$$
\hat{\mathbf{x}}_{1} \sim \hat{\mathbf{H}}_{10} \hat{\mathbf{x}}_{0}
$$

Planar Perspective Motion

- The mapping between two camera viewing a common plane can be described with a 3×3 homography.
- Consider \mathbf{M}_{10}, the matrix that arises from mapping a pixel in one image to a 3D point and then back onto the second image

$$
\hat{\mathbf{x}}_{1} \sim \hat{\mathbf{P}}_{1} \hat{\mathbf{P}}_{0}^{-1} \hat{\mathbf{x}}_{0}=\mathbf{M}_{10} \hat{\mathbf{x}}_{0}
$$

- When the last row of the $\hat{\mathbf{P}}_{0}$ matrix is replaced with a plane equation $\hat{\mathbf{n}}_{0} \cdot \mathbf{p}+c_{0}$ and points are assumed to lie on this plane, i.e., their disparity is $d=0$ we can ignore the last column of \mathbf{M}_{10} and also its last row, since we do not care about the final z-buffer depth

$$
\hat{\mathbf{x}}_{1} \sim \hat{\mathbf{H}}_{10} \hat{\mathbf{x}}_{0}
$$

- You will show this in an exercise

Planar Perspective Motion

- The mapping between two camera viewing a common plane can be described with a 3×3 homography.
- Consider \mathbf{M}_{10}, the matrix that arises from mapping a pixel in one image to a 3D point and then back onto the second image

$$
\hat{\mathbf{x}}_{1} \sim \hat{\mathbf{P}}_{1} \hat{\mathbf{P}}_{0}^{-1} \hat{\mathbf{x}}_{0}=\mathbf{M}_{10} \hat{\mathbf{x}}_{0}
$$

- When the last row of the $\hat{\mathbf{P}}_{0}$ matrix is replaced with a plane equation $\hat{\mathbf{n}}_{0} \cdot \mathbf{p}+c_{0}$ and points are assumed to lie on this plane, i.e., their disparity is $d=0$ we can ignore the last column of \mathbf{M}_{10} and also its last row, since we do not care about the final z-buffer depth

$$
\hat{\mathbf{x}}_{1} \sim \hat{\mathbf{H}}_{10} \hat{\mathbf{x}}_{0}
$$

- You will show this in an exercise
- More recent algorithms use robust methods such as RANSAC

Planar Perspective Motion

- The mapping between two camera viewing a common plane can be described with a 3×3 homography.
- Consider \mathbf{M}_{10}, the matrix that arises from mapping a pixel in one image to a 3D point and then back onto the second image

$$
\hat{\mathbf{x}}_{1} \sim \hat{\mathbf{P}}_{1} \hat{\mathbf{P}}_{0}^{-1} \hat{\mathbf{x}}_{0}=\mathbf{M}_{10} \hat{\mathbf{x}}_{0}
$$

- When the last row of the $\hat{\mathbf{P}}_{0}$ matrix is replaced with a plane equation $\hat{\mathbf{n}}_{0} \cdot \mathbf{p}+c_{0}$ and points are assumed to lie on this plane, i.e., their disparity is $d=0$ we can ignore the last column of \mathbf{M}_{10} and also its last row, since we do not care about the final z-buffer depth

$$
\hat{\mathbf{x}}_{1} \sim \hat{\mathbf{H}}_{10} \hat{\mathbf{x}}_{0}
$$

- You will show this in an exercise
- More recent algorithms use robust methods such as RANSAC
- How do we align multiple images? Is there a problem?

Planar Perspective Motion

- The mapping between two camera viewing a common plane can be described with a 3×3 homography.
- Consider \mathbf{M}_{10}, the matrix that arises from mapping a pixel in one image to a 3D point and then back onto the second image

$$
\hat{\mathbf{x}}_{1} \sim \hat{\mathbf{P}}_{1} \hat{\mathbf{P}}_{0}^{-1} \hat{\mathbf{x}}_{0}=\mathbf{M}_{10} \hat{\mathbf{x}}_{0}
$$

- When the last row of the $\hat{\mathbf{P}}_{0}$ matrix is replaced with a plane equation $\hat{\mathbf{n}}_{0} \cdot \mathbf{p}+c_{0}$ and points are assumed to lie on this plane, i.e., their disparity is $d=0$ we can ignore the last column of \mathbf{M}_{10} and also its last row, since we do not care about the final z-buffer depth

$$
\hat{\mathbf{x}}_{1} \sim \hat{\mathbf{H}}_{10} \hat{\mathbf{x}}_{0}
$$

- You will show this in an exercise
- More recent algorithms use robust methods such as RANSAC
- How do we align multiple images? Is there a problem?

