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Readings

Chapter 2.1, 3.6, 4.3 and 6.1 of Szeliski’s book

Chapter 1 of Forsyth & Ponce
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What did we see in class last week?
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Image Alignment Algorithm

Given images A and B

1 Compute image features for A and B

2 Match features between A and B

3 Compute homography between A and B using least squares on set of
matches

Is there a problem with this?

[Source: N. Snavely]
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Robustness

!"#$%&'()

%*$%&'()

[Source: N. Snavely]
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RANSAC for line fitting example

1 Randomly select minimal
subset of points

2 Hypothesize a model

3 Compute error function

4 Select points consistent
with model

5 Repeat hypothesize and
verify loop

6 Choose model with
largest set of inliers

[Source: R. Raguram]
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RANSAC

Inlier threshold related to the amount of noise we expect in inliers

Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)

Number of rounds related to the percentage of outliers we expect, and the
probability of success we’d like to guarantee

Suppose there are 20% outliers, and we want to find the correct answer with
99% probability

How many rounds do we need?
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How many rounds?

Sufficient number of trials S must be tried.

Let p be the probability that any given correspondence is valid and P be the
total probability of success after S trials.

The likelihood in one trial that all k random samples are inliers is pk

The likelihood that S such trials will all fail is

1− P = (1− pk)S

The required minimum number of trials is

S =
log(1− P)

log(1− pk)

The number of trials grows quickly with the number of sample points used.

Use the minimum number of sample points k possible for any given trial
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RANSAC pros and cons

Pros

Simple and general

Applicable to many different problems

Often works well in practice

Cons

Parameters to tune

Sometimes too many iterations are required

Can fail for extremely low inlier ratios

We can often do better than brute-force sampling

[Source: N. Snavely]
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RANSAC as Voting

An example of a ”voting”-based fitting scheme

Each hypothesis gets voted on by each data point, best hypothesis wins

There are many other types of voting schemes, e.g., Hough transforms

[Source: N. Snavely]
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Hough Transform

Alternatively one can have the points vote for the parameters.

Let’s consider a simple example, we want to obtain lines in images

Let’s make each point (e.g., edge) cast a vote for the possible lines that go
through

Parameterization is very important, in this case x cos θ + y sin θ = r

How many degrees of freedom?

Figure: Images from Szeliski’s book
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Example Hough Transform

With the parameterization x cos θ + y sin θ = r

Points in picture represent sinusoids in parameter space

Points in parameter space represent lines in picture

Example 0.6x + 0.4y = 2.4, Sinusoids intersect at r = 2.4, θ = 0.9273

[Source: M. Kazhdan]
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Hough Transform Algorithm

With the parameterization x cos θ + y sin θ = r

Let r ∈ [−R,R] and θ ∈ [0, π)

For each edge point (xi , yi ), calculate: r̂ = xi cos θ̂ + yi sin θ̂ ∀θ̂ ∈ [0, π)

Increase accumulator A(r̂ , θ̂) = A(r̂ , θ̂) + 1

Threshold the accumulator values to get parameters for detected lines

[Source: M. Kazhdan]
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Compensating for errors

Errors can cause A(p′) to be incremented, where p′ is close to the actual
parameter p

Compensate for the uncertainty of measurement in parameter space

Smooth the accumulator by incrementing counts of nearby cells according to
some point-spread function h

Equivalent to convolving A ∗ h

[Source: M. Kazhdan]
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Hough Example

!"

#"

[Source: N. Snavely]
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Coming back to our problem ...

Generalized Hough Transform vs Ransac

It’s not feasible to check all combinations of features by fitting a model to
each possible subset.

First, cycle through features, cast votes for model parameters: location,
scale, orientation of the model object.

Look for model parameters that receive a lot of votes, and verify them.

Noise & clutter features will cast votes too, but their votes should be
inconsistent with the majority of good features.
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Generalized Hough Transform

If we use scale, rotation, and translation invariant local features, then each
feature match gives an alignment hypothesis (for scale, translation, and
orientation of model in image).

