Computer Vision: Cameras

Raquel Urtasun

TTI Chicago
Jan 29, 2013

Readings

- Chapter 2.1, 3.6, 4.3 and 6.1 of Szeliski's book
- Chapter 1 of Forsyth \& Ponce

What did we see in class last week?

Image Alignment Algorithm

Given images A and B
(1) Compute image features for A and B
(2) Match features between A and B
(3) Compute homography between A and B using least squares on set of matches

Is there a problem with this?
[Source: N. Snavely]

Image Alignment Algorithm

Given images A and B
(1) Compute image features for A and B
(2) Match features between A and B
(3) Compute homography between A and B using least squares on set of matches

Is there a problem with this?
[Source: N. Snavely]

Robustness

[Source: N. Snavely]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(4) Select points consistent with model

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(4) Select points consistent with model
(5) Repeat hypothesize and verify loop

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(4) Select points consistent with model
(5) Repeat hypothesize and verify loop

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(9) Select points consistent with model
(0) Repeat hypothesize and verify loop
© Choose model with largest set of inliers

[Source: R. Raguram]

RANSAC for line fitting example

(1) Randomly select minimal subset of points
(2) Hypothesize a model
(3) Compute error function
(4) Select points consistent with model
(0) Repeat hypothesize and verify loop
(0 Choose model with largest set of inliers

[Source: R. Raguram]

RANSAC

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

RANSAC

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee

RANSAC

- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99\% probability
- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99\% probability
- How many rounds do we need?
- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
- Suppose there are 20% outliers, and we want to find the correct answer with 99\% probability
- How many rounds do we need?

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.
- The likelihood in one trial that all k random samples are inliers is p^{k}

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.
- The likelihood in one trial that all k random samples are inliers is p^{k}
- The likelihood that S such trials will all fail is

$$
1-P=\left(1-p^{k}\right)^{S}
$$

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.
- The likelihood in one trial that all k random samples are inliers is p^{k}
- The likelihood that S such trials will all fail is

$$
1-P=\left(1-p^{k}\right)^{S}
$$

- The required minimum number of trials is

$$
S=\frac{\log (1-P)}{\log \left(1-p^{k}\right)}
$$

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.
- The likelihood in one trial that all k random samples are inliers is p^{k}
- The likelihood that S such trials will all fail is

$$
1-P=\left(1-p^{k}\right)^{S}
$$

- The required minimum number of trials is

$$
S=\frac{\log (1-P)}{\log \left(1-p^{k}\right)}
$$

- The number of trials grows quickly with the number of sample points used.

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.
- The likelihood in one trial that all k random samples are inliers is p^{k}
- The likelihood that S such trials will all fail is

$$
1-P=\left(1-p^{k}\right)^{S}
$$

- The required minimum number of trials is

$$
S=\frac{\log (1-P)}{\log \left(1-p^{k}\right)}
$$

- The number of trials grows quickly with the number of sample points used.
- Use the minimum number of sample points k possible for any given trial

How many rounds?

- Sufficient number of trials S must be tried.
- Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials.
- The likelihood in one trial that all k random samples are inliers is p^{k}
- The likelihood that S such trials will all fail is

$$
1-P=\left(1-p^{k}\right)^{S}
$$

- The required minimum number of trials is

$$
S=\frac{\log (1-P)}{\log \left(1-p^{k}\right)}
$$

- The number of trials grows quickly with the number of sample points used.
- Use the minimum number of sample points k possible for any given trial

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling
[Source: N. Snavely]

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling
[Source: N. Snavely]

RANSAC as Voting

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins

RANSAC as Voting

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes, e.g., Hough transforms
[Source: N. Snavely]

RANSAC as Voting

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins
- There are many other types of voting schemes, e.g., Hough transforms
[Source: N. Snavely]

Hough Transform

- Alternatively one can have the points vote for the parameters.
- Let's consider a simple example, we want to obtain lines in images

Hough Transform

- Alternatively one can have the points vote for the parameters.
- Let's consider a simple example, we want to obtain lines in images
- Let's make each point (e.g., edge) cast a vote for the possible lines that go through

Hough Transform

- Alternatively one can have the points vote for the parameters.
- Let's consider a simple example, we want to obtain lines in images
- Let's make each point (e.g., edge) cast a vote for the possible lines that go through
- Parameterization is very important, in this case $x \cos \theta+y \sin \theta=r$

Hough Transform

- Alternatively one can have the points vote for the parameters.
- Let's consider a simple example, we want to obtain lines in images
- Let's make each point (e.g., edge) cast a vote for the possible lines that go through
- Parameterization is very important, in this case $x \cos \theta+y \sin \theta=r$
- How many degrees of freedom?