Rotational Panoramas

- Assume the camera is doing pure 3D rotation
- The most common panoramic image stitching, e.g., when taking images of the Grand Canyon

Rotational Panoramas

- Assume the camera is doing pure 3D rotation
- The most common panoramic image stitching, e.g., when taking images of the Grand Canyon
- Assumes that all points are very far from the camera

Rotational Panoramas

- Assume the camera is doing pure 3D rotation
- The most common panoramic image stitching, e.g., when taking images of the Grand Canyon
- Assumes that all points are very far from the camera

Rotational Panoramas

- In this case simplified homography

$$
\hat{\mathbf{H}}_{10}=\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{R}_{0}^{-1} \mathbf{K}_{0}^{-1}=\mathbf{K}_{1} \mathbf{R}_{10} \mathbf{K}_{0}^{-1}
$$

with \mathbf{K} the camera intrinsic matrix assuming $c_{x}=c_{y}=0$

Rotational Panoramas

- In this case simplified homography

$$
\hat{\mathbf{H}}_{10}=\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{R}_{0}^{-1} \mathbf{K}_{0}^{-1}=\mathbf{K}_{1} \mathbf{R}_{10} \mathbf{K}_{0}^{-1}
$$

with \mathbf{K} the camera intrinsic matrix assuming $c_{x}=c_{y}=0$

- This can be rewritten as

$$
\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \sim\left[\begin{array}{lll}
f_{1} & & \\
& f_{1} & \\
& & 1
\end{array}\right] \boldsymbol{R}_{10}\left[\begin{array}{lll}
f_{0}^{-1} & & \\
& f_{0}^{-1} & \\
& & 1
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
y_{0} \\
1
\end{array}\right]
$$

Rotational Panoramas

- In this case simplified homography

$$
\hat{\mathbf{H}}_{10}=\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{R}_{0}^{-1} \mathbf{K}_{0}^{-1}=\mathbf{K}_{1} \mathbf{R}_{10} \mathbf{K}_{0}^{-1}
$$

with \mathbf{K} the camera intrinsic matrix assuming $c_{x}=c_{y}=0$

- This can be rewritten as

$$
\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \sim\left[\begin{array}{lll}
f_{1} & & \\
& f_{1} & \\
& & 1
\end{array}\right] \boldsymbol{R}_{10}\left[\begin{array}{lll}
f_{0}^{-1} & & \\
& f_{0}^{-1} & \\
& & 1
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
y_{0} \\
1
\end{array}\right]
$$

- Or more explicitly

$$
\left[\begin{array}{l}
x_{1} \\
y_{1} \\
f_{1}
\end{array}\right] \sim \boldsymbol{R}_{10}\left[\begin{array}{l}
x_{0} \\
y_{0} \\
f_{0}
\end{array}\right]
$$

Rotational Panoramas

- In this case simplified homography

$$
\hat{\mathbf{H}}_{10}=\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{R}_{0}^{-1} \mathbf{K}_{0}^{-1}=\mathbf{K}_{1} \mathbf{R}_{10} \mathbf{K}_{0}^{-1}
$$

with K the camera intrinsic matrix assuming $c_{x}=c_{y}=0$

- This can be rewritten as

$$
\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \sim\left[\begin{array}{lll}
f_{1} & & \\
& f_{1} & \\
& & 1
\end{array}\right] \boldsymbol{R}_{10}\left[\begin{array}{lll}
f_{0}^{-1} & & \\
& f_{0}^{-1} & \\
& & 1
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
y_{0} \\
1
\end{array}\right]
$$

- Or more explicitly

$$
\left[\begin{array}{c}
x_{1} \\
y_{1} \\
f_{1}
\end{array}\right] \sim \boldsymbol{R}_{10}\left[\begin{array}{c}
x_{0} \\
y_{0} \\
f_{0}
\end{array}\right]
$$

- We have 3, 4 or 5 parameters depending if the focal length is known, fixed or variable

Rotational Panoramas

- In this case simplified homography

$$
\hat{\mathbf{H}}_{10}=\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{R}_{0}^{-1} \mathbf{K}_{0}^{-1}=\mathbf{K}_{1} \mathbf{R}_{10} \mathbf{K}_{0}^{-1}
$$

with K the camera intrinsic matrix assuming $c_{x}=c_{y}=0$

- This can be rewritten as

$$
\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \sim\left[\begin{array}{lll}
f_{1} & & \\
& f_{1} & \\
& & 1
\end{array}\right] \boldsymbol{R}_{10}\left[\begin{array}{lll}
f_{0}^{-1} & & \\
& f_{0}^{-1} & \\
& & 1
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
y_{0} \\
1
\end{array}\right]
$$

- Or more explicitly

$$
\left[\begin{array}{c}
x_{1} \\
y_{1} \\
f_{1}
\end{array}\right] \sim \boldsymbol{R}_{10}\left[\begin{array}{c}
x_{0} \\
y_{0} \\
f_{0}
\end{array}\right]
$$

- We have 3, 4 or 5 parameters depending if the focal length is known, fixed or variable

Rotational Panoramas

Figure: Four images taken with a hand-held camera registered using a 3D rotation motion model (Szeliski and Shum 1997)

Panorama

- What if you want a 360 field of view?

[Source: N Snavely]

Cylindrical and Spherical Coordinates

- An alternative to using homographies or 3D motions to align images is to first warp the images into cylindrical coordinates and then use a pure translational model to align them
- This only works if the images are all taken with a level camera or with a known tilt angle.