[Source: S. Lazebnik]
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Generalized Hough Transform

A hypothesis generated by a single match is in general unreliable,

Let each match vote for a hypothesis in Hough space.

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Computer Vision Jan 29, 2013 18 / 70



Recognition Example
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Problems of Voting

Noise/clutter can lead to as many votes as true target

Bin size for the accumulator array must be chosen carefully

In practice, good idea to make broad bins and spread votes to nearby bins,
since verification stage can prune bad vote peaks
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Comparison Verification

Generalized Hough Transform

Each single correspondence votes for all consistent parameters

Represents uncertainty on the parameter space

Complexity: Beyond 4D space is impractical

Can handle high outlier/inlier ratio

Ransac

Minimal subset of correspondences to estimate the model, then count inliers

Represent uncertainty in image space

Must look at all points to check for inliers at each iteration

Scales better with high dimensionality of parameter space.
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Panoramas

Given two images:

1 Detect features

2 Match features

3 Compute a homography using RANSAC

4 Combine the images together (somehow)

What if we have more than two images?
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Creating Panoramas

Can we use homographies to create a 360 panorama?

In order to figure this out, we need to learn what a camera is

[Source: N. Snavely]
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360 Panorama

[Source: N. Snavely]
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Let’s look at cameras
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Image Formationobject film

Lets design a camera

Idea 1: put a piece of film in front of an object

Do we get a reasonable image?

[Source: N. Snavely]
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Pinhole Cameraobject filmbarrier

Add a barrier to block off most of the rays

This reduces blurring

The opening known as the aperture

How does this transform the image?

[Source: N. Snavely]
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Camera Obscura

!"##$%&'()(*)+%,--.%

Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)

Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

[Source: A. Efros]
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Camera Obscura

[Source: N. Snavely]
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Home made pinhole camera
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[Source: N. Snavely]
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Shrinking the aperture

Why not make the aperture as small as possible?

Less light gets through

Diffraction effects...

[Source: N. Snavely]
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Shrinking the aperture

[Source: N. Snavely]
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Adding a lensobject filmlens

“circle of  
confusion” 

A lens focuses light onto the film

There is a specific distance at which objects are in focus

Other points project to a circle of confusion in the image

Changing the shape of the lens changes this distance

[Source: N. Snavely]
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Projection

[Source: N. Snavely]
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Projection

[Source: N. Snavely]
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3D to 2D projections

How are 3D primitives projected onto the image plane?

We can do this using a linear 3D to 2D projection matrix

Different types, the most commonly used:

Perspective
Orthography
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Modeling projection

The coordinate system

We will use the pinhole model as an approximation

Put the optical center (Center Of Projection) at the origin

Put the image plane (Projection Plane) in front of the COP. Why?

The camera looks down the negative z axis, for right-handed-coordinates

[Source: N. Snavely]
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Modeling projection

Projection Equations

Compute intersection with PP of ray from (x,y,z) to COP. How?

Derived using similar triangles

(x , y , z)→ (−d x
z
,−d y

z
,−d)

Get the projection by throwing the last coordinate

[Source: N. Snavely]
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Modeling Projection

This is NOT a linear transformation as a division by z is non-linear

!"#"$%&%"'()*""+,-&./%()/")/0%)+%(*'%1)

0"#"$%&%"'()-#.$%))
*""+,-&./%()

0"#"$%&%"'()(*%&%))
*""+,-&./%()

2"&3%+4&$)!"#$)0"#"$%&%"'()*""+,-&./%()

[Source: N. Snavely]
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Perspective Projection

Projection is a matrix multiply using homogeneous coordinates

!"#"!$%&'%()"*!%+,,*!"-.($%

This is known as perspective projection

The matrix is called the projection matrix

Can also represent as a 4x4 matrix

[Source: N. Snavely]
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Perspective Projection

How does scaling the projection matrix change the transformation?