Figure: Images from Szeliski's book

Hough Transform

- Alternatively one can have the points vote for the parameters.
- Let's consider a simple example, we want to obtain lines in images
- Let's make each point (e.g., edge) cast a vote for the possible lines that go through
- Parameterization is very important, in this case $x \cos \theta+y \sin \theta=r$
- How many degrees of freedom?

Figure: Images from Szeliski's book

Example Hough Transform

With the parameterization $x \cos \theta+y \sin \theta=r$

- Points in picture represent sinusoids in parameter space
- Points in parameter space represent lines in picture
- Example $0.6 x+0.4 y=2.4$, Sinusoids intersect at $r=2.4, \theta=0.9273$

[Source: M. Kazhdan]

Hough Transform Algorithm

With the parameterization $x \cos \theta+y \sin \theta=r$

- Let $r \in[-R, R]$ and $\theta \in[0, \pi)$
- For each edge point $\left(x_{i}, y_{i}\right)$, calculate: $\hat{r}=x_{i} \cos \hat{\theta}+y_{i} \sin \hat{\theta} \quad \forall \hat{\theta} \in[0, \pi)$
- Increase accumulator $A(\hat{r}, \hat{\theta})=A(\hat{r}, \hat{\theta})+1$

- Threshold the accumulator values to get parameters for detected lines [Source: M. Kazhdan]

Compensating for errors

- Errors can cause $A\left(\mathbf{p}^{\prime}\right)$ to be incremented, where p^{\prime} is close to the actual parameter p
- Compensate for the uncertainty of measurement in parameter space

Compensating for errors

- Errors can cause $A\left(\mathbf{p}^{\prime}\right)$ to be incremented, where p^{\prime} is close to the actual parameter p
- Compensate for the uncertainty of measurement in parameter space
- Smooth the accumulator by incrementing counts of nearby cells according to some point-spread function h

Compensating for errors

- Errors can cause $A\left(\mathbf{p}^{\prime}\right)$ to be incremented, where p^{\prime} is close to the actual parameter p
- Compensate for the uncertainty of measurement in parameter space
- Smooth the accumulator by incrementing counts of nearby cells according to some point-spread function h
- Equivalent to convolving $A * h$
[Source: M. Kazhdan]

Compensating for errors

- Errors can cause $A\left(\mathbf{p}^{\prime}\right)$ to be incremented, where p^{\prime} is close to the actual parameter p
- Compensate for the uncertainty of measurement in parameter space
- Smooth the accumulator by incrementing counts of nearby cells according to some point-spread function h
- Equivalent to convolving $A * h$
[Source: M. Kazhdan]

Hough Example

[Source: N. Snavely]

Coming back to our problem ...

Generalized Hough Transform vs Ransac

- It's not feasible to check all combinations of features by fitting a model to each possible subset.
- First, cycle through features, cast votes for model parameters: location, scale, orientation of the model object.

Coming back to our problem ...

Generalized Hough Transform vs Ransac

- It's not feasible to check all combinations of features by fitting a model to each possible subset.
- First, cycle through features, cast votes for model parameters: location, scale, orientation of the model object.
- Look for model parameters that receive a lot of votes, and verify them.

Coming back to our problem ...

Generalized Hough Transform vs Ransac

- It's not feasible to check all combinations of features by fitting a model to each possible subset.
- First, cycle through features, cast votes for model parameters: location, scale, orientation of the model object.
- Look for model parameters that receive a lot of votes, and verify them.
- Noise \& clutter features will cast votes too, but their votes should be inconsistent with the majority of good features.

Coming back to our problem ...

Generalized Hough Transform vs Ransac

- It's not feasible to check all combinations of features by fitting a model to each possible subset.
- First, cycle through features, cast votes for model parameters: location, scale, orientation of the model object.
- Look for model parameters that receive a lot of votes, and verify them.
- Noise \& clutter features will cast votes too, but their votes should be inconsistent with the majority of good features.

Generalized Hough Transform

- If we use scale, rotation, and translation invariant local features, then each feature match gives an alignment hypothesis (for scale, translation, and orientation of model in image).