Cylindrical and Spherical Coordinates

- An alternative to using homographies or 3D motions to align images is to first warp the images into cylindrical coordinates and then use a pure translational model to align them
- This only works if the images are all taken with a level camera or with a known tilt angle.
- Assume for now that the camera is in its canonical position, i.e., $\mathbf{R}=\mathbf{I}$ and the optical axis is aligned with the z axis and the y axis is aligned vertically

Cylindrical and Spherical Coordinates

- An alternative to using homographies or 3D motions to align images is to first warp the images into cylindrical coordinates and then use a pure translational model to align them
- This only works if the images are all taken with a level camera or with a known tilt angle.
- Assume for now that the camera is in its canonical position, i.e., $\mathbf{R}=\mathbf{I}$ and the optical axis is aligned with the z axis and the y axis is aligned vertically
- We wish to project this image onto a cylindrical surface of unit radius

Cylindrical and Spherical Coordinates

- An alternative to using homographies or 3D motions to align images is to first warp the images into cylindrical coordinates and then use a pure translational model to align them
- This only works if the images are all taken with a level camera or with a known tilt angle.
- Assume for now that the camera is in its canonical position, i.e., $\mathbf{R}=\mathbf{I}$ and the optical axis is aligned with the z axis and the y axis is aligned vertically
- We wish to project this image onto a cylindrical surface of unit radius
- Points on this surface are parameterized by an angle θ and a height h with the 3D cylindrical given by $(\sin \theta, h, \cos \theta) \propto(x, y, f)$

Cylindrical and Spherical Coordinates

- An alternative to using homographies or 3D motions to align images is to first warp the images into cylindrical coordinates and then use a pure translational model to align them
- This only works if the images are all taken with a level camera or with a known tilt angle.
- Assume for now that the camera is in its canonical position, i.e., $\mathbf{R}=\mathbf{I}$ and the optical axis is aligned with the z axis and the y axis is aligned vertically
- We wish to project this image onto a cylindrical surface of unit radius
- Points on this surface are parameterized by an angle θ and a height h with the 3D cylindrical given by $(\sin \theta, h, \cos \theta) \propto(x, y, f)$

Cylindrical and Spherical Coordinates

- We can compute the correspondence between warped and mapped coordinates

$$
\begin{gathered}
x^{\prime}=s \theta=s \tan ^{-1} \frac{x}{f}, \\
y^{\prime}=s h=s \frac{y}{\sqrt{x^{2}+f^{2}}}, \\
x=f \tan \theta=f \tan \frac{x^{\prime}}{s} \\
y=h \sqrt{x^{2}+f^{2}}=\frac{y^{\prime}}{s} f \sqrt{1+\tan ^{2} x^{\prime} / s}=f \frac{y^{\prime}}{s} \sec \frac{x^{\prime}}{s}
\end{gathered}
$$

Cylindrical Panorama

- Cylindrical is used if the camera is level and we have only rotation around its vertical axis
- Then we only need to estimate a translation

Figure: A cylindrical panorama (Szeliski and Shum 1997)

Spherical Projection

- Map 3D point (X,Y,Z) onto sphere

$$
(\hat{x}, \widehat{y}, \tilde{z})=\frac{1}{\sqrt{X^{2}+Y^{2}+Z^{2}}}(X, Y, Z)
$$

- Convert to spherical coordinates $(\sin \theta \cos \phi, \sin \phi, \cos \theta \cos \phi)=(\hat{x}, \hat{y}, \hat{z})$
- Convert to spherical image coordinates

$$
(\tilde{x}, \tilde{y})=(s \theta, s \phi)+\left(\tilde{x}_{c}, \tilde{y}_{c}\right)
$$

- s defines size of the final image
» often convenient to set s = camera focal length in pixels

unwrapped sphere

Spherical Projection

$$
\begin{aligned}
x^{\prime} & =s \theta=s \tan ^{-1} \frac{x}{f} \\
y^{\prime} & =s \phi=s \tan ^{-1} \frac{y}{\sqrt{x^{2}+f^{2}}}
\end{aligned}
$$

while the inverse is given by

$$
\begin{aligned}
x & =f \tan \theta=f \tan \frac{x^{\prime}}{s} \\
y & =\sqrt{x^{2}+f^{2}} \tan \phi=\tan \frac{y^{\prime}}{s} f \sqrt{1+\tan ^{2} x^{\prime} / s}=f \tan \frac{y^{\prime}}{s} \sec \frac{x^{\prime}}{s}
\end{aligned}
$$

Spherical Re-Projection

input

f = 200 (pixels)

$\mathrm{f}=400$

$\mathrm{f}=\mathbf{8 0 0}$

- It is desirable if the global motion model is translation
- For a pure panning motion, if we convert two images to their cylindrical maps with known f, the relationship between them is a translation.
- Similarly, we can map an image to its longitude/latitude spherical coordinates as well if f is given

Modeling Distorsion with Panoramas

- Project point to normalized image coordinates

$$
\begin{aligned}
x_{n} & =\frac{x}{z} \\
y_{n} & =\frac{y}{z}
\end{aligned}
$$

- Apply radial distorsion

$$
\begin{aligned}
& r^{2}=x_{n}^{2}+y_{n}^{2} \\
& x_{d}=x_{n}\left(1+k_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& y_{d}=y_{n}\left(1+k_{1} r^{2}+\kappa_{2} r^{4}\right)
\end{aligned}
$$

Modeling Distorsion with Panoramas

- Project point to normalized image coordinates

$$
\begin{aligned}
x_{n} & =\frac{x}{z} \\
y_{n} & =\frac{y}{z}
\end{aligned}
$$

- Apply radial distorsion

$$
\begin{aligned}
r^{2} & =x_{n}^{2}+y_{n}^{2} \\
x_{d} & =x_{n}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
y_{d} & =y_{n}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right)
\end{aligned}
$$