It is not possible to recover the distance of the 3D point from the image.

[Source: N. Snavely]
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Perspective Projection
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Perspective Projection

[Source: S. Seitz]
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Orthographic Projection

Requires no division and simply drops the z coordinate.

Special case of perspective projection where the distance from the COP to
the PP is infinity

Image! World!

Let p be a 3D point and x a 2D point, we can write

x =
[
I2×2 02×1

]
p
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More on Orthographic Projection

Image! World!

Let p be a 3D point and x a 2D point, we can write

x =
[
I2×2 02×1

]
p

It can also be written in homogeneous coordinates

x̂ =

1 0 0 0
0 1 0 0
0 0 0 1

 p̂

Is an approximate model for long focal length lenses and objects whose
depth is shallow relative to their distance to the camera.
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Orthographic Projection

[Source: N. Snavely]
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Perspective Projection

[Source: N. Snavely]
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Variants of Orthographic

In practice, world coordinates need to be scaled to fit onto an image sensor
(e.g., transform to pixels)

This is why scaled orthographic, also called weak perspective is more
commonly used

x =
[
sI2×2 02×1

]

And in homogeneous

x̂ =

s 0 0 0
0 s 0 0
0 0 0 1

 p̂

This is equivalent to first projecting the world points onto a local
fronto-parallel image plane and then scaling this image using regular
perspective projection

Is a popular model for reconstructing the 3D shape of objects far away from
the camera
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Variants of Orthographic

3D World Perspective Projection
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Variants of Orthographic

3D World Orthographic Projection
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Variants of Orthographic

Affine projection, also called paraperspective

Object points are again first projected onto a local reference parallel to the
image plane.

However, rather than being projected orthogonally to this plane, they are
projected parallel to the line of sight to the object center

This is follow by projection onto the final image plane, which amounts to a
scaling

Thus, it is affine, and in homogeneous coordinates

x̂ =

a00 a01 a02 a03
a10 a11 a12 a13
0 0 0 1

 p̂

[Source: N. Snavely]
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Variants of Orthographic

3D World Paraperspective
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Dimensionality Reduction Machine (3D to 2D)

Figures © Stephen E. Palmer, 2002 
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Slide by A. Efros 
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Projection properties

Many-to-one: any points along same ray map to same point in image

Points → points

Lines → lines

But line through focal point projects to a point. Why?

Planes → planes

But plane through focal point projects to line. Why?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 29, 2013 53 / 70



Projection properties

Many-to-one: any points along same ray map to same point in image

Points → points

Lines → lines

But line through focal point projects to a point. Why?

Planes → planes

But plane through focal point projects to line. Why?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 29, 2013 53 / 70



Projection properties

Many-to-one: any points along same ray map to same point in image

Points → points

Lines → lines

But line through focal point projects to a point. Why?

Planes → planes

But plane through focal point projects to line. Why?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 29, 2013 53 / 70



Projection properties

Many-to-one: any points along same ray map to same point in image

Points → points

Lines → lines

But line through focal point projects to a point. Why?

Planes → planes

But plane through focal point projects to line. Why?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 29, 2013 53 / 70



Projection properties

Many-to-one: any points along same ray map to same point in image

Points → points

Lines → lines

But line through focal point projects to a point. Why?

Planes → planes

But plane through focal point projects to line. Why?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 29, 2013 53 / 70



Projection properties

Many-to-one: any points along same ray map to same point in image

Points → points

Lines → lines

But line through focal point projects to a point. Why?

Planes → planes

But plane through focal point projects to line. Why?

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 29, 2013 53 / 70



Projection properties

Parallel lines converge at a vanishing point

Each direction in space has its own vanishing point

But parallels parallel to the image plane remain parallel

[Source: N. Snavely]
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Camera Parameters

How many numbers do we need to describe a camera?

We need to describe its pose in the world

We need to describe its internal parameters

How many then?

[Source: N. Snavely]
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Which coordinate system to use?