[Source: S. Lazebnik]

Generalized Hough Transform

- A hypothesis generated by a single match is in general unreliable,
- Let each match vote for a hypothesis in Hough space.

[Source: K. Grauman]

Recognition Example

Background subtract for model boundaries

Objects recognized,

Recognition in spite of occlusion

Problems of Voting

- Noise/clutter can lead to as many votes as true target
- Bin size for the accumulator array must be chosen carefully

Problems of Voting

- Noise/clutter can lead to as many votes as true target
- Bin size for the accumulator array must be chosen carefully
- In practice, good idea to make broad bins and spread votes to nearby bins, since verification stage can prune bad vote peaks

Problems of Voting

- Noise/clutter can lead to as many votes as true target
- Bin size for the accumulator array must be chosen carefully
- In practice, good idea to make broad bins and spread votes to nearby bins, since verification stage can prune bad vote peaks

Comparison Verification

Generalized Hough Transform

- Each single correspondence votes for all consistent parameters
- Represents uncertainty on the parameter space

Comparison Verification

Generalized Hough Transform

- Each single correspondence votes for all consistent parameters
- Represents uncertainty on the parameter space
- Complexity: Beyond 4D space is impractical

Comparison Verification

Generalized Hough Transform

- Each single correspondence votes for all consistent parameters
- Represents uncertainty on the parameter space
- Complexity: Beyond 4D space is impractical
- Can handle high outlier/inlier ratio

Comparison Verification

Generalized Hough Transform

- Each single correspondence votes for all consistent parameters
- Represents uncertainty on the parameter space
- Complexity: Beyond 4D space is impractical
- Can handle high outlier/inlier ratio

Ransac

- Minimal subset of correspondences to estimate the model, then count inliers

Comparison Verification

Generalized Hough Transform

- Each single correspondence votes for all consistent parameters
- Represents uncertainty on the parameter space
- Complexity: Beyond 4D space is impractical
- Can handle high outlier/inlier ratio

Ransac

- Minimal subset of correspondences to estimate the model, then count inliers
- Represent uncertainty in image space

Comparison Verification

Generalized Hough Transform

- Each single correspondence votes for all consistent parameters
- Represents uncertainty on the parameter space
- Complexity: Beyond 4D space is impractical
- Can handle high outlier/inlier ratio

Ransac

- Minimal subset of correspondences to estimate the model, then count inliers
- Represent uncertainty in image space
- Must look at all points to check for inliers at each iteration

Comparison Verification

Generalized Hough Transform

- Each single correspondence votes for all consistent parameters
- Represents uncertainty on the parameter space
- Complexity: Beyond 4D space is impractical
- Can handle high outlier/inlier ratio

Ransac

- Minimal subset of correspondences to estimate the model, then count inliers
- Represent uncertainty in image space
- Must look at all points to check for inliers at each iteration
- Scales better with high dimensionality of parameter space.

Comparison Verification

Generalized Hough Transform

- Each single correspondence votes for all consistent parameters
- Represents uncertainty on the parameter space
- Complexity: Beyond 4D space is impractical
- Can handle high outlier/inlier ratio

Ransac

- Minimal subset of correspondences to estimate the model, then count inliers
- Represent uncertainty in image space
- Must look at all points to check for inliers at each iteration
- Scales better with high dimensionality of parameter space.

Panoramas

Given two images:
(1) Detect features
(2) Match features
(3) Compute a homography using RANSAC
(4) Combine the images together (somehow)

What if we have more than two images?

Creating Panoramas

- Can we use homographies to create a 360 panorama?

- In order to figure this out, we need to learn what a camera is
[Source: N. Snavely]

360 Panorama

[Source: N. Snavely]

Let's look at cameras

Image Formation

Lets design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?
[Source: N. Snavely]

Image Formation

Lets design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?
[Source: N. Snavely]

Pinhole Camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture

Pinhole Camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?
[Source: N. Snavely]

Pinhole Camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?
[Source: N. Snavely]

Camera Obscura

Gemma Frisius, 1558

- Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)
[Source: A. Efros]

Camera Obscura

[Source: N. Snavely]

Home made pinhole camera

Slide by A. Efros
http://www.debevec.org/Pinhole/
[Source: N. Snavely]

Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...
[Source: N. Snavely]

Shrinking the aperture

[Source: N. Snavely]

Adding a lens

- A lens focuses light onto the film
- There is a specific distance at which objects are in focus