- Apply focal length and translate image center

$$
\begin{aligned}
& =f x_{d}+x_{c} \\
& =f y_{d}+y_{c}
\end{aligned}
$$

Modeling Distorsion with Panoramas

- Project point to normalized image coordinates

$$
\begin{aligned}
x_{n} & =\frac{x}{z} \\
y_{n} & =\frac{y}{z}
\end{aligned}
$$

- Apply radial distorsion

$$
\begin{aligned}
& r^{2}=x_{n}^{2}+y_{n}^{2} \\
& x_{d}=x_{n}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& y_{d}=y_{n}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right)
\end{aligned}
$$

- Apply focal length and translate image center

$$
\begin{aligned}
x^{\prime} & =f x_{d}+x_{c} \\
y^{\prime} & =f y_{d}+y_{c}
\end{aligned}
$$

- To model lens distortion with panoramas, use above projection operation after projecting onto a sphere

Modeling Distorsion with Panoramas

- Project point to normalized image coordinates

$$
\begin{aligned}
x_{n} & =\frac{x}{z} \\
y_{n} & =\frac{y}{z}
\end{aligned}
$$

- Apply radial distorsion

$$
\begin{aligned}
r^{2} & =x_{n}^{2}+y_{n}^{2} \\
x_{d} & =x_{n}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
y_{d} & =y_{n}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right)
\end{aligned}
$$

- Apply focal length and translate image center

$$
\begin{aligned}
x^{\prime} & =f x_{d}+x_{c} \\
y^{\prime} & =f y_{d}+y_{c}
\end{aligned}
$$

- To model lens distortion with panoramas, use above projection operation after projecting onto a sphere

Aligning spherical images

- Suppose we rotate the camera by θ about the vertical axis
- How does this change the spherical image?
[Source: N. Snavely]

Aligning spherical images

- Suppose we rotate the camera by θ about the vertical axis
- How does this change the spherical image?
- This means that we can align spherical images by translation
[Source: N. Snavely]

Assembling the panorama

- Stitch pairs together, blend, then crop
[Source: N. Snavely]

Problem: Drift

- Small errors accumulate over time
[Source: N. Snavely]

Solutions to Drift

- Add another copy of first image at the end, giving a constraint: $y_{n}=y_{1}$
- There are a bunch of ways to solve this problem
- add displacement of $\left(y_{1}-y_{n}\right) /(n-1)$ to each image after the first

Solutions to Drift

- Add another copy of first image at the end, giving a constraint: $y_{n}=y_{1}$
- There are a bunch of ways to solve this problem
- add displacement of $\left(y_{1}-y_{n}\right) /(n-1)$ to each image after the first
- apply an affine warp: $y^{\prime}=y+a x$

Solutions to Drift

- Add another copy of first image at the end, giving a constraint: $y_{n}=y_{1}$
- There are a bunch of ways to solve this problem
- add displacement of $\left(y_{1}-y_{n}\right) /(n-1)$ to each image after the first
- apply an affine warp: $y^{\prime}=y+a x$
- Bundle Adjustment: run a big optimization problem, incorporating this constraint
[Source: N. Snavely]

Solutions to Drift

- Add another copy of first image at the end, giving a constraint: $y_{n}=y_{1}$
- There are a bunch of ways to solve this problem
- add displacement of $\left(y_{1}-y_{n}\right) /(n-1)$ to each image after the first
- apply an affine warp: $y^{\prime}=y+a x$
- Bundle Adjustment: run a big optimization problem, incorporating this constraint
[Source: N. Snavely]

Dealing with multiple images

- Extend the pairwise matching criteria to deal with multiple images
- Typical pipeline include
- Panorama recognition: Decide which images to align
- Global alignment
- Local adjustments

Bundle Adjustment

- Goal: Find a globally consistent set of alignment parameters that minimize the mis-registration between all pairs of images
- The process of simultaneously adjusting pose parameters for a large collection of overlapping images is called bundle adjustment

Bundle Adjustment

- Goal: Find a globally consistent set of alignment parameters that minimize the mis-registration between all pairs of images
- The process of simultaneously adjusting pose parameters for a large collection of overlapping images is called bundle adjustment
- In the case of a single pair of images, we have feature-based alignment problem

$$
E_{\text {pairwise }-L S}=\sum_{i}\left\|\mathbf{r}_{i}\right\|_{2}^{2}=\left\|\tilde{\mathbf{x}}_{i}^{\prime}\left(\mathbf{x}_{i} ; \mathbf{p}\right)-\hat{\mathbf{x}}_{i}\right\|_{2}^{2}
$$

Bundle Adjustment

- Goal: Find a globally consistent set of alignment parameters that minimize the mis-registration between all pairs of images
- The process of simultaneously adjusting pose parameters for a large collection of overlapping images is called bundle adjustment
- In the case of a single pair of images, we have feature-based alignment problem

$$
E_{\text {pairwise }-L S}=\sum_{i}\left\|\mathbf{r}_{\boldsymbol{i}}\right\|_{2}^{2}=\left\|\tilde{\mathbf{x}}_{i}^{\prime}\left(\mathbf{x}_{i} ; \mathbf{p}\right)-\hat{\mathbf{x}}_{i}\right\|_{2}^{2}
$$

- For multi-alignment, instead of n correspondences $\left\{\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}^{\prime}\right\}$, we have $n_{j k}$ correspondences for every pair of images.