Two important coordinate systems:

World coordinate system

Camera coordinate system
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[Source: N. Snavely]
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Camera parameters

To project a point (x , y , z) in world coordinates into a camera

Transform (x , y , z) into camera coordinates, we need to know

Camera position (in world coordinates)
Camera orientation (in world coordinates)

We then project into the image plane

Need to know camera intrinsics

These can all be described with matrices

[Source: N. Snavely]
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More on camera parameters

A camera is described by several parameters

Translation T of the optical center from the origin of world coords

Rotation R of the image plane

Focal length f , principle point (x ′c , y
′
c), pixel size (sx , sy )

Which parameters are extrinsics and which intrinsics?
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Focal Length

Distance over which initially collimated rays (i.e., parallel) are brought to a
focus.
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Focal Length

Can be thought of as zoom

Related to the field of view

!"##$ %&##$

!&&##$ '&&##$

Figure: Image from N. Snavely

[Source: N. Snavely]Raquel Urtasun (TTI-C) Computer Vision Jan 29, 2013 60 / 70



Projection Equations

The projection matrix models the cumulative effect of all intrinsic and
extrinsic parameters

X =

axay
a

 = P


X
Y
Z
1


It can be computed as

P =

−f · sx 0 x ′c
0 −f · sy y ′c
0 0 1


︸ ︷︷ ︸

intrinsics

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

projection

[
R3×3 03×1
01×3 1

]
︸ ︷︷ ︸

rotation

[
I3×3 T3×1
01×3 1

]
︸ ︷︷ ︸

translation

No standard definition of intrinsics and extrinsics
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Extrinsics

How do we get the camera to canonical form?

!"

!"#$%&'%()*+,-*"#%./%0#"

[Source: N. Snavely]
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Perspective Projection

!"#$%"#&"'&()

"#)*+#+%,-.))

/)!"#$%&'(!)*'!0)1#-+&&)2"3+-&),%+)#4$)&51,%+()

/)"+$,)!6)1#-+&&)2"3+-&),%+)&7,2+8)-"9+)%74:;"<2,%,--+-4*%,:&()

/)#(-.%-#!/'#*-.&)!!6.6()1#-+&&)42=',-),3"&)84+&#>$)"#$+%&+'$)2%4?+'=4#)2-,#+),$)4%"*"#()

!122+%)$%",#*1-,%)
:,$%"3()

!'4#@+%$&)A%4:)BC)%,D&)"#)',:+%,)
'44%8"#,$+)&D&$+:)$4)2"3+-)'44%8"#,$+&()

Simplifications used in practice

[Source: N. Snavely]
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Camera matrix

The projection matrix is defined as

P = K︸︷︷︸
intrinsics

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

projection

[
R3×3 03×1
01×3 1

]
︸ ︷︷ ︸

rotation

[
I3×3 T3×3
01×3 1

]
︸ ︷︷ ︸

translation︸ ︷︷ ︸[
R −Rc

]

More compactly
P = K

[
R −Rc

]
= K

[
R t

]
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Camera matrix

!"

!"

#$%"&'(')*%*'+,"$(-)*".''/0$%-1*,2"

[Source: N. Snavely]
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Radial Distorsion

Caused by imperfect lenses

Deviations are most noticeable for rays that pass through the edge of the
lens

No distortion Pin cushion Barrel 

[Source: N. Snavely]
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Correcting Radial Distorsion

from Helmut Dersch 
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Distorsion

[Source: N. Snavely]
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Modeling Distorsion

Project point to normalized image coordinates

xn =
x

z

yn =
y

z

Apply radial distorsion

r2 = x2n + y2
n

xd = xn(1 + κ1r
2 + κ2r

4)

yd = yn(1 + κ1r
2 + κ2r

4)

Apply focal length and translate image center

x ′ = fxd + xc

y ′ = fyd + yc

To model lens distortion use above projection operation instead of standard
projection matrix multiplication

[Source: N. Snavely]
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Next class ... more on panoramas
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