Adding a lens

- A lens focuses light onto the film
- There is a specific distance at which objects are in focus
- Other points project to a circle of confusion in the image

Adding a lens

- A lens focuses light onto the film
- There is a specific distance at which objects are in focus
- Other points project to a circle of confusion in the image
- Changing the shape of the lens changes this distance
[Source: N. Snavely]

Adding a lens

- A lens focuses light onto the film
- There is a specific distance at which objects are in focus
- Other points project to a circle of confusion in the image
- Changing the shape of the lens changes this distance
[Source: N. Snavely]

Projection

[Source: N. Snavely]

Projection

[Source: N. Snavely]

3D to 2D projections

- How are 3D primitives projected onto the image plane?
- We can do this using a linear 3D to 2D projection matrix

3D to 2D projections

- How are 3D primitives projected onto the image plane?
- We can do this using a linear 3D to 2D projection matrix
- Different types, the most commonly used:
- Perspective
- Orthography

3D to 2D projections

- How are 3D primitives projected onto the image plane?
- We can do this using a linear 3D to 2D projection matrix
- Different types, the most commonly used:
- Perspective
- Orthography

Modeling projection

The coordinate system

- We will use the pinhole model as an approximation
- Put the optical center (Center Of Projection) at the origin

Modeling projection

The coordinate system

- We will use the pinhole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP. Why?

Modeling projection

The coordinate system

- We will use the pinhole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP. Why?
- The camera looks down the negative z axis, for right-handed-coordinates
[Source: N. Snavely]

Modeling projection

The coordinate system

- We will use the pinhole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP. Why?
- The camera looks down the negative z axis, for right-handed-coordinates
[Source: N. Snavely]

Modeling projection

Projection Equations

- Compute intersection with PP of ray from (x, y, z) to COP. How?
- Derived using similar triangles

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

Modeling projection

Projection Equations

- Compute intersection with PP of ray from (x, y, z) to COP. How?
- Derived using similar triangles

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

- Get the projection by throwing the last coordinate
[Source: N. Snavely]

Modeling projection

Projection Equations

- Compute intersection with PP of ray from (x, y, z) to COP. How?
- Derived using similar triangles

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

- Get the projection by throwing the last coordinate
[Source: N. Snavely]

Modeling Projection

- This is NOT a linear transformation as a division by z is non-linear

Homogeneous coordinates to the rescue!

$$
(x, y) \Rightarrow\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \quad(x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

homogeneous image coordinates
homogeneous scene coordinates

Converting from homogeneous coordinates

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

[Source: N. Snavely]

Perspective Projection

- Projection is a matrix multiply using homogeneous coordinates

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=} & {\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}
\end{array}\right] \begin{array}{cc}
\left.-d \frac{y}{z}\right) \\
& \text { divide by third coordinate }
\end{array}
$$

- This is known as perspective projection

Perspective Projection

- Projection is a matrix multiply using homogeneous coordinates

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=} & {\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}
\end{array}\right] \begin{array}{cc}
{\left[d \frac{y}{z}\right)} \\
& \text { divide by third coordinate }
\end{array}
$$

- This is known as perspective projection
- The matrix is called the projection matrix

Perspective Projection

- Projection is a matrix multiply using homogeneous coordinates

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=} & {\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}
\end{array}\right] \begin{array}{cc}
{\left[d \frac{y}{z}\right)}
\end{array}{ }^{\left[\begin{array}{c}
\text { divide by third coordinate }
\end{array}\right.}
$$

- This is known as perspective projection
- The matrix is called the projection matrix
- Can also represent as a 4×4 matrix
[Source: N. Snavely]

Perspective Projection

- Projection is a matrix multiply using homogeneous coordinates

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=} & {\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}
\end{array}\right] \begin{array}{cc}
\left.-d \frac{y}{z}\right) \\
& \text { divide by third coordinate }
\end{array}
$$

- This is known as perspective projection
- The matrix is called the projection matrix
- Can also represent as a 4×4 matrix
[Source: N. Snavely]

Perspective Projection

- How does scaling the projection matrix change the transformation?

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.} \\
{\left[-d \frac{y}{z}\right)} \\
{\left[\begin{array}{cccc}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x \\
-d y \\
z
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}
\end{array}\right]-d \frac{y}{z}\right) .
$$

- It is not possible to recover the distance of the 3D point from the image.
[Source: N. Snavely]

Perspective Projection

- How does scaling the projection matrix change the transformation?