Bundle Adjustment

- Goal: Find a globally consistent set of alignment parameters that minimize the mis-registration between all pairs of images
- The process of simultaneously adjusting pose parameters for a large collection of overlapping images is called bundle adjustment
- In the case of a single pair of images, we have feature-based alignment problem

$$
E_{\text {pairwise }-L S}=\sum_{i}\left\|\mathbf{r}_{i}\right\|_{2}^{2}=\left\|\tilde{\mathbf{x}}_{i}^{\prime}\left(\mathbf{x}_{i} ; \mathbf{p}\right)-\hat{\mathbf{x}}_{i}\right\|_{2}^{2}
$$

- For multi-alignment, instead of n correspondences $\left\{\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}^{\prime}\right\}$, we have $n_{j k}$ correspondences for every pair of images.
- We will look into the case of pose expressed by rotation.

Bundle Adjustment

- Goal: Find a globally consistent set of alignment parameters that minimize the mis-registration between all pairs of images
- The process of simultaneously adjusting pose parameters for a large collection of overlapping images is called bundle adjustment
- In the case of a single pair of images, we have feature-based alignment problem

$$
E_{\text {pairwise }-L S}=\sum_{i}\left\|\mathbf{r}_{i}\right\|_{2}^{2}=\left\|\tilde{\mathbf{x}}_{i}^{\prime}\left(\mathbf{x}_{i} ; \mathbf{p}\right)-\hat{\mathbf{x}}_{i}\right\|_{2}^{2}
$$

- For multi-alignment, instead of n correspondences $\left\{\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}^{\prime}\right\}$, we have $n_{j k}$ correspondences for every pair of images.
- We will look into the case of pose expressed by rotation.
- Look at (Szeliski and Shum, 97) for the case of homographies

Bundle Adjustment

- Goal: Find a globally consistent set of alignment parameters that minimize the mis-registration between all pairs of images
- The process of simultaneously adjusting pose parameters for a large collection of overlapping images is called bundle adjustment
- In the case of a single pair of images, we have feature-based alignment problem

$$
E_{\text {pairwise }-L S}=\sum_{i}\left\|\mathbf{r}_{i}\right\|_{2}^{2}=\left\|\tilde{\mathbf{x}}_{i}^{\prime}\left(\mathbf{x}_{i} ; \mathbf{p}\right)-\hat{\mathbf{x}}_{i}\right\|_{2}^{2}
$$

- For multi-alignment, instead of n correspondences $\left\{\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}^{\prime}\right\}$, we have $n_{j k}$ correspondences for every pair of images.
- We will look into the case of pose expressed by rotation.
- Look at (Szeliski and Shum, 97) for the case of homographies

Bundle Adjustment

- We can relate a 3D point \mathbf{x}_{i} into a point $\mathbf{x}_{i j}$ in frame j as

$$
\tilde{\mathbf{x}}_{i j} \sim \mathbf{K}_{j} \mathbf{R}_{j} \mathbf{x}_{i} \quad \text { and } \quad \mathbf{x}_{i} \sim \mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \tilde{\mathbf{x}}_{i j}
$$

with $\mathbf{K}_{j}=\operatorname{diag}\left(f_{j}, f_{j}, 1\right)$

- The motion mapping a point $x_{i j}$ from frame j into a point $x_{i k}$ in frame k is similarly given by

$$
\tilde{\mathbf{x}}_{i k} \sim \tilde{\mathbf{H}} \hat{\mathbf{x}}_{i j}=\mathbf{K}_{k} \mathbf{R}_{k} \mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \hat{\mathbf{x}}_{i j}
$$

Bundle Adjustment

- We can relate a 3D point \mathbf{x}_{i} into a point $\mathbf{x}_{i j}$ in frame j as

$$
\tilde{\mathbf{x}}_{i j} \sim \mathbf{K}_{j} \mathbf{R}_{j} \mathbf{x}_{i} \quad \text { and } \quad \mathbf{x}_{i} \sim \mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \tilde{\mathbf{x}}_{i j}
$$

with $\mathbf{K}_{j}=\operatorname{diag}\left(f_{j}, f_{j}, 1\right)$

- The motion mapping a point $\mathbf{x}_{i j}$ from frame j into a point $\mathbf{x}_{i k}$ in frame k is similarly given by

$$
\tilde{\mathbf{x}}_{i k} \sim \tilde{\mathbf{H}} \hat{\mathbf{x}}_{i j}=\mathbf{K}_{k} \mathbf{R}_{k} \mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \hat{\mathbf{x}}_{i j}
$$

- Given an initial set of $\left\{\left(\mathbf{R}_{j}, f_{j}\right)\right\}$ estimates obtained from chaining pairwise alignments, how do we refine these estimates?

Bundle Adjustment

- We can relate a 3D point \mathbf{x}_{i} into a point $\mathbf{x}_{i j}$ in frame j as

$$
\tilde{\mathbf{x}}_{i j} \sim \mathbf{K}_{j} \mathbf{R}_{j} \mathbf{x}_{i} \quad \text { and } \quad \mathbf{x}_{i} \sim \mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \tilde{\mathbf{x}}_{i j}
$$

with $\mathbf{K}_{j}=\operatorname{diag}\left(f_{j}, f_{j}, 1\right)$

- The motion mapping a point $\mathbf{x}_{i j}$ from frame j into a point $\mathbf{x}_{i k}$ in frame k is similarly given by

$$
\tilde{\mathbf{x}}_{i k} \sim \tilde{\mathbf{H}} \hat{\mathbf{x}}_{i j}=\mathbf{K}_{k} \mathbf{R}_{k} \mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \hat{\mathbf{x}}_{i j}
$$

- Given an initial set of $\left\{\left(\mathbf{R}_{j}, f_{j}\right)\right\}$ estimates obtained from chaining pairwise alignments, how do we refine these estimates?
- We can extend the pairwise energy to the multiview formulation

$$
E_{\text {all-pairs-2D }}=\sum_{i} \sum_{j k} c_{i j} c_{i k}\left\|\tilde{\mathbf{x}}_{i k}\left(\hat{\mathbf{x}}_{i j}^{\prime} ; \mathbf{R}_{j}, f_{j}, \mathbf{R}_{k}, f_{k}\right)-\hat{\mathbf{x}}_{i k}\right\|_{2}^{2}
$$

with $\tilde{\mathbf{x}}_{i j}^{\prime}$ the predicted location of feature i in frame $k, \hat{\mathbf{x}}_{i j}$ observed location.

Bundle Adjustment

- We can relate a 3D point \mathbf{x}_{i} into a point $\mathbf{x}_{i j}$ in frame j as

$$
\tilde{\mathbf{x}}_{i j} \sim \mathbf{K}_{j} \mathbf{R}_{j} \mathbf{x}_{i} \quad \text { and } \quad \mathbf{x}_{i} \sim \mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \tilde{\mathbf{x}}_{i j}
$$

with $\mathbf{K}_{j}=\operatorname{diag}\left(f_{j}, f_{j}, 1\right)$

- The motion mapping a point $\mathbf{x}_{i j}$ from frame j into a point $\mathbf{x}_{i k}$ in frame k is similarly given by

$$
\tilde{\mathbf{x}}_{i k} \sim \tilde{\mathbf{H}} \hat{\mathbf{x}}_{i j}=\mathbf{K}_{k} \mathbf{R}_{k} \mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \hat{\mathbf{x}}_{i j}
$$

- Given an initial set of $\left\{\left(\mathbf{R}_{j}, f_{j}\right)\right\}$ estimates obtained from chaining pairwise alignments, how do we refine these estimates?
- We can extend the pairwise energy to the multiview formulation

$$
E_{\text {all-pairs-2D }}=\sum_{i} \sum_{j k} c_{i j} c_{i k}\left\|\tilde{\mathbf{x}}_{i k}\left(\hat{\mathbf{x}}_{i j}^{\prime} ; \mathbf{R}_{j}, f_{j}, \mathbf{R}_{k}, f_{k}\right)-\hat{\mathbf{x}}_{i k}\right\|_{2}^{2}
$$

with $\tilde{\mathbf{x}}_{i j}^{\prime}$ the predicted location of feature i in frame $k, \hat{\mathbf{x}}_{i j}$ observed location.

- The 2D subscript indicates that we minimize the image-plane error

Bundle Adjustment

- We can relate a 3D point \mathbf{x}_{i} into a point $\mathbf{x}_{i j}$ in frame j as

$$
\tilde{\mathbf{x}}_{i j} \sim \mathbf{K}_{j} \mathbf{R}_{j} \mathbf{x}_{i} \quad \text { and } \quad \mathbf{x}_{i} \sim \mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \tilde{\mathbf{x}}_{i j}
$$

with $\mathbf{K}_{j}=\operatorname{diag}\left(f_{j}, f_{j}, 1\right)$

- The motion mapping a point $\mathbf{x}_{i j}$ from frame j into a point $\mathbf{x}_{i k}$ in frame k is similarly given by

$$
\tilde{\mathbf{x}}_{i k} \sim \tilde{\mathbf{H}} \hat{\mathbf{x}}_{i j}=\mathbf{K}_{k} \mathbf{R}_{k} \mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \hat{\mathbf{x}}_{i j}
$$

- Given an initial set of $\left\{\left(\mathbf{R}_{j}, f_{j}\right)\right\}$ estimates obtained from chaining pairwise alignments, how do we refine these estimates?
- We can extend the pairwise energy to the multiview formulation

$$
E_{\text {all-pairs-2D }}=\sum_{i} \sum_{j k} c_{i j} c_{i k}\left\|\tilde{\mathbf{x}}_{i k}\left(\hat{\mathbf{x}}_{i j}^{\prime} ; \mathbf{R}_{j}, f_{j}, \mathbf{R}_{k}, f_{k}\right)-\hat{\mathbf{x}}_{i k}\right\|_{2}^{2}
$$

with $\tilde{\mathbf{x}}_{i j}^{\prime}$ the predicted location of feature i in frame $k, \hat{\mathbf{x}}_{i j}$ observed location.

- The 2D subscript indicates that we minimize the image-plane error
- We can use non-linear least squares if we have enough features

Bundle Adjustment

- We can relate a 3D point \mathbf{x}_{i} into a point $\mathbf{x}_{i j}$ in frame j as

$$
\tilde{\mathbf{x}}_{i j} \sim \mathbf{K}_{j} \mathbf{R}_{j} \mathbf{x}_{i} \quad \text { and } \quad \mathbf{x}_{i} \sim \mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \tilde{\mathbf{x}}_{i j}
$$

with $\mathbf{K}_{j}=\operatorname{diag}\left(f_{j}, f_{j}, 1\right)$

- The motion mapping a point $\mathbf{x}_{i j}$ from frame j into a point $\mathbf{x}_{i k}$ in frame k is similarly given by

$$
\tilde{\mathbf{x}}_{i k} \sim \tilde{\mathbf{H}} \hat{\mathbf{x}}_{i j}=\mathbf{K}_{k} \mathbf{R}_{k} \mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \hat{\mathbf{x}}_{i j}
$$