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}
\end{array}\right] d \frac{y}{z}\right)
$$

- It is not possible to recover the distance of the 3D point from the image.
[Source: N. Snavely]

Perspective Projection

Perspective Projection

[Source: S. Seitz]

Orthographic Projection

- Requires no division and simply drops the z coordinate.
- Special case of perspective projection where the distance from the COP to the PP is infinity

Orthographic Projection

- Requires no division and simply drops the z coordinate.
- Special case of perspective projection where the distance from the COP to the PP is infinity

- Let p be a 3D point and x a 2D point, we can write

$$
\mathbf{x}=\left[\begin{array}{ll}
\mathbf{I}_{2 \times 2} & 0_{2 \times 1}
\end{array}\right] \mathbf{p}
$$

Orthographic Projection

- Requires no division and simply drops the z coordinate.
- Special case of perspective projection where the distance from the COP to the PP is infinity

- Let \mathbf{p} be a 3 D point and \mathbf{x} a 2 D point, we can write

$$
\mathbf{x}=\left[\begin{array}{ll}
\mathbf{I}_{2 \times 2} & 0_{2 \times 1}
\end{array}\right] \mathbf{p}
$$

More on Orthographic Projection

- Let \mathbf{p} be a 3 D point and \mathbf{x} a 2 D point, we can write

$$
\mathbf{x}=\left[\begin{array}{ll}
\mathbf{I}_{2 \times 2} & 0_{2 \times 1}
\end{array}\right] \mathbf{p}
$$

- It can also be written in homogeneous coordinates

$$
\hat{\mathbf{x}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \hat{\mathbf{p}}
$$

More on Orthographic Projection

- Let \mathbf{p} be a 3D point and \mathbf{x} a 2 D point, we can write

$$
\mathbf{x}=\left[\begin{array}{ll}
\mathbf{I}_{2 \times 2} & 0_{2 \times 1}
\end{array}\right] \mathbf{p}
$$

- It can also be written in homogeneous coordinates

$$
\hat{\mathbf{x}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \hat{\mathbf{p}}
$$

- Is an approximate model for long focal length lenses and objects whose depth is shallow relative to their distance to the camera.

More on Orthographic Projection

- Let \mathbf{p} be a 3 D point and \mathbf{x} a 2 D point, we can write

$$
\mathbf{x}=\left[\begin{array}{ll}
\mathbf{I}_{2 \times 2} & 0_{2 \times 1}
\end{array}\right] \mathbf{p}
$$

- It can also be written in homogeneous coordinates

$$
\hat{\mathbf{x}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \hat{\mathbf{p}}
$$

- Is an approximate model for long focal length lenses and objects whose depth is shallow relative to their distance to the camera.

Orthographic Projection

[Source: N. Snavely]

Perspective Projection

[Source: N. Snavely]

Variants of Orthographic

- In practice, world coordinates need to be scaled to fit onto an image sensor (e.g., transform to pixels)
- This is why scaled orthographic, also called weak perspective is more commonly used

$$
\mathbf{x}=\left[\begin{array}{ll}
s \mathbf{I}_{2 \times 2} & 0_{2 \times 1}
\end{array}\right]
$$

Variants of Orthographic

- In practice, world coordinates need to be scaled to fit onto an image sensor (e.g., transform to pixels)
- This is why scaled orthographic, also called weak perspective is more commonly used

$$
\mathbf{x}=\left[\begin{array}{ll}
s \mathbf{I}_{2 \times 2} & 0_{2 \times 1}
\end{array}\right]
$$

- And in homogeneous

$$
\hat{\mathbf{x}}=\left[\begin{array}{llll}
s & 0 & 0 & 0 \\
0 & s & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \hat{\boldsymbol{p}}
$$

Variants of Orthographic

- In practice, world coordinates need to be scaled to fit onto an image sensor (e.g., transform to pixels)
- This is why scaled orthographic, also called weak perspective is more commonly used

$$
\mathbf{x}=\left[\begin{array}{ll}
s \mathbf{I}_{2 \times 2} & 0_{2 \times 1}
\end{array}\right]
$$

- And in homogeneous

$$
\hat{\mathbf{x}}=\left[\begin{array}{llll}
s & 0 & 0 & 0 \\
0 & s & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \hat{\mathbf{p}}
$$

- This is equivalent to first projecting the world points onto a local fronto-parallel image plane and then scaling this image using regular perspective projection