- Given an initial set of $\left\{\left(\mathbf{R}_{j}, f_{j}\right)\right\}$ estimates obtained from chaining pairwise alignments, how do we refine these estimates?
- We can extend the pairwise energy to the multiview formulation

$$
E_{\text {all-pairs-2D }}=\sum_{i} \sum_{j k} c_{i j} c_{i k}\left\|\tilde{\mathbf{x}}_{i k}\left(\hat{\mathbf{x}}_{i j}^{\prime} ; \mathbf{R}_{j}, f_{j}, \mathbf{R}_{k}, f_{k}\right)-\hat{\mathbf{x}}_{i k}\right\|_{2}^{2}
$$

with $\tilde{\mathbf{x}}_{i j}^{\prime}$ the predicted location of feature i in frame $k, \hat{\mathbf{x}}_{i j}$ observed location.

- The 2D subscript indicates that we minimize the image-plane error
- We can use non-linear least squares if we have enough features

Problems

The multiview formulation

$$
E_{\text {all-pairs-2D }}=\sum_{i} \sum_{j k} c_{i j} c_{i k}\left\|\hat{\mathbf{x}}_{i k}\left(\tilde{\mathbf{x}}_{i j}^{\prime} \mathbf{R}_{j}, f_{j}, \mathbf{R}_{k}, f_{k}\right)-\hat{\mathbf{x}}_{i k}\right\|_{2}^{2}
$$

has two potential disadvantages:

- Since a summation is taken over all pairs with corresponding features, features that are observed many times are overweighted in the final solution (a feature observed m times gets counted $\binom{m}{2}$ instead of m times).
- Second, the derivatives of $\tilde{\mathbf{x}}_{i j}$ with respect to $\left\{\left(\mathbf{R}_{j}, f_{j}\right)\right\}$ are a little cumbersome

Alternative Formulation

- Use true bundle adjustment solving for pose $\left\{\mathbf{R}_{j}, f_{j}\right\}$ and 3 D positions $\left\{\mathbf{x}_{i}\right\}$

$$
E_{B A-2 D}=\sum_{i} \sum_{j} c_{i j}\left\|\tilde{\mathbf{x}}_{i j}\left(\mathbf{x}_{i} ; \mathbf{R}_{j}, f_{j}\right)-\hat{\mathbf{x}}_{i j}\right\|_{2}^{2}
$$

- The disadvantage is that there are more variables to solve for

Alternative Formulation

- Use true bundle adjustment solving for pose $\left\{\mathbf{R}_{j}, f_{j}\right\}$ and 3 D positions $\left\{\mathbf{x}_{i}\right\}$

$$
E_{B A-2 D}=\sum_{i} \sum_{j} c_{i j}\left\|\tilde{\mathbf{x}}_{i j}\left(\mathbf{x}_{i} ; \mathbf{R}_{j}, f_{j}\right)-\hat{\mathbf{x}}_{i j}\right\|_{2}^{2}
$$

- The disadvantage is that there are more variables to solve for
- Another alternative is to minimize the error in 3D

$$
E_{B A-3 D}=\sum_{i} \sum_{j} c_{i j}\left\|\tilde{\mathbf{x}}_{i}\left(\hat{\mathbf{x}}_{i j} ; \mathbf{R}_{j}, f_{j}\right)-\mathbf{x}_{i}\right\|_{2}^{2}
$$

with $\tilde{\mathbf{x}}_{i}=\mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \mathbf{x}_{i j}$

Alternative Formulation

- Use true bundle adjustment solving for pose $\left\{\mathbf{R}_{j}, f_{j}\right\}$ and 3 D positions $\left\{\mathbf{x}_{i}\right\}$

$$
E_{B A-2 D}=\sum_{i} \sum_{j} c_{i j}\left\|\tilde{\mathbf{x}}_{i j}\left(\mathbf{x}_{i} ; \mathbf{R}_{j}, f_{j}\right)-\hat{\mathbf{x}}_{i j}\right\|_{2}^{2}
$$

- The disadvantage is that there are more variables to solve for
- Another alternative is to minimize the error in 3D

$$
E_{B A-3 D}=\sum_{i} \sum_{j} c_{i j}\left\|\tilde{\mathbf{x}}_{i}\left(\hat{\mathbf{x}}_{i j} ; \mathbf{R}_{j}, f_{j}\right)-\mathbf{x}_{i}\right\|_{2}^{2}
$$

with $\tilde{\mathbf{x}}_{i}=\mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \mathbf{x}_{i j}$

- This has bias towards longer focal lengths since the angles between rays become smaller as f increases

Alternative Formulation

- Use true bundle adjustment solving for pose $\left\{\mathbf{R}_{j}, f_{j}\right\}$ and 3 D positions $\left\{\mathbf{x}_{i}\right\}$

$$
E_{B A-2 D}=\sum_{i} \sum_{j} c_{i j}\left\|\tilde{\mathbf{x}}_{i j}\left(\mathbf{x}_{i} ; \mathbf{R}_{j}, f_{j}\right)-\hat{\mathbf{x}}_{i j}\right\|_{2}^{2}
$$

- The disadvantage is that there are more variables to solve for
- Another alternative is to minimize the error in 3D

$$
E_{B A-3 D}=\sum_{i} \sum_{j} c_{i j}\left\|\tilde{\mathbf{x}}_{i}\left(\hat{\mathbf{x}}_{i j} ; \mathbf{R}_{j}, f_{j}\right)-\mathbf{x}_{i}\right\|_{2}^{2}
$$

with $\tilde{\mathbf{x}}_{i}=\mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \mathbf{x}_{i j}$

- This has bias towards longer focal lengths since the angles between rays become smaller as f increases
- We can eliminate the 3D rays x_{i} and derive a 3D pairwise energy

$$
E_{\text {all-pairs-3D }}=\sum_{i} \sum_{j k} c_{i j} c_{i k}\left\|\tilde{\mathbf{x}}_{i}\left(\hat{\mathbf{x}}_{i j}, \mathbf{R}_{j}, f_{j}\right)-\tilde{\mathbf{x}}_{i}\left(\hat{\mathbf{x}}_{i k}, \mathbf{R}_{k}, f_{k}\right)\right\|_{2}^{2}
$$

- This is the simplest

Alternative Formulation

- Use true bundle adjustment solving for pose $\left\{\mathbf{R}_{j}, f_{j}\right\}$ and 3 D positions $\left\{\mathbf{x}_{i}\right\}$

$$
E_{B A-2 D}=\sum_{i} \sum_{j} c_{i j}\left\|\tilde{\mathbf{x}}_{i j}\left(\mathbf{x}_{i} ; \mathbf{R}_{j}, f_{j}\right)-\hat{\mathbf{x}}_{i j}\right\|_{2}^{2}
$$

- The disadvantage is that there are more variables to solve for
- Another alternative is to minimize the error in 3D

$$
E_{B A-3 D}=\sum_{i} \sum_{j} c_{i j}\left\|\tilde{\mathbf{x}}_{i}\left(\hat{\mathbf{x}}_{i j} ; \mathbf{R}_{j}, f_{j}\right)-\mathbf{x}_{i}\right\|_{2}^{2}
$$

with $\tilde{\mathbf{x}}_{i}=\mathbf{R}_{j}^{-1} \mathbf{K}_{j}^{-1} \mathbf{x}_{i j}$

- This has bias towards longer focal lengths since the angles between rays become smaller as f increases
- We can eliminate the 3D rays \mathbf{x}_{i} and derive a 3D pairwise energy

$$
E_{\text {all-pairs-3D }}=\sum_{i} \sum_{j k} c_{i j} c_{i k}\left\|\tilde{\mathbf{x}}_{i}\left(\hat{\mathbf{x}}_{i j}, \mathbf{R}_{j}, f_{j}\right)-\tilde{\mathbf{x}}_{i}\left(\hat{\mathbf{x}}_{i k}, \mathbf{R}_{k}, f_{k}\right)\right\|_{2}^{2}
$$

- This is the simplest

Unwrapping a sphere

Credit: JHT's Planetary Pixel Emporium

Spherical panoramas

Microsoft Lobby: http://www.acm.org/pubs/citations/proceedings/ graph/258734/p251-szeliski

Different projections are possible

[Source: N. Snavely]

Blending

- We want to seamlessly blend them together

[Source: N. Snavely]

Blending

- We want to seamlessly blend them together

[Source: N. Snavely]

Image Blending

[Source: N. Snavely]

Feathering

Take the average value at each pixel

[Source: N. Snavely]

Effect of window size

Use window to do average

[Source: N. Snavely]

Effect of window size

Use window to do average

[Source: N. Snavely]

Good window size

- Optimal window: smooth but not ghosted
- It doesn't always work
[Source: N. Snavely]

Pyramid Blending

Create a Laplacian pyramid, blend each level

- Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236.
[Source: N. Snavely]

Laplacian Pyramid

$$
L_{i}=G_{i}-\operatorname{expand}\left(G_{i+1}\right)
$$

Gaussian Pyramid $\quad G_{i}=L_{i}+\operatorname{expand}\left(G_{i+1}\right) \quad$ Laplacian Pyramid

[Source: N. Snavely]

Alpha Blending

Encoding blend weights: $\mathrm{I}(\mathrm{x}, \mathrm{y})=(\alpha \mathrm{R}, \alpha \mathrm{G}, \alpha \mathrm{B}, \alpha)$
color at $\mathrm{p}=\frac{\left(\alpha_{1} R_{1}, \alpha_{1} G_{1}, \alpha_{1} B_{1}\right)+\left(\alpha_{2} R_{2}, \alpha_{2} G_{2}, \alpha_{2} B_{2}\right)+\left(\alpha_{3} R_{3}, \alpha_{3} G_{3}, \alpha_{3} B_{3}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$
Implement this in two steps:

1. accumulate: add up the (α premultiplied) $\mathrm{RGB} \alpha$ values at each pixel
2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if $\alpha=0$?

Poisson Image Editing

- Gradient domain reconstruction can be used to do object insertion in image editing applications

Figure: Perez et al. SIGGRAPH 2003

Panorama Examples

- Every image on Google Streetview

[Source: N. Snavely]

Ghost Removal

Figure: Uyttendaele et al. ICCV01
[Source: N. Snavely]

Ghost Removal

Figure: Uyttendaele et al. ICCV01
[Source: N. Snavely]

Other Types

- Can mosaic onto any surface if you know the geometry
- See NASAs Visible Earth project for some stunning earth mosaics

[Source: N. Snavely]