Variants of Orthographic

- In practice, world coordinates need to be scaled to fit onto an image sensor (e.g., transform to pixels)
- This is why scaled orthographic, also called weak perspective is more commonly used

$$
\mathbf{x}=\left[\begin{array}{ll}
s \mathbf{I}_{2 \times 2} & 0_{2 \times 1}
\end{array}\right]
$$

- And in homogeneous

$$
\hat{\mathbf{x}}=\left[\begin{array}{llll}
s & 0 & 0 & 0 \\
0 & s & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \hat{\boldsymbol{p}}
$$

- This is equivalent to first projecting the world points onto a local fronto-parallel image plane and then scaling this image using regular perspective projection
- Is a popular model for reconstructing the 3D shape of objects far away from the camera

Variants of Orthographic

- In practice, world coordinates need to be scaled to fit onto an image sensor (e.g., transform to pixels)
- This is why scaled orthographic, also called weak perspective is more commonly used

$$
\mathbf{x}=\left[\begin{array}{ll}
s \mathbf{I}_{2 \times 2} & 0_{2 \times 1}
\end{array}\right]
$$

- And in homogeneous

$$
\hat{\mathbf{x}}=\left[\begin{array}{llll}
s & 0 & 0 & 0 \\
0 & s & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \hat{\mathbf{p}}
$$

- This is equivalent to first projecting the world points onto a local fronto-parallel image plane and then scaling this image using regular perspective projection
- Is a popular model for reconstructing the 3D shape of objects far away from the camera

Variants of Orthographic

3D World

Perspective Projection

Variants of Orthographic

Variants of Orthographic

- Affine projection, also called paraperspective
- Object points are again first projected onto a local reference parallel to the image plane.

Variants of Orthographic

- Affine projection, also called paraperspective
- Object points are again first projected onto a local reference parallel to the image plane.
- However, rather than being projected orthogonally to this plane, they are projected parallel to the line of sight to the object center

Variants of Orthographic

- Affine projection, also called paraperspective
- Object points are again first projected onto a local reference parallel to the image plane.
- However, rather than being projected orthogonally to this plane, they are projected parallel to the line of sight to the object center
- This is follow by projection onto the final image plane, which amounts to a scaling

Variants of Orthographic

- Affine projection, also called paraperspective
- Object points are again first projected onto a local reference parallel to the image plane.
- However, rather than being projected orthogonally to this plane, they are projected parallel to the line of sight to the object center
- This is follow by projection onto the final image plane, which amounts to a scaling
- Thus, it is affine, and in homogeneous coordinates

$$
\hat{\mathbf{x}}=\left[\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{10} & a_{11} & a_{12} & a_{13} \\
0 & 0 & 0 & 1
\end{array}\right] \hat{\boldsymbol{p}}
$$

[Source: N. Snavely]

Variants of Orthographic

- Affine projection, also called paraperspective
- Object points are again first projected onto a local reference parallel to the image plane.
- However, rather than being projected orthogonally to this plane, they are projected parallel to the line of sight to the object center
- This is follow by projection onto the final image plane, which amounts to a scaling
- Thus, it is affine, and in homogeneous coordinates

$$
\hat{\mathbf{x}}=\left[\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{10} & a_{11} & a_{12} & a_{13} \\
0 & 0 & 0 & 1
\end{array}\right] \hat{\mathbf{p}}
$$

[Source: N. Snavely]

Variants of Orthographic

3D World

Paraperspective

Dimensionality Reduction Machine (3D to 2D)

What have we lost?

- Angles
- Distances (lengths)

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines
- But line through focal point projects to a point. Why?

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines
- But line through focal point projects to a point. Why?
- Planes \rightarrow planes

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines
- But line through focal point projects to a point. Why?
- Planes \rightarrow planes
- But plane through focal point projects to line. Why?
[Source: N. Snavely]

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines \rightarrow lines
- But line through focal point projects to a point. Why?
- Planes \rightarrow planes
- But plane through focal point projects to line. Why?
[Source: N. Snavely]

Projection properties

Parallel lines converge at a vanishing point

- Each direction in space has its own vanishing point
- But parallels parallel to the image plane remain parallel

[Source: N. Snavely]

Camera Parameters

How many numbers do we need to describe a camera?

- We need to describe its pose in the world

Camera Parameters

How many numbers do we need to describe a camera?

- We need to describe its pose in the world
- We need to describe its internal parameters

Camera Parameters

How many numbers do we need to describe a camera?

- We need to describe its pose in the world
- We need to describe its internal parameters
- How many then?
[Source: N. Snavely]

Camera Parameters

How many numbers do we need to describe a camera?

- We need to describe its pose in the world
- We need to describe its internal parameters
- How many then?
[Source: N. Snavely]

Which coordinate system to use?

Two important coordinate systems:

- World coordinate system
- Camera coordinate system

[Source: N. Snavely]

Camera parameters

To project a point (x, y, z) in world coordinates into a camera

- Transform (x, y, z) into camera coordinates, we need to know

Camera parameters

To project a point (x, y, z) in world coordinates into a camera

- Transform (x, y, z) into camera coordinates, we need to know
- Camera position (in world coordinates)

Camera parameters

To project a point (x, y, z) in world coordinates into a camera

- Transform (x, y, z) into camera coordinates, we need to know
- Camera position (in world coordinates)
- Camera orientation (in world coordinates)

Camera parameters

To project a point (x, y, z) in world coordinates into a camera

- Transform (x, y, z) into camera coordinates, we need to know
- Camera position (in world coordinates)
- Camera orientation (in world coordinates)
- We then project into the image plane
- Need to know camera intrinsics

Camera parameters

To project a point (x, y, z) in world coordinates into a camera

- Transform (x, y, z) into camera coordinates, we need to know
- Camera position (in world coordinates)
- Camera orientation (in world coordinates)
- We then project into the image plane
- Need to know camera intrinsics
- These can all be described with matrices
[Source: N. Snavely]

Camera parameters

To project a point (x, y, z) in world coordinates into a camera

- Transform (x, y, z) into camera coordinates, we need to know
- Camera position (in world coordinates)
- Camera orientation (in world coordinates)
- We then project into the image plane
- Need to know camera intrinsics
- These can all be described with matrices
[Source: N. Snavely]

More on camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- Focal length f, principle point $\left(x_{c}^{\prime}, y_{c}^{\prime}\right)$, pixel size $\left(s_{x}, s_{y}\right)$
- Which parameters are extrinsics and which intrinsics?

Focal Length

- Distance over which initially collimated rays (i.e., parallel) are brought to a focus.

Focal Length

- Can be thought of as zoom
- Related to the field of view

Figure: Image from N. Snavely

Projection Equations

- The projection matrix models the cumulative effect of all intrinsic and extrinsic parameters

$$
\mathbf{X}=\left[\begin{array}{c}
a x \\
a y \\
a
\end{array}\right]=\mathbf{P}\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- It can be computed as

Projection Equations

- The projection matrix models the cumulative effect of all intrinsic and extrinsic parameters

$$
\mathbf{X}=\left[\begin{array}{c}
a x \\
a y \\
a
\end{array}\right]=\mathbf{P}\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- It can be computed as

$$
\mathbf{P}=\underbrace{\left[\begin{array}{ccc}
-f \cdot s_{x} & 0 & x_{c}^{\prime} \\
0 & -f \cdot s_{y} & y_{c}^{\prime} \\
0 & 0 & 1
\end{array}\right]}_{\text {intrinsics }} \underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\text {projection }} \underbrace{\left[\begin{array}{cc}
\mathbf{R}_{3 \times 3} & 0_{3 \times 1} \\
0_{1 \times 3} & 1
\end{array}\right]}_{\text {rotation }} \underbrace{\left[\begin{array}{cc}
\mathbf{I}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\
0_{1 \times 3} & 1
\end{array}\right]}_{\text {translation }}
$$

- No standard definition of intrinsics and extrinsics

Projection Equations

- The projection matrix models the cumulative effect of all intrinsic and extrinsic parameters

$$
\mathbf{X}=\left[\begin{array}{c}
a x \\
a y \\
a
\end{array}\right]=\mathbf{P}\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- It can be computed as

$$
\mathbf{P}=\underbrace{\left[\begin{array}{ccc}
-f \cdot s_{x} & 0 & x_{c}^{\prime} \\
0 & -f \cdot s_{y} & y_{c}^{\prime} \\
0 & 0 & 1
\end{array}\right]}_{\text {intrinsics }} \underbrace{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\text {projection }} \underbrace{\left[\begin{array}{cc}
\mathbf{R}_{3 \times 3} & 0_{3 \times 1} \\
0_{1 \times 3} & 1
\end{array}\right]}_{\text {rotation }} \underbrace{\left[\begin{array}{cc}
\mathbf{I}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\
0_{1 \times 3} & 1
\end{array}\right]}_{\text {translation }}
$$

- No standard definition of intrinsics and extrinsics

Extrinsics

How do we get the camera to canonical form?

[Source: N. Snavely]

Extrinsics

How do we get the camera to canonical form?

[Source: N. Snavely]

Extrinsics

How do we get the camera to canonical form?

[Source: N. Snavely]

Extrinsics

How do we get the camera to canonical form?

[Source: N. Snavely]

Perspective Projection

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{ccc}
-f & 0 & 0 \\
0 & -f & 0 \\
0 & 0 & 1
\end{array}\right]}_{\underset{\text { (intrinsics) }}{ }}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \text { (convertinate system 3D to prys inel camera coordinates) } \\
& \text { in general, } \mathbf{K}=\left[\begin{array}{ccc}
-f & s & c_{x} \\
0 & -\alpha f & c_{y} \\
0 & 0 & 1
\end{array}\right]
\end{aligned} \begin{gathered}
\text { (upper triangular } \\
\text { matrix) }
\end{gathered}
$$

α : aspect ratio (1 unless pixels are not square)
S : skew (0 unless pixels are shaped like rhombi/parallelograms)
: principal point ($(0,0)$ unless optical axis doesn't intersect projection plane at origin)

- Simplifications used in practice
[Source: N. Snavely]

Camera matrix

- The projection matrix is defined as
- More compactly

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & -\mathbf{R c}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

Camera matrix

[Source: N. Snavely]

Radial Distorsion

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

[Source: N. Snavely]

Correcting Radial Distorsion

from Helmut Dersch

Distorsion

[Source: N. Snavely]

Modeling Distorsion

- Project point to normalized image coordinates

$$
\begin{aligned}
x_{n} & =\frac{x}{z} \\
y_{n} & =\frac{y}{z}
\end{aligned}
$$

- Apply radial distorsion

$$
\begin{aligned}
& r^{2}=x_{n}^{2}+y_{n}^{2} \\
& x_{d}=x_{n}\left(1+k_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& y_{d}=y_{n}\left(1+k_{1} r^{2}+\kappa_{2} r^{4}\right)
\end{aligned}
$$

Modeling Distorsion

- Project point to normalized image coordinates

$$
\begin{aligned}
x_{n} & =\frac{x}{z} \\
y_{n} & =\frac{y}{z}
\end{aligned}
$$

- Apply radial distorsion

$$
\begin{aligned}
& r^{2}=x_{n}^{2}+y_{n}^{2} \\
& x_{d}=x_{n}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& y_{d}=y_{n}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right)
\end{aligned}
$$

- Apply focal length and translate image center

$$
\begin{aligned}
& =f x_{d}+x_{c} \\
& =f y_{d}+y_{c}
\end{aligned}
$$

Modeling Distorsion

- Project point to normalized image coordinates

$$
\begin{aligned}
x_{n} & =\frac{x}{z} \\
y_{n} & =\frac{y}{z}
\end{aligned}
$$

- Apply radial distorsion

$$
\begin{aligned}
& r^{2}=x_{n}^{2}+y_{n}^{2} \\
& x_{d}=x_{n}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& y_{d}=y_{n}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right)
\end{aligned}
$$

- Apply focal length and translate image center

$$
\begin{aligned}
x^{\prime} & =f x_{d}+x_{c} \\
y^{\prime} & =f y_{d}+y_{c}
\end{aligned}
$$

- To model lens distortion use above projection operation instead of standard projection matrix multiplication

Modeling Distorsion

- Project point to normalized image coordinates

$$
\begin{aligned}
x_{n} & =\frac{x}{z} \\
y_{n} & =\frac{y}{z}
\end{aligned}
$$

- Apply radial distorsion

$$
\begin{aligned}
r^{2} & =x_{n}^{2}+y_{n}^{2} \\
x_{d} & =x_{n}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
y_{d} & =y_{n}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right)
\end{aligned}
$$

- Apply focal length and translate image center

$$
\begin{aligned}
x^{\prime} & =f x_{d}+x_{c} \\
y^{\prime} & =f y_{d}+y_{c}
\end{aligned}
$$

- To model lens distortion use above projection operation instead of standard projection matrix multiplication

Next class ... more on panoramas